Ring Theory Problem Set 2 - Solutions
16.24. SOLUTION: We already proved in class that $\mathbb{Z}[i]$ is a commutative ring with unity. It is the smallest subring of \mathbb{C} containing \mathbb{Z} and i. If $r=a+b i$ is in $\mathbb{Z}[i]$, then a and b are in \mathbb{Z}. It follows that $N(r)=a^{2}+b^{2}$ is a nonnegative integer.

Suppose that $r=a+b i$ and $s=c+d i$ are elements of $\mathbb{Z}[i]$. Then $N(r)=a^{2}+b^{2}$ and $N(s)=c^{2}+d^{2}$. Note that $r s=(a c-b d)+(a d+b c) i$ and therefore

$$
\begin{gathered}
N(r s)=(a c-b d)^{2}+(a d+b c)^{2}=\left(a^{2} c^{2}-2 a c b d+b^{2} d^{2}\right)+\left(a^{2} d^{2}+2 a d b c+b^{2} c^{2}\right) \\
=a^{2} c^{2}+a^{2} d^{2}+b^{2} c^{2}+b^{2} d^{2}=\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)=N(r) N(s)
\end{gathered}
$$

as stated in the problem.
Suppose that r is a unit in $\mathbb{Z}[i]$. Then there exists an element $s \in \mathbb{Z}[i]$ such that $r s=$ $1=1+0 i$. We have $N(1)=1$. Hence $N(r s)=1$. Therefore, $N(r) N(s)=1$. Since both factors are nonnegative integers and their product is 1 , it is clear that each factor must be 1. Thus, if r is a unit in $\mathbb{Z}[i]$, then $N(r)=1$.

For the converse, note that if $r=a+b i \in \mathbb{Z}[i]$, then $N(r)=a^{2}+b^{2}=(a+b i)(a-b i)$. Let $s=a-b i$. Then $s \in \mathbb{Z}[i]$ too. We have $N(r)=r s$. If $N(r)=1$, then $r s=1$. It follows that r is a unit in $\mathbb{Z}[i]$.

We have proved that r is a unit in $\mathbb{Z}[i]$ if and only if $N(r)=1$. The equation $a^{2}+b^{2}=1$, where $a, b \in \mathbb{Z}$, obviously has only four solutions, namely

$$
(a, b)=(1,0), \quad(-1,0), \quad(0,1), \quad \text { or } \quad(0,-1) .
$$

It follows that there are four units in $\mathbb{Z}[i]$, namely, $1, \quad-1, \quad i$, and $-i$. Thus, $U(\mathbb{Z}[i])$ has order 4 . It is clearly the cyclic group generated by i.

Problem 16.26 Give an example of a finite noncommutative ring.
SOLUTION; Let $F=\mathbb{Z}_{2}=\{0.1\}$. Let $R=M_{2}(F)$. Since F has two elements, it is clear that R has $2^{4}=16$ elements. As discussed in class, R is a ring. One verifies that R is noncommutative by just considering the elements

$$
A=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right), \quad B=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)
$$

One finds that

$$
A B=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \quad \text { and } \quad B A=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)
$$

We have $A, B \in R$ and $A B \neq B A$. Thus, R is a noncommutative ring with just a finite number of elements.

Problem 17.1 SOLUTIONS: For part (a), the subset S fails to be closed under multiplication. In fact, $A=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$ is in S, but $A A=A^{2}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ is not in S.

For part (c), the set S is not closed under addition. It is not a subgroup of $M_{2}(\mathbb{R})$ under addition. Let $A=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ and let $B=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$. Then A and B have nonzero determinant and hence are in the given subset, but $A+B=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$ has determinant equal to 0 and is not in the given subset.

For parts (b) and (d), one sees easily that they are both subgroups of $M_{2}(\mathbb{R})$ under addition. Concerning multiplication, we note that

$$
\left(\begin{array}{ll}
a & 0 \\
c & d
\end{array}\right)\left(\begin{array}{ll}
e & 0 \\
g & f
\end{array}\right)=\left(\begin{array}{cc}
a e & 0 \\
c e+d g & d f
\end{array}\right)
$$

and

$$
\left(\begin{array}{ll}
a & b \\
b & a
\end{array}\right)\left(\begin{array}{ll}
c & d \\
d & c
\end{array}\right)=\left(\begin{array}{ll}
a c+b d & a d+b c \\
b c+a d & b d+a c
\end{array}\right)=\left(\begin{array}{ll}
a c+b d & a d+b c \\
a d+b c & a c+b d
\end{array}\right)
$$

These calculations show that both of the sets specified in parts (b) and (d) are closed under multiplication.

It follows that the subsets of $M_{2}(\mathbb{R})$ in parts (b) and (d) are subrings.

Problem 17.20 Suppose R is a commutative ring with unity 1 and that $a \in R$. Prove that $a R=R$ if and only if a is a unit in R.

SOLUTION: First of all, assume that $a R=R$. In particular, $1 \in R=a R$ and hence there exists an element $b \in R$ such that $1=a b$. Since R is commutative, we also have $b a=1$. Hence a is a unit of R.

Now assume that a is a unit in R. Hence there exists an element $b \in R$ such that $a b=1$. Suppose that $r \in R$ Then

$$
r=1 r=(a b) r=a(b r) \in a R
$$

because $b r \in R$. Thus, $R \subseteq a R$. It is obvious that $a R \subseteq R$. Therefore, we have shown that $a R=R$ whenever a is a unit of R.

Problem A, part (a) Suppose that R is an integral domain. Find all the idempotents in R.

SOLUTION; Let $0=0_{R}$ and $1=1_{R}$. First of all, note that $0 \cdot 0=0$ and $1 \cdot 1=1$. Hence the elements 0 and 1 are idempotents. Also $1 \neq 0$ because R is an integral domain. Suppose that $e \in R$ is an idempotent. Then

$$
e \cdot e=e=e \cdot 1
$$

We already know that 0 is an idempotent in R. Suppose that $e \neq 0$. Then, by the cancellation law discussed in class (which is valid for any integral domain R), the equation $e \cdot e=e \cdot 1$ implies that $e=1$. Therefore, there are only two idempotents in R, namely the elements 0 and 1.

Problem A, part (b) Suppose that R is \mathbb{Z}_{10}. Find the idempotents in R.
SOLUTION; We just have to check each of the 10 elements in R. We find that
$0 \cdot 0=0,1 \cdot 1=1,2 \cdot 2=4,3 \cdot 3=9,4 \cdot 4=6,5 \cdot 5=5,6 \cdot 6=6,7 \cdot 7=9,8 \cdot 8=6,9 \cdot 9=1$.
Therefore, the idempotents in R are $0,1,5$, and 6 .

Problem A, part (c) Suppose that $R=\mathbb{Z} \oplus \mathbb{Z}$. Find the idempotents in R.
SOLUTION; We make the following general observation. Suppose that R_{1} and R_{2} are rings. Let $R=R_{1} \oplus R_{2}$. Every element $r \in R$ is of the form $r=\left(r_{1}, r_{2}\right)$ where $r_{1} \in R_{1}$ and $r_{2} \in R_{2}$. Note that $r r=\left(r_{1} r_{1}, r_{2} r_{2}\right)$. We have

$$
r r=r \Longleftrightarrow\left(r_{1} r_{1}, r_{2} r_{2}\right)=\left(r_{1}, r_{2}\right) \Longleftrightarrow r_{1} r_{1}=r_{1} \text { and } r_{2} r_{2}=r_{2} .
$$

It follows that r is an idempotent in the ring R if and only if r_{1} is an idempotent in R_{1} and r_{2} is an idempotent in R_{2}.

We can apply the above observation to the $\operatorname{ring} R=\mathbb{Z} \oplus \mathbb{Z}$. Since \mathbb{Z} is an integral domain, the idempotents in \mathbb{Z} are 0 and 1 . It then follows that the idempotents in R are the four elements

$$
(0,0), \quad(1,0), \quad(0,1), \quad(1,1)
$$

Problem B: Suppose that R is an integral domain. Let 1_{R} be the unity element of R. Suppose that! is a subring of R, that S is a ring with unity 1_{S}, and that $1_{S} \neq 0_{S}$. Prove that $1_{S}=1_{R}$. Furthermore, prove that S is an integral domain.

SOLUTION Since 1_{S} is the unity in S, we have $1_{S} 1_{S}=1_{S}$. Also, S is a subset of R and hence 1_{S} is an element of R. Since $1_{S} 1_{S}=1_{S}$, it follows that 1_{S} is an idempotent in the ring R. Now S is a subgroup of R under the operation + and hence $0_{S}=0_{R}$. Since $1_{S} \neq 0_{S}$, it follows that $1_{S} \neq 0_{R}$.

Since R is an integral domain, we can use part (a) of problem \mathbf{A}. The only idempotents in R are 0_{R} and 1_{R}. Now 1_{S} is an idempotent in R and $1_{S} \neq 0_{S}$. Therefore, we must have $1_{S}=1_{R}$.

We can see that S is an integral domain as follows. Since S is a subring of R and R is a commutative ring, it follows that S is a commutative ring. Also, S has a unity 1_{S} and $1_{S} \neq 0_{S}$. Furthermore, if $a, b \in S$ and $a \neq 0, \quad b \neq 0$, then we can conclude that $a b \neq 0$ because a and b are also nonzero elements of R and R is an integral domain. Therefore, S is indeed an integral domain.

Problem C: \quad Let $R=\mathbb{Z} \oplus \mathbb{Z}$. Determine $U(R)$.
SOLUTION: We will use what we proved in the solution of problem 16.11 in problem set 1. If R_{1} and R_{2} are rings with unity, we proved that an element $\left(a_{1}, a_{2}\right)$ is a unit in $R_{1} \oplus R_{2}$ if and only if a_{1} is a unit in R_{1} and a_{2} is a unit in R_{2}. We can apply that to this question. The units in the ring \mathbb{Z} are 1 and -1 . Therefore, it follows that the units in the ring R are

$$
(1,1), \quad(1,-1), \quad(-1,1), \quad(-1,-1) .
$$

Problem D: TRUE OR FALSE: The ring $R=\mathbb{Z}_{25}$ contains a subring which is isomorphic to \mathbb{Z}_{5}. Explain your answer carefully.

SOLUTION: The statement is false. It is true that the additive group \mathbb{Z}_{25} contains a subgroup of order 5 . This is true because the group \mathbb{Z}_{25} is a cyclic group of order 25 ad 5 divides 25. In fact, that subgroup is unique and consists of the elements $S=\{0,5,10,15,20\}$. Furthermore, it is clear that S is closed under multiplication and so S is a subring of R. In fact, one checks easily that $a b=0$ for all $a, b \in S$.

Suppose that T is a ring which is isomorphic to S and let $\phi: S \rightarrow T$ be an isomorphism. Then T must also have five elements. Since $a b=0_{S}$ for all elements $a, b \in S$, it follows that $\phi(a) \phi(b)=\phi(a b)=\phi\left(0_{S}\right)=0_{T}$. Since ϕ is surjective, it follows that $t_{1} t_{2}=0_{T}$ for all $t_{1}, t_{2} \in T$.

In the ring \mathbb{Z}_{5}, one has $1 \cdot 1=1 \neq 0$. Hence the ring \mathbb{Z}_{5} cannot be isomorphic to S. Since S is the only subring of R with five elements, we have proved that the statement in the problem is indeed false.

Problem E: Determine all the ideals in the ring $R=\mathbb{R} \oplus \mathbb{R}$.
SOLUTION: Let I be an ideal in the ring R. One possible ideal is the trivial ideal $I=\{(0,0)\}$. Assume now that I is a nontrivial ideal. Thus, it contains an element (a, b), where $a \neq 0$ or $b \neq 0$.

Assume that I contains an element $r=(a, b)$ where $a \neq 0$ and $b \neq 0$. This means that both a and b are units in the ring \mathbb{R}. It follows that r is a unit in R. (Here we are using the result we proved in our solution to problem 16.11 which was mentioned in our solution to problem C above.) Since I is an ideal of R and $r \in I$, it follows that $r R \subseteq I$. We now use the result from problem 17.20. Since r is a unit in R, it follows that $r R=R$. Therefore, $R \subseteq I$. Obviously, $I \subseteq R$. Therefore, we have proved that $I=R$.

Assume for the rest of this proof that I contains no elements which satisfy the assumption in the previous paragraph. Thus, if $(a, b) \in I$, then either $a=0$ or $b=0$. Two such ideals are the principal ideals generated by $(1,0)$ or by $(0,1)$. Those ideals are the following

$$
J=R(0,1)=\{(0, b) \mid b \in \mathbb{R}\} \quad \text { and } \quad K=R(1,0)=\{(a, 0) \mid a \in \mathbb{R}\}
$$

As proved in class, principal ideals are ideals and so both J and K are ideals of the ring R. Our assumptions about I is that $I \subseteq J \cup K$.

Assume that I is not the trivial ideal. Then either I contains a nonzero element of J or a nonzero element of K. Suppose first that I contains a nonzero element $(0, b)$ of J. Thus $b \neq 0$. This means that b is a unit in \mathbb{R} because \mathbb{R} is a field. It follows that I contains $\left(0, b^{-1}\right)(0, b)=(0,1)$. It then follows that I contains the principal ideal J. Thus,
$J \subseteq I \subseteq J \cup K$. By a similar argument, if we assume that I contains a nonzero element of K, then we must have $K \subseteq I \subseteq J \cup K$. It follows that either $J \subseteq I$ or that $K \subseteq I$.

Assume now that I contains a nonzero element of J and also a nonzero element of K. The remarks in the previous paragraph then show that both J and K are contained in I. Hence $J \cup K \subseteq I$. We also have $I \subseteq J \cup K$. Hence $I=J \cup K$. However, this leads to a contradiction because $J \cup K$ is not an ideal of R. To verify this, just note that both (0,1) and $(1,0)$ are in $J \cup K$, but their sum is $(1,1)$ which is not in $J \cup K$.

If $J \subseteq I$, then we must have $J=I$. For otherwise, I would contain an element in $J \cup K$ which is not in J. It would then follow that I contains a nonzero element of K too. This is impossible. If $K \subseteq I$, then we must have $K=I$ for a similar reason. It follows that either $I=J$ or $I=K$.

To summarize, we have proved that the ring R has exactly four ideals, namely the trivial ideal $\{(0,0)\}$, the ring R itself, and the ideals J and K.

