16.24. SOLUTION: We already proved in class that $\mathbb{Z}[i]$ is a commutative ring with unity. It is the smallest subring of \mathbb{C} containing \mathbb{Z} and i. If r = a + bi is in $\mathbb{Z}[i]$, then a and b are in \mathbb{Z} . It follows that $N(r) = a^2 + b^2$ is a nonnegative integer.

Suppose that r = a + bi and s = c + di are elements of $\mathbb{Z}[i]$. Then $N(r) = a^2 + b^2$ and $N(s) = c^2 + d^2$. Note that rs = (ac - bd) + (ad + bc)i and therefore

$$N(rs) = (ac - bd)^{2} + (ad + bc)^{2} = (a^{2}c^{2} - 2acbd + b^{2}d^{2}) + (a^{2}d^{2} + 2adbc + b^{2}c^{2})$$
$$= a^{2}c^{2} + a^{2}d^{2} + b^{2}c^{2} + b^{2}d^{2} = (a^{2} + b^{2})(c^{2} + d^{2}) = N(r)N(s)$$

as stated in the problem.

Suppose that r is a unit in $\mathbb{Z}[i]$. Then there exists an element $s \in \mathbb{Z}[i]$ such that rs = 1 = 1 + 0i. We have N(1) = 1. Hence N(rs) = 1. Therefore, N(r)N(s) = 1. Since both factors are nonnegative integers and their product is 1, it is clear that each factor must be 1. Thus, if r is a unit in $\mathbb{Z}[i]$, then N(r) = 1.

For the converse, note that if $r = a + bi \in \mathbb{Z}[i]$, then $N(r) = a^2 + b^2 = (a + bi)(a - bi)$. Let s = a - bi. Then $s \in \mathbb{Z}[i]$ too. We have N(r) = rs. If N(r) = 1, then rs = 1. It follows that r is a unit in $\mathbb{Z}[i]$.

We have proved that r is a unit in $\mathbb{Z}[i]$ if and only if N(r) = 1. The equation $a^2 + b^2 = 1$, where $a, b \in \mathbb{Z}$, obviously has only four solutions, namely

$$(a, b) = (1, 0), (-1, 0), (0, 1), or (0, -1)$$
.

It follows that there are four units in $\mathbb{Z}[i]$, namely, 1, -1, i, and -i. Thus, $U(\mathbb{Z}[i])$ has order 4. It is clearly the cyclic group generated by i.

Problem 16.26 Give an example of a finite noncommutative ring.

SOLUTION; Let $F = \mathbb{Z}_2 = \{0.1\}$. Let $R = M_2(F)$. Since F has two elements, it is clear that R has $2^4 = 16$ elements. As discussed in class, R is a ring. One verifies that R is noncommutative by just considering the elements

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \qquad B = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}.$$

One finds that

$$AB = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$
 and $BA = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$.

We have $A, B \in R$ and $AB \neq BA$. Thus, R is a noncommutative ring with just a finite number of elements.

Problem 17.1 SOLUTIONS: For part (a), the subset *S* fails to be closed under multiplication. In fact, $A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ is in *S*, but $AA = A^2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ is not in *S*.

For part (c), the set S is not closed under addition. It is not a subgroup of $M_2(\mathbb{R})$ under addition. Let $A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ and let $B = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$. Then A and B have nonzero determinant and hence are in the given subset, but $A + B = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ has determinant equal to 0 and is not in the given subset.

For parts (b) and (d), one sees easily that they are both subgroups of $M_2(\mathbb{R})$ under addition. Concerning multiplication, we note that

$$\begin{pmatrix} a & 0 \\ c & d \end{pmatrix} \begin{pmatrix} e & 0 \\ g & f \end{pmatrix} = \begin{pmatrix} ae & 0 \\ ce + dg & df \end{pmatrix}$$

and

$$\begin{pmatrix} a & b \\ b & a \end{pmatrix} \begin{pmatrix} c & d \\ d & c \end{pmatrix} = \begin{pmatrix} ac+bd & ad+bc \\ bc+ad & bd+ac \end{pmatrix} = \begin{pmatrix} ac+bd & ad+bc \\ ad+bc & ac+bd \end{pmatrix}$$

These calculations show that both of the sets specified in parts (b) and (d) are closed under multiplication.

It follows that the subsets of $M_2(\mathbb{R})$ in parts (b) and (d) are subrings.

Problem 17.20 Suppose R is a commutative ring with unity 1 and that $a \in R$. Prove that aR = R if and only if a is a unit in R.

SOLUTION: First of all, assume that aR = R. In particular, $1 \in R = aR$ and hence there exists an element $b \in R$ such that 1 = ab. Since R is commutative, we also have ba = 1. Hence a is a unit of R.

Now assume that a is a unit in R. Hence there exists an element $b \in R$ such that ab = 1. Suppose that $r \in R$ Then

$$r = 1r = (ab)r = a(br) \in aR$$

because $br \in R$. Thus, $R \subseteq aR$. It is obvious that $aR \subseteq R$. Therefore, we have shown that aR = R whenever a is a unit of R.

Problem A, part (a) Suppose that R is an integral domain. Find all the idempotents in R.

SOLUTION; Let $0 = 0_R$ and $1 = 1_R$. First of all, note that $0 \cdot 0 = 0$ and $1 \cdot 1 = 1$. Hence the elements 0 and 1 are idempotents. Also $1 \neq 0$ because R is an integral domain. Suppose that $e \in R$ is an idempotent. Then

$$e \cdot e = e = e \cdot 1$$

We already know that 0 is an idempotent in R. Suppose that $e \neq 0$. Then, by the cancellation law discussed in class (which is valid for any integral domain R), the equation $e \cdot e = e \cdot 1$ implies that e = 1. Therefore, there are only two idempotents in R, namely the elements 0 and 1.

Problem A, part (b) Suppose that R is \mathbb{Z}_{10} . Find the idempotents in R.

SOLUTION; We just have to check each of the 10 elements in *R*. We find that

 $0 \cdot 0 = 0, \ 1 \cdot 1 = 1, \ 2 \cdot 2 = 4, \ 3 \cdot 3 = 9, \ 4 \cdot 4 = 6, \ 5 \cdot 5 = 5, \ 6 \cdot 6 = 6, \ 7 \cdot 7 = 9, \ 8 \cdot 8 = 6, \ 9 \cdot 9 = 1 \ .$

Therefore, the idempotents in R are 0, 1, 5, and 6.

Problem A, part (c) Suppose that $R = \mathbb{Z} \oplus \mathbb{Z}$. Find the idempotents in R.

SOLUTION; We make the following general observation. Suppose that R_1 and R_2 are rings. Let $R = R_1 \oplus R_2$. Every element $r \in R$ is of the form $r = (r_1, r_2)$ where $r_1 \in R_1$ and $r_2 \in R_2$. Note that $rr = (r_1r_1, r_2r_2)$. We have

$$rr = r \iff (r_1r_1, r_2r_2) = (r_1, r_2) \iff r_1r_1 = r_1 \text{ and } r_2r_2 = r_2$$

It follows that r is an idempotent in the ring R if and only if r_1 is an idempotent in R_1 and r_2 is an idempotent in R_2 .

We can apply the above observation to the ring $R = \mathbb{Z} \oplus \mathbb{Z}$. Since \mathbb{Z} is an integral domain, the idempotents in \mathbb{Z} are 0 and 1. It then follows that the idempotents in R are the four elements

(0, 0), (1, 0), (0, 1), (1, 1).

Problem B: Suppose that R is an integral domain. Let 1_R be the unity element of R. Suppose that ! is a subring of R, that S is a ring with unity 1_S , and that $1_S \neq 0_S$. Prove that $1_S = 1_R$. Furthermore, prove that S is an integral domain.

SOLUTION Since 1_S is the unity in S, we have $1_S 1_S = 1_S$. Also, S is a subset of R and hence 1_S is an element of R. Since $1_S 1_S = 1_S$, it follows that 1_S is an idempotent in the ring R. Now S is a subgroup of R under the operation + and hence $0_S = 0_R$. Since $1_S \neq 0_S$, it follows that $1_S \neq 0_R$.

Since R is an integral domain, we can use part (a) of problem **A**. The only idempotents in R are 0_R and 1_R . Now 1_S is an idempotent in R and $1_S \neq 0_S$. Therefore, we must have $1_S = 1_R$.

We can see that S is an integral domain as follows. Since S is a subring of R and R is a commutative ring, it follows that S is a commutative ring. Also, S has a unity 1_S and $1_S \neq 0_S$. Furthermore, if $a, b \in S$ and $a \neq 0, b \neq 0$, then we can conclude that $ab \neq 0$ because a and b are also nonzero elements of R and R is an integral domain. Therefore, S is indeed an integral domain.

Problem C: Let $R = \mathbb{Z} \oplus \mathbb{Z}$. Determine U(R).

SOLUTION: We will use what we proved in the solution of problem 16.11 in problem set 1. If R_1 and R_2 are rings with unity, we proved that an element (a_1, a_2) is a unit in $R_1 \oplus R_2$ if and only if a_1 is a unit in R_1 and a_2 is a unit in R_2 . We can apply that to this question. The units in the ring \mathbb{Z} are 1 and -1. Therefore, it follows that the units in the ring R are

(1, 1), (1, -1), (-1, 1), (-1, -1).

Problem D: TRUE OR FALSE: The ring $R = \mathbb{Z}_{25}$ contains a subring which is isomorphic to \mathbb{Z}_5 . Explain your answer carefully.

SOLUTION: The statement is false. It is true that the additive group \mathbb{Z}_{25} contains a subgroup of order 5. This is true because the group \mathbb{Z}_{25} is a cyclic group of order 25 ad 5 divides 25. In fact, that subgroup is unique and consists of the elements $S = \{0, 5, 10, 15, 20\}$. Furthermore, it is clear that S is closed under multiplication and so S is a subring of R. In fact, one checks easily that ab = 0 for all $a, b \in S$.

Suppose that T is a ring which is isomorphic to S and let $\phi : S \to T$ be an isomorphism. Then T must also have five elements. Since $ab = 0_S$ for all elements $a, b \in S$, it follows that $\phi(a)\phi(b) = \phi(ab) = \phi(0_S) = 0_T$. Since ϕ is surjective, it follows that $t_1t_2 = 0_T$ for all $t_1, t_2 \in T$.

In the ring \mathbb{Z}_5 , one has $1 \cdot 1 = 1 \neq 0$. Hence the ring \mathbb{Z}_5 cannot be isomorphic to S. Since S is the only subring of R with five elements, we have proved that the statement in the problem is indeed false.

Problem E: Determine all the ideals in the ring $R = \mathbb{R} \oplus \mathbb{R}$.

SOLUTION: Let *I* be an ideal in the ring *R*. One possible ideal is the trivial ideal $I = \{ (0, 0) \}$. Assume now that *I* is a nontrivial ideal. Thus, it contains an element (a, b), where $a \neq 0$ or $b \neq 0$.

Assume that I contains an element r = (a, b) where $a \neq 0$ and $b \neq 0$. This means that both a and b are units in the ring \mathbb{R} . It follows that r is a unit in R. (Here we are using the result we proved in our solution to problem 16.11 which was mentioned in our solution to problem C above.) Since I is an ideal of R and $r \in I$, it follows that $rR \subseteq I$. We now use the result from problem 17.20. Since r is a unit in R, it follows that rR = R. Therefore, $R \subseteq I$. Obviously, $I \subseteq R$. Therefore, we have proved that I = R.

Assume for the rest of this proof that I contains no elements which satisfy the assumption in the previous paragraph. Thus, if $(a, b) \in I$, then either a = 0 or b = 0. Two such ideals are the principal ideals generated by (1, 0) or by (0, 1). Those ideals are the following

$$J = R(0, 1) = \{ (0, b) \mid b \in \mathbb{R} \}$$
 and $K = R(1, 0) = \{ (a, 0) \mid a \in \mathbb{R} \}$

As proved in class, principal ideals are ideals and so both J and K are ideals of the ring R. Our assumptions about I is that $I \subseteq J \cup K$.

Assume that I is not the trivial ideal. Then either I contains a nonzero element of J or a nonzero element of K. Suppose first that I contains a nonzero element (0, b) of J. Thus $b \neq 0$. This means that b is a unit in \mathbb{R} because \mathbb{R} is a field. It follows that I contains $(0, b^{-1})(0, b) = (0, 1)$. It then follows that I contains the principal ideal J. Thus,

 $J \subseteq I \subseteq J \cup K$. By a similar argument, if we assume that I contains a nonzero element of K, then we must have $K \subseteq I \subseteq J \cup K$. It follows that either $J \subseteq I$ or that $K \subseteq I$.

Assume now that I contains a nonzero element of J and also a nonzero element of K. The remarks in the previous paragraph then show that both J and K are contained in I. Hence $J \cup K \subseteq I$. We also have $I \subseteq J \cup K$. Hence $I = J \cup K$. However, this leads to a contradiction because $J \cup K$ is not an ideal of R. To verify this, just note that both (0, 1)and (1, 0) are in $J \cup K$, but their sum is (1, 1) which is not in $J \cup K$.

If $J \subseteq I$, then we must have J = I. For otherwise, I would contain an element in $J \cup K$ which is not in J. It would then follow that I contains a nonzero element of K too. This is impossible. If $K \subseteq I$, then we must have K = I for a similar reason. It follows that either I = J or I = K.

To summarize, we have proved that the ring R has exactly four ideals, namely the trivial ideal $\{(0, 0)\}$, the ring R itself, and the ideals J and K.