
Ring Theory Problem Set 2 – Solutions

16.24. SOLUTION: We already proved in class that Z[i] is a commutative ring with
unity. It is the smallest subring of C containing Z and i. If r = a+ bi is in Z[i], then a and
b are in Z. It follows that N(r) = a2 + b2 is a nonnegative integer.

Suppose that r = a + bi and s = c + di are elements of Z[i]. Then N(r) = a2 + b2 and
N(s) = c2 + d2. Note that rs = (ac− bd) + (ad+ bc)i and therefore

N(rs) = (ac− bd)2 + (ad+ bc)2 = (a2c2 − 2acbd+ b2d2) + (a2d2 + 2adbc+ b2c2)

= a2c2 + a2d2 + b2c2 + b2d2 = (a2 + b2)(c2 + d2) = N(r)N(s)

as stated in the problem.

Suppose that r is a unit in Z[i]. Then there exists an element s ∈ Z[i] such that rs =
1 = 1 + 0i. We have N(1) = 1. Hence N(rs) = 1. Therefore, N(r)N(s) = 1. Since both
factors are nonnegative integers and their product is 1, it is clear that each factor must be
1. Thus, if r is a unit in Z[i], then N(r) = 1.

For the converse, note that if r = a + bi ∈ Z[i], then N(r) = a2 + b2 = (a + bi)(a − bi).
Let s = a− bi. Then s ∈ Z[i] too. We have N(r) = rs. If N(r) = 1, then rs = 1. It follows
that r is a unit in Z[i].

We have proved that r is a unit in Z[i] if and only if N(r) = 1. The equation a2 + b2 = 1,
where a, b ∈ Z, obviously has only four solutions, namely

(a, b) = (1, 0), (−1, 0), (0, 1), or (0, − 1) .

It follows that there are four units in Z[i], namely, 1, − 1, i, and −i. Thus, U(Z[i]) has
order 4. It is clearly the cyclic group generated by i.

Problem 16.26 Give an example of a finite noncommutative ring.

SOLUTION; Let F = Z2 = {0.1}. Let R = M2(F ). Since F has two elements, it is clear
that R has 24 = 16 elements. As discussed in class, R is a ring. One verifies that R is
noncommutative by just considering the elements

A =

(
1 0
0 0

)
, B =

(
0 1
0 0

)
.



One finds that

AB =

(
1 0
0 0

)
and BA =

(
0 0
0 0

)
.

We have A, B ∈ R and AB 6= BA. Thus, R is a noncommutative ring with just a finite
number of elements.

Problem 17.1 SOLUTIONS: For part (a), the subset S fails to be closed under

multiplication. In fact, A =

(
0 1
1 0

)
is in S, but AA = A2 =

(
1 0
0 1

)
is not in S.

For part (c), the set S is not closed under addition. It is not a subgroup of M2(R)

under addition. Let A =

(
1 0
0 1

)
and let B =

(
1 0
0 −1

)
. Then A and B have nonzero

determinant and hence are in the given subset, but A + B =

(
1 0
0 0

)
has determinant

equal to 0 and is not in the given subset.

For parts (b) and (d), one sees easily that they are both subgroups of M2(R) under
addition. Concerning multiplication, we note that(

a 0
c d

)(
e 0
g f

)
=

(
ae 0

ce+ dg df

)
and (

a b
b a

)(
c d
d c

)
=

(
ac+ bd ad+ bc
bc+ ad bd+ ac

)
=

(
ac+ bd ad+ bc
ad+ bc ac+ bd

)
.

These calculations show that both of the sets specified in parts (b) and (d) are closed under
multiplication.

It follows that the subsets of M2(R) in parts (b) and (d) are subrings.

Problem 17.20 Suppose R is a commutative ring with unity 1 and that a ∈ R. Prove that
aR = R if and only if a is a unit in R.

SOLUTION: First of all, assume that aR = R. In particular, 1 ∈ R = aR and hence
there exists an element b ∈ R such that 1 = ab. Since R is commutative, we also have ba = 1.
Hence a is a unit of R.



Now assume that a is a unit in R. Hence there exists an element b ∈ R such that ab = 1.
Suppose that r ∈ R Then

r = 1r = (ab)r = a(br) ∈ aR

because br ∈ R. Thus, R ⊆ aR. It is obvious that aR ⊆ R. Therefore, we have shown that
aR = R whenever a is a unit of R.

Problem A, part (a) Suppose that R is an integral domain. Find all the idempotents
in R.

SOLUTION; Let 0 = 0R and 1 = 1R. First of all, note that 0 · 0 = 0 and 1 · 1 = 1. Hence
the elements 0 and 1 are idempotents. Also 1 6= 0 because R is an integral domain. Suppose
that e ∈ R is an idempotent. Then

e · e = e = e · 1

We already know that 0 is an idempotent in R. Suppose that e 6= 0. Then, by the cancellation
law discussed in class (which is valid for any integral domain R), the equation e · e = e · 1
implies that e = 1. Therefore, there are only two idempotents in R, namely the elements 0
and 1.

Problem A, part (b) Suppose that R is Z10 . Find the idempotents in R.

SOLUTION; We just have to check each of the 10 elements in R. We find that

0·0 = 0, 1·1 = 1, 2·2 = 4, 3·3 = 9, 4·4 = 6, 5·5 = 5, 6·6 = 6, 7·7 = 9, 8·8 = 6, 9·9 = 1 .

Therefore, the idempotents in R are 0, 1, 5, and 6.

Problem A, part (c) Suppose that R = Z⊕ Z. Find the idempotents in R.

SOLUTION; We make the following general observation. Suppose that R1 and R2 are
rings. Let R = R1 ⊕R2. Every element r ∈ R is of the form r = (r1, r2) where r1 ∈ R1 and
r2 ∈ R2. Note that rr = (r1r1, r2r2). We have

rr = r ⇐⇒ (r1r1, r2r2) = (r1, r2) ⇐⇒ r1r1 = r1 and r2r2 = r2 .



It follows that r is an idempotent in the ring R if and only if r1 is an idempotent in R1 and
r2 is an idempotent in R2.

We can apply the above observation to the ring R = Z⊕Z. Since Z is an integral domain,
the idempotents in Z are 0 and 1. It then follows that the idempotents in R are the four
elements

(0, 0), (1, 0), (0, 1), (1, 1) .

Problem B: Suppose that R is an integral domain. Let 1R be the unity element of R.
Suppose that ! is a subring of R, that S is a ring with unity 1S, and that 1S 6= 0S. Prove
that 1S = 1R. Furthermore, prove that S is an integral domain.

SOLUTION Since 1S is the unity in S, we have 1S1S = 1S . Also, S is a subset of R and
hence 1S is an element of R. Since 1S1S = 1S, it follows that 1S is an idempotent in the ring
R. Now S is a subgroup of R under the operation + and hence 0S = 0R. Since 1S 6= 0S, it
follows that 1S 6= 0R.

Since R is an integral domain, we can use part (a) of problem A. The only idempotents
in R are 0R and 1R. Now 1S is an idempotent in R and 1S 6= 0S. Therefore, we must have
1S = 1R.

We can see that S is an integral domain as follows. Since S is a subring of R and R is
a commutative ring, it follows that S is a commutative ring. Also, S has a unity 1S and
1S 6= 0S. Furthermore, if a, b ∈ S and a 6= 0, b 6= 0, then we can conclude that ab 6= 0
because a and b are also nonzero elements of R and R is an integral domain. Therefore, S
is indeed an integral domain.

Problem C: Let R = Z⊕ Z. Determine U(R).

SOLUTION: We will use what we proved in the solution of problem 16.11 in problem set
1. If R1 and R2 are rings with unity, we proved that an element (a1, a2) is a unit in R1⊕R2

if and only if a1 is a unit in R1 and a2 is a unit in R2. We can apply that to this question.
The units in the ring Z are 1 and -1. Therefore, it follows that the units in the ring R are

(1, 1), (1, − 1), (−1, 1), (−1, − 1) .

Problem D: TRUE OR FALSE: The ring R = Z25 contains a subring which is isomorphic
to Z5. Explain your answer carefully.



SOLUTION: The statement is false. It is true that the additive group Z25 contains a sub-
group of order 5. This is true because the group Z25 is a cyclic group of order 25 ad 5 divides
25. In fact, that subgroup is unique and consists of the elements S = {0, 5, 10, 15, 20}.
Furthermore, it is clear that S is closed under multiplication and so S is a subring of R. In
fact, one checks easily that ab = 0 for all a, b ∈ S.

Suppose that T is a ring which is isomorphic to S and let φ : S → T be an isomorphism.
Then T must also have five elements. Since ab = 0S for all elements a, b ∈ S, it follows
that φ(a)φ(b) = φ(ab) = φ(0S) = 0T . Since φ is surjective, it follows that t1t2 = 0T for all
t1, t2 ∈ T .

In the ring Z5, one has 1 · 1 = 1 6= 0. Hence the ring Z5 cannot be isomorphic to S.
Since S is the only subring of R with five elements, we have proved that the statement in
the problem is indeed false.

Problem E: Determine all the ideals in the ring R = R⊕ R.

SOLUTION: Let I be an ideal in the ring R. One possible ideal is the trivial ideal
I = { (0, 0) }. Assume now that I is a nontrivial ideal. Thus, it contains an element (a, b),
where a 6= 0 or b 6= 0.

Assume that I contains an element r = (a, b) where a 6= 0 and b 6= 0. This means that
both a and b are units in the ring R. It follows that r is a unit in R. (Here we are using
the result we proved in our solution to problem 16.11 which was mentioned in our solution
to problem C above.) Since I is an ideal of R and r ∈ I, it follows that rR ⊆ I. We now
use the result from problem 17.20. Since r is a unit in R, it follows that rR = R. Therefore,
R ⊆ I. Obviously, I ⊆ R. Therefore, we have proved that I = R.

Assume for the rest of this proof that I contains no elements which satisfy the assumption
in the previous paragraph. Thus, if (a, b) ∈ I, then either a = 0 or b = 0. Two such ideals
are the principal ideals generated by (1, 0) or by (0, 1). Those ideals are the following

J = R(0, 1) = { (0, b)
∣∣ b ∈ R } and K = R(1, 0) = { (a, 0)

∣∣ a ∈ R }

As proved in class, principal ideals are ideals and so both J and K are ideals of the ring R.
Our assumptions about I is that I ⊆ J ∪K.

Assume that I is not the trivial ideal. Then either I contains a nonzero element of
J or a nonzero element of K. Suppose first that I contains a nonzero element (0, b) of
J . Thus b 6= 0. This means that b is a unit in R because R is a field. It follows that I
contains (0, b−1)(0, b) = (0, 1). It then follows that I contains the principal ideal J . Thus,



J ⊆ I ⊆ J ∪K. By a similar argument, if we assume that I contains a nonzero element of
K, then we must have K ⊆ I ⊆ J ∪K. It follows that either J ⊆ I or that K ⊆ I.

Assume now that I contains a nonzero element of J and also a nonzero element of K.
The remarks in the previous paragraph then show that both J and K are contained in I.
Hence J ∪ K ⊆ I. We also have I ⊆ J ∪ K. Hence I = J ∪ K. However, this leads to a
contradiction because J ∪K is not an ideal of R. To verify this, just note that both (0, 1)
and (1, 0) are in J ∪K, but their sum is (1, 1) which is not in J ∪K.

If J ⊆ I, then we must have J = I. For otherwise, I would contain an element in J ∪K
which is not in J . It would then follow that I contains a nonzero element of K too. This is
impossible. If K ⊆ I, then we must have K = I for a similar reason. It follows that either
I = J or I = K.

To summarize, we have proved that the ring R has exactly four ideals, namely the trivial
ideal {(0, 0)}, the ring R itself, and the ideals J and K.


