16.24. **SOLUTION:** We already proved in class that \(\mathbb{Z}[i] \) is a commutative ring with unity. It is the smallest subring of \(\mathbb{C} \) containing \(\mathbb{Z} \) and \(i \). If \(r = a + bi \) is in \(\mathbb{Z}[i] \), then \(a \) and \(b \) are in \(\mathbb{Z} \). It follows that \(N(r) = a^2 + b^2 \) is a nonnegative integer.

Suppose that \(r = a + bi \) and \(s = c + di \) are elements of \(\mathbb{Z}[i] \). Then \(N(r) = a^2 + b^2 \) and \(N(s) = c^2 + d^2 \). Note that \(rs = (ac - bd) + (ad + bc)i \) and therefore

\[
N(rs) = (ac - bd)^2 + (ad + bc)^2 = (a^2c^2 - 2acbd + b^2d^2) + (a^2d^2 + 2adbc + b^2c^2)
\]

\[
= a^2c^2 + a^2d^2 + b^2c^2 + b^2d^2 = (a^2 + b^2)(c^2 + d^2) = N(r)N(s)
\]
as stated in the problem.

Suppose that \(r \) is a unit in \(\mathbb{Z}[i] \). Then there exists an element \(s \in \mathbb{Z}[i] \) such that \(rs = 1 = 1 + 0i \). We have \(N(1) = 1 \). Hence \(N(rs) = 1 \). Therefore, \(N(r)N(s) = 1 \). Since both factors are nonnegative integers and their product is 1, it is clear that each factor must be 1. Thus, if \(r \) is a unit in \(\mathbb{Z}[i] \), then \(N(r) = 1 \).

For the converse, note that if \(r = a + bi \in \mathbb{Z}[i] \), then \(N(r) = a^2 + b^2 = (a + bi)(a - bi) \). Let \(s = a - bi \). Then \(s \in \mathbb{Z}[i] \) too. We have \(N(r) = rs \). If \(N(r) = 1 \), then \(rs = 1 \). It follows that \(r \) is a unit in \(\mathbb{Z}[i] \).

We have proved that \(r \) is a unit in \(\mathbb{Z}[i] \) if and only if \(N(r) = 1 \). The equation \(a^2 + b^2 = 1 \), where \(a, b \in \mathbb{Z} \), obviously has only four solutions, namely

\[
(a, b) = (1, 0), (-1, 0), (0, 1), \text{ or } (0, -1)
\]

It follows that there are four units in \(\mathbb{Z}[i] \), namely, 1, \(-1\), \(i\), and \(-i\). Thus, \(U(\mathbb{Z}[i]) \) has order 4. It is clearly the cyclic group generated by \(i \).

Problem 16.26 Give an example of a finite noncommutative ring.

SOLUTION: Let \(F = \mathbb{Z}_2 = \{0,1\} \). Let \(R = M_2(F) \). Since \(F \) has two elements, it is clear that \(R \) has \(2^4 = 16 \) elements. As discussed in class, \(R \) is a ring. One verifies that \(R \) is noncommutative by just considering the elements

\[
A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}.
\]
One finds that

\[AB = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \quad \text{and} \quad BA = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} . \]

We have \(A, B \in R \) and \(AB \neq BA \). Thus, \(R \) is a noncommutative ring with just a finite number of elements.

Problem 17.1 SOLUTIONS: For part (a), the subset \(S \) fails to be closed under multiplication. In fact, \(A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \) is in \(S \), but \(AA = A^2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \) is not in \(S \).

For part (c), the set \(S \) is not closed under addition. It is not a subgroup of \(M_2(\mathbb{R}) \) under addition. Let \(A = \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix} \) and let \(B = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \). Then \(A \) and \(B \) have nonzero determinant and hence are in the given subset, but \(A + B = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \) has determinant equal to 0 and is not in the given subset.

For parts (b) and (d), one sees easily that they are both subgroups of \(M_2(\mathbb{R}) \) under addition. Concerning multiplication, we note that

\[\begin{pmatrix} a & 0 \\ c & d \end{pmatrix} \begin{pmatrix} e & 0 \\ g & f \end{pmatrix} = \begin{pmatrix} ae & 0 \\ ce + df & df \end{pmatrix} \]

and

\[\begin{pmatrix} a & b \\ b & a \end{pmatrix} \begin{pmatrix} c & d \\ d & c \end{pmatrix} = \begin{pmatrix} ac + bd & ad + bc \\ bc + ad & bd + ac \end{pmatrix} = \begin{pmatrix} ad + bc & ac + bd \end{pmatrix} \]

These calculations show that both of the sets specified in parts (b) and (d) are closed under multiplication.

It follows that the subsets of \(M_2(\mathbb{R}) \) in parts (b) and (d) are subrings.

Problem 17.20 Suppose \(R \) is a commutative ring with unity 1 and that \(a \in R \). Prove that \(aR = R \) if and only if \(a \) is a unit in \(R \).

SOLUTION: First of all, assume that \(aR = R \). In particular, \(1 \in R = aR \) and hence there exists an element \(b \in R \) such that \(1 = ab \). Since \(R \) is commutative, we also have \(ba = 1 \). Hence \(a \) is a unit of \(R \).
Now assume that a is a unit in R. Hence there exists an element $b \in R$ such that $ab = 1$. Suppose that $r \in R$ Then

$$r = 1r = (ab)r = a(br) \in aR$$

because $br \in R$. Thus, $R \subseteq aR$. It is obvious that $aR \subseteq R$. Therefore, we have shown that $aR = R$ whenever a is a unit of R.

Problem A, part (a) Suppose that R is an integral domain. Find all the idempotents in R.

SOLUTION: Let $0 = 0_R$ and $1 = 1_R$. First of all, note that $0 \cdot 0 = 0$ and $1 \cdot 1 = 1$. Hence the elements 0 and 1 are idempotents. Also $1 \neq 0$ because R is an integral domain. Suppose that $e \in R$ is an idempotent. Then

$$e \cdot e = e = e \cdot 1$$

We already know that 0 is an idempotent in R. Suppose that $e \neq 0$. Then, by the cancellation law discussed in class (which is valid for any integral domain R), the equation $e \cdot e = e \cdot 1$ implies that $e = 1$. Therefore, there are only two idempotents in R, namely the elements 0 and 1.

Problem A, part (b) Suppose that R is \mathbb{Z}_{10}. Find the idempotents in R.

SOLUTION: We just have to check each of the 10 elements in R. We find that

$$0 \cdot 0 = 0, \ 1 \cdot 1 = 1, \ 2 \cdot 2 = 4, \ 3 \cdot 3 = 9, \ 4 \cdot 4 = 6, \ 5 \cdot 5 = 5, \ 6 \cdot 6 = 6, \ 7 \cdot 7 = 9, \ 8 \cdot 8 = 6, \ 9 \cdot 9 = 1.$$

Therefore, the idempotents in R are 0, 1, 5, and 6.

Problem A, part (c) Suppose that $R = \mathbb{Z} \oplus \mathbb{Z}$. Find the idempotents in R.

SOLUTION: We make the following general observation. Suppose that R_1 and R_2 are rings. Let $R = R_1 \oplus R_2$. Every element $r \in R$ is of the form $r = (r_1, r_2)$ where $r_1 \in R_1$ and $r_2 \in R_2$. Note that $rr = (r_1r_1, r_2r_2)$. We have

$$rr = r \iff (r_1r_1, r_2r_2) = (r_1, r_2) \iff r_1r_1 = r_1 \ and \ r_2r_2 = r_2.$$
It follows that r is an idempotent in the ring R if and only if r_1 is an idempotent in R_1 and r_2 is an idempotent in R_2.

We can apply the above observation to the ring $R = \mathbb{Z} \oplus \mathbb{Z}$. Since \mathbb{Z} is an integral domain, the idempotents in \mathbb{Z} are 0 and 1. It then follows that the idempotents in R are the four elements

$$(0, 0), \quad (1, 0), \quad (0, 1), \quad (1, 1).$$

Problem B: Suppose that R is an integral domain. Let 1_R be the unity element of R. Suppose that $!$ is a subring of R, that S is a ring with unity 1_S, and that $1_S \neq 0_S$. Prove that $1_S = 1_R$. Furthermore, prove that S is an integral domain.

SOLUTION Since 1_S is the unity in S, we have $1_S1_S = 1_S$. Also, S is a subset of R and hence 1_S is an element of R. Since $1_S1_S = 1_S$, it follows that 1_S is an idempotent in the ring R. Now S is a subgroup of R under the operation + and hence $0_S = 0_R$. Since $1_S \neq 0_S$, it follows that $1_S \neq 0_R$.

Since R is an integral domain, we can use part (a) of problem A. The only idempotents in R are 0_R and 1_R. Now 1_S is an idempotent in R and $1_S \neq 0_S$. Therefore, we must have $1_S = 1_R$.

We can see that S is an integral domain as follows. Since S is a subring of R and R is a commutative ring, it follows that S is a commutative ring. Also, S has a unity 1_S and $1_S \neq 0_S$. Furthermore, if $a, b \in S$ and $a \neq 0, b \neq 0$, then we can conclude that $ab \neq 0$ because a and b are also nonzero elements of R and R is an integral domain. Therefore, S is indeed an integral domain.

Problem C: Let $R = \mathbb{Z} \oplus \mathbb{Z}$. Determine $U(R)$.

SOLUTION: We will use what we proved in the solution of problem 16.11 in problem set 1. If R_1 and R_2 are rings with unity, we proved that an element (a_1, a_2) is a unit in $R_1 \oplus R_2$ if and only if a_1 is a unit in R_1 and a_2 is a unit in R_2. We can apply that to this question. The units in the ring \mathbb{Z} are 1 and -1. Therefore, it follows that the units in the ring R are

$$(1, 1), \quad (1, -1), \quad (-1, 1), \quad (-1, -1).$$

Problem D: TRUE OR FALSE: The ring $R = \mathbb{Z}_{25}$ contains a subring which is isomorphic to \mathbb{Z}_5. Explain your answer carefully.
SOLUTION: The statement is false. It is true that the additive group \mathbb{Z}_{25} contains a subgroup of order 5. This is true because the group \mathbb{Z}_{25} is a cyclic group of order 25 and 5 divides 25. In fact, that subgroup is unique and consists of the elements $S = \{0, 5, 10, 15, 20\}$. Furthermore, it is clear that S is closed under multiplication and so S is a subring of R. In fact, one checks easily that $ab = 0$ for all $a, b \in S$.

Suppose that T is a ring which is isomorphic to S and let $\phi : S \to T$ be an isomorphism. Then T must also have five elements. Since $ab = 0_S$ for all elements $a, b \in S$, it follows that $\phi(a)\phi(b) = \phi(ab) = \phi(0_S) = 0_T$. Since ϕ is surjective, it follows that $t_1t_2 = 0_T$ for all $t_1, t_2 \in T$.

In the ring \mathbb{Z}_5, one has $1 \cdot 1 = 1 \neq 0$. Hence the ring \mathbb{Z}_5 cannot be isomorphic to S. Since S is the only subring of R with five elements, we have proved that the statement in the problem is indeed false.

Problem E: Determine all the ideals in the ring $R = \mathbb{R} \oplus \mathbb{R}$.

SOLUTION: Let I be an ideal in the ring R. One possible ideal is the trivial ideal $I = \{(0, 0)\}$. Assume now that I is a nontrivial ideal. Thus, it contains an element (a, b), where $a \neq 0$ or $b \neq 0$.

Assume that I contains an element $r = (a, b)$ where $a \neq 0$ and $b \neq 0$. This means that both a and b are units in the ring \mathbb{R}. It follows that r is a unit in R. (Here we are using the result we proved in our solution to problem 16.11 which was mentioned in our solution to problem C above.) Since I is an ideal of R and $r \in I$, it follows that $rR \subseteq I$. We now use the result from problem 17.20. Since r is a unit in R, it follows that $rR = R$. Therefore, $R \subseteq I$. Obviously, $I \subseteq R$. Therefore, we have proved that $I = R$.

Assume for the rest of this proof that I contains no elements which satisfy the assumption in the previous paragraph. Thus, if $(a, b) \in I$, then either $a = 0$ or $b = 0$. Two such ideals are the principal ideals generated by $(1, 0)$ or by $(0, 1)$. Those ideals are the following

$$J = R(0, 1) = \{(0, b) \mid b \in \mathbb{R}\} \quad \text{and} \quad K = R(1, 0) = \{(a, 0) \mid a \in \mathbb{R}\}$$

As proved in class, principal ideals are ideals and so both J and K are ideals of the ring R. Our assumptions about I is that $I \subseteq J \cup K$.

Assume that I is not the trivial ideal. Then either I contains a nonzero element of J or a nonzero element of K. Suppose first that I contains a nonzero element $(0, b)$ of J. Thus $b \neq 0$. This means that b is a unit in \mathbb{R} because \mathbb{R} is a field. It follows that I contains $(0, b^{-1})(0, b) = (0, 1)$. It then follows that I contains the principal ideal J. Thus,
$J \subseteq I \subseteq J \cup K$. By a similar argument, if we assume that I contains a nonzero element of K, then we must have $K \subseteq I \subseteq J \cup K$. It follows that either $J \subseteq I$ or that $K \subseteq I$.

Assume now that I contains a nonzero element of J and also a nonzero element of K. The remarks in the previous paragraph then show that both J and K are contained in I. Hence $J \cup K \subseteq I$. We also have $I \subseteq J \cup K$. Hence $I = J \cup K$. However, this leads to a contradiction because $J \cup K$ is not an ideal of R. To verify this, just note that both $(0, 1)$ and $(1, 0)$ are in $J \cup K$, but their sum is $(1, 1)$ which is not in $J \cup K$.

If $J \subseteq I$, then we must have $J = I$. For otherwise, I would contain an element in $J \cup K$ which is not in J. It would then follow that I contains a nonzero element of K too. This is impossible. If $K \subseteq I$, then we must have $K = I$ for a similar reason. It follows that either $I = J$ or $I = K$.

To summarize, we have proved that the ring R has exactly four ideals, namely the trivial ideal \{(0, 0)\}, the ring R itself, and the ideals J and K.