Ring Theory Problem Set 1 - Solutions

Problem 16.1 Let $R$ be a ring with unity 1 . Show that $(-1) a=-a$ for all $a \in R$.
SOLUTION: We have $1+(-1)=0$ by definition. Multiplying that equation on the right by $a$, we obtain

$$
(1+(-1)) \cdot a=0 \cdot a=0
$$

by theorem 16.1, part i. By the distributive law, we obtain the equation

$$
1 \cdot a+(-1) \cdot a=0
$$

and therefore we have $a+(-1) a=0$. We also have $a+(-a)=0$. Thus, $a+(-1) a=a+(-a)$. The ring $R$ under addition is a group. The cancellation law in that group implies that

$$
-a=(-1) a
$$

which is the result we wanted to prove.

Problem 16.7 Let $F$ be a field and let $a, b \in F$. Assume that $a \neq 0$, Show that there exists an element $x \in F$ satisfying the equation $a x+b=0$.

SOLUTION: $\quad$ Since $F$ is a field and $a \neq 0$, there exists an element $a^{-1}$ in $F$ such that $a a^{-1}=1$. Let $c=-b$. Let $x=a^{-1} c$. Then $x \in F$ since both $a^{-1}$ and $c$ are in $F$. We have

$$
a x+b-=a\left(a^{-1} c\right)+b=\left(a a^{-1}\right) c+b=1 c+b=c+b=0
$$

Hence the element $x$ in $F$ chosen above has the property that $a x+b=0$.

Problem 16.11 Find all units, zero-divisors, and nilpotent elements in the rings $\mathbb{Z} \oplus \mathbb{Z}, \quad \mathbb{Z}_{3} \oplus \mathbb{Z}_{3}$, and $\mathbb{Z}_{4} \oplus \mathbb{Z}_{6}$.

SOLUTION; In general, if $R_{1}$ and $R_{2}$ are rings with unity, then so is $R_{1} \oplus R_{2}$. The unity element is $\left(1_{R_{1}}, 1_{R_{2}}\right)$. An element $\left(a_{1}, a_{2}\right)$ in $R_{1} \oplus R_{2}$ is a unit if and only if there is an element $\left(b_{1}, b_{2}\right)$ in $R_{1} \oplus R_{2}$ such that $\left(a_{1}, a_{2}\right)\left(b_{1}, b_{2}\right)=\left(1_{R_{1}}, 1_{R_{2}}\right)$. By definition, $\left(a_{1}, a_{2}\right)\left(b_{1}, b_{2}\right)=\left(a_{1} b_{1}, a_{2} b_{2}\right)$. Therefore, the element $\left(a_{1}, a_{2}\right)$ is a unit if and only if there exists elements $b_{1} \in R_{1}$ and $b_{2} \in R_{2}$ such that $a_{1} b_{1}=1_{R_{1}}$ and $a_{2} b_{2}=1_{R_{2}}$. This means that ( $a_{1}, a_{2}$ ) is a unit in $R_{1} \oplus R_{2}$ if and only if $a_{1}$ is a unit in $R_{1}$ and $a_{2}$ is a unit in $R_{2}$.

The units in $\mathbb{Z}$ are 1 and -1 . The units in $\mathbb{Z}_{3}$ are 1 and 2. The units in $\mathbb{Z}_{4}$ are 1 and 3. The units in $\mathbb{Z}_{6}$ are 1 and 5 . Therefore,
The units in $\mathbb{Z} \oplus \mathbb{Z}$ are $(1,1),(1,-1),(-1,1)$, and $(-1,-1)$.
The units in $\mathbb{Z}_{3} \oplus \mathbb{Z}_{3}$ are $(1,1),(1,2),(2,1)$, and $(2,2)$.
The units in $\mathbb{Z}_{4} \oplus \mathbb{Z}_{6}$ are $(1,1),(1,5),(3,1)$, and $(3,5)$.
Suppose that $\left(a_{1}, a_{2}\right)$ is an element of $R_{1} \oplus R_{2}$ and that $n$ is a positive integer. Then we clearly have $\left(a_{1}, a_{2}\right)^{n}=\left(a_{1}^{n}, a_{2}^{n}\right)$. The additive identity in $R_{1} \oplus R_{2}$ is $\left(0_{R_{1}}, 0_{R_{2}}\right)$. The equation $\left(a_{1}, a_{2}\right)^{n}=\left(0_{R_{1}}, 0_{R_{2}}\right)$ is equivalent to the two equations $a_{1}^{n}=0_{R_{1}}$ and $a_{2}^{n}=0_{R_{2}}$.

Consequently, if $\left(a_{1}, a_{2}\right)$ is a nilpotent element of $R_{1} \oplus R_{2}$, then it follows that $a_{1}$ is a nilpotent element in $R_{1}$ and $a_{2}$ is a nilpotent element in $R_{2}$. The converse is true too. To see this, assume that $a_{1}$ is a nilpotent element in $R_{1}$ and $a_{2}$ is a nilpotent element in $R_{2}$. Then, by definition, there exists positive integers $e$ and $f$ such that $a_{1}^{e}=0_{R_{1}}$ and $a_{2}^{f}=0_{R_{2}}$. Let $n=e f=f e$. Then $n$ is a positive integer and we have

$$
a_{1}^{n}=a_{1}^{e f}=\left(a_{1}^{e}\right)^{f}=0_{R_{1}}^{f}=0_{R_{1}} \quad \text { and } \quad a_{2}^{n}=a_{2}^{f e}=\left(a_{2}^{f}\right)^{e}=0_{R_{2}}^{e}=0_{R_{2}}
$$

Therefore, $\left(a_{1}, a_{2}\right)^{n}=\left(0_{R_{1}}, 0_{R_{2}}\right)$ and hence $\left(a_{1}, a_{2}\right)$ is a nilpotent element of $R_{1} \oplus R_{2}$. In summary, we have shown that $\left(a_{1}, a_{2}\right)$ is a nilpotent element of $R_{1} \oplus R_{2}$ if and only if $a_{1}$ is a nilpotent element in $R_{1}$ and $a_{2}$ is a nilpotent element in $R_{2}$.

The only nilpotent element of $\mathbb{Z}$ is 0 . The only nilpotent element of $\mathbb{Z}_{3}$ is 0 . The nilpotent elements of $\mathbb{Z}_{4}$ are 0 and 2 . The only nilpotent element of $\mathbb{Z}_{6}$ is 0 . It follows that
The only nilpotent element in $\mathbb{Z} \oplus \mathbb{Z}$ is $(0,0)$. The only nilpotent element in $\mathbb{Z}_{3} \oplus \mathbb{Z}_{3}$ is ( 0,0 ).

The nilpotent elements in $\mathbb{Z}_{4} \oplus \mathbb{Z}_{6}$ are $(0,0)$ and $(2,0)$.
Suppose that $\left(a_{1}, a_{2}\right)$ is an element of $R_{1} \oplus R_{2}$. Then $\left(a_{1}, a_{2}\right)$ is a zero-divisor if and only if there exists an element $\left(b_{1}, b_{2}\right)$ in $R_{1} \oplus R_{2}$ such that

$$
\left(b_{1}, b_{2}\right) \neq\left(0_{R_{1}}, 0_{R_{2}}\right) \quad \text { and } \quad\left(a_{1}, a_{2}\right)\left(b_{1}, b_{2}\right)=\left(0_{R_{1}}, 0_{R_{2}}\right)
$$

The second equation just means that $a_{1} b_{1}=0_{R_{1}}$ and $a_{2} b_{2}=0_{R_{2}}$. Also, $\left(b_{1}, b_{2}\right) \neq\left(0_{R_{1}}, 0_{R_{2}}\right)$ means that $b_{1} \neq 0_{R_{1}}$ or $b_{2} \neq 0_{R_{2}}$. Consequently, it follows that if ( $a_{1}, a_{2}$ ) is a zero-divisor in $R_{1} \oplus R_{2}$, then either $a_{1}$ is a zero divisor in $R_{1}$ or $a_{2}$ is a zero divisor in $R_{2}$. For the converse, suppose that $a_{1}$ is a zero-divisor in $R_{1}$. Then $a_{1} b_{1}=0_{R_{1}}$ for some nonzero element $b_{1} \in R_{1}$. It follows that

$$
\left(b_{1}, 0_{R_{2}}\right) \neq\left(0_{R_{1}}, 0_{R_{2}}\right) \quad \text { and } \quad\left(a_{1}, a_{2}\right)\left(b_{1}, 0_{R_{2}}\right)=\left(0_{R_{1}}, 0_{R_{2}}\right) .
$$

Therefore, $\left(a_{1}, a_{2}\right)$ is a zero-divisor in $R_{1} \oplus R_{2}$. A similar argument shows that if $a_{2}$ is a zero-divisor in $R_{2}$, then ( $a_{1}, a_{2}$ ) is a zero-divisor in $R_{1} \oplus R_{2}$. In summary, we have shown that $\left(a_{1}, a_{2}\right)$ is a zero-divisor in $R_{1} \oplus R_{2}$ if and only if either $a_{1}$ is a zero divisor in $R_{1}$ or $a_{2}$ is a zero divisor in $R_{2}$.

The only zero-divisor in $\mathbb{Z}$ is 0 . The only zero-divisor in $\mathbb{Z}_{3}$ is 0 . The zero-divisors in $\mathbb{Z}_{4}$ are 0 and 2 . The zero-divisors in $\mathbb{Z}_{6}$ are $0,2,3$ and 4 . The above remark shows that

The set of zero-divisors in $\mathbb{Z} \oplus \mathbb{Z}$ is $\{(a, 0) \mid a \in \mathbb{Z}\} \cup\{(0, b) \mid b \in \mathbb{Z}\}$.
The set of zero-divisors in $\mathbb{Z}_{3} \oplus \mathbb{Z}_{3}$ is $\left\{(a, 0) \mid a \in \mathbb{Z}_{3}\right\} \cup\left\{(0, b) \mid b \in \mathbb{Z}_{3}\right\}$.
The set of zero-divisors in $\mathbb{Z}_{4} \oplus \mathbb{Z}_{6}$ is

$$
\left\{(a, b) \mid a \in \mathbb{Z}_{4}, b=0,2,3, \text { or } 4\right\} \cup\left\{(a, b) \mid b \in \mathbb{Z}_{6}, a=0 \text { or } 2 .\right\}
$$

Problem 16.13, part (a) Show that the multiplicative identity in a ring with unity $R$ is unique.

SOLUTION: Suppose that $e \in R$ and that $e a=a=a e$ for all $a \in R$. Suppose also that $f \in R$ and that $f a=a=a f$ for all $a \in R$. Then we have

$$
f=e f=e
$$

Therefore, $e=f$. Thus, there can only be one element in $R$ satisfying the requirements for the multiplicative identity of the ring $R$.

Problem 16.13, part (b) Suppose that $R$ is a ring with unity and that $a \in R$ is a unit of $R$. Show that the multiplicative inverse of $a$ is unique.

SOLUTION: Suppose that $b, c \in R$ and that $a b=b a=1$ and that $a c=c a=1$. Then we have

$$
c=1 c=(b a) c=b(a c)=b 1=b
$$

Hence we have $c=b$. The multiplicative inverse of $a$ is indeed unique.

## ADDITIONAL PROBLEMS:

A: Prove that if $R$ is a division ring, then the center of $R$ is a field.

SOLUTION: First of all, suppose that $R$ is any ring with identity. Let $S$ be the center of $R$. That is,

$$
S=\{s \in R \mid s r=r s \text { for all } r \in R\} .
$$

We will show that $S$ is a subring of $R$.
The fact that $S$ is a subgroup of $R$ under addition can be seen as follows. For this purpose, suppose that $s_{1}, s_{2} \in S$. Then, for all $r \in R$, we have $s_{1} r=r s_{1}$ and $s_{2} r=r s_{2}$. Therefore, using the distributive laws for $R$, we have

$$
\left(s_{1}+s_{2}\right) r=s_{1} r+s_{2} r=r s_{1}+r s_{2}=r\left(s_{1}+s_{2}\right)
$$

for all $r \in R$. Therefore, $s_{1}+s_{2} \in S$. Furthermore, letting 0 denote the additive identity of $R$, we have $0 \cdot r=0$ and $r \cdot 0=0$. Hence $0 \cdot r=r \cdot 0$. Therefore, $0 \in S$.

Finally, suppose that $s \in S$. Let $t=-s$, the additive inverse of $s$ in $R$. We have $s+t=0$. Thus, $s+t \in S$. Since $s$ is in $S$ and $s+t$ is in $S$, it follows that, for all $r \in R$, we have $s r=r s$ and $(s+t) r=r(s+t)$. Therefore, we have

$$
s r+t r=r s+r t=s r+r t
$$

Thus, we have the equation $s r+t r=s r+r t$. Applying the cancellation law for the underlying additive group of $R$ to that equation, it follows that $t r=r t$ for all $r \in R$. Therefore, $t \in S$. That is, $-s \in S$. This completes the verification that $S$ is a subgroup of $R$ under the operation of addition.

To complete the proof that $S$ is a subring of $R$, we must show that if $s_{1}$ and $s_{2}$ are in $S$, then so is $s_{1} s_{2}$. So, assume that $s_{1}, s_{2} \in S$. Then, for all $r \in R$, we have $s_{1} r=r s_{1}$ and $s_{2} r=r s_{2}$. Consider $s_{1} s_{2}$, which is an element of $R$. Using the associative law for multiplication in $R$ many times, it follows that

$$
\left(s_{1} s_{2}\right) r=s_{1}\left(s_{2} r\right)=s_{1}\left(r s_{2}\right)=\left(s_{1} r\right) s_{2}=\left(r s_{1}\right) s_{2}=r\left(s_{1} s_{2}\right)
$$

for all $r \in R$. Therefore, we indeed have $s_{1} s_{2} \in S$.
We have shown that $S$ is a subring of $R$.
If $R$ is a ring with unity 1 , then $1 r=r=r 1$ for all $r \in R$. Therefore $1 \in S$. Hence $S$ is a ring with unity.

Now we assume that $R$ is a division ring. Then, by definition, $R$ is a ring with unity 1 , $1 \neq 0$, and every nonzero element of $R$ is a unit of $R$. Suppose that $S$ is the center of $R$. Then, as pointed out above, $1 \in S$ and hence $S$ is a ring with unity. Also, 0 is the additive identity of $R$ and is also the additive identity of the ring $S$. We have $1 \neq 0$. We now prove
that $S$ is a division ring. It suffices to prove that $U(S)=S-\{0\}$. For this purpose, assume that $s \in S$ and $s \neq 0$. Since $s \in U(R)$, there exists an element $t \in R$ such that $s t=1$ and $t s=1$. Since $s \in S$, we have $s r=r s$ for all $r \in R$. We also have the implications

$$
\begin{aligned}
s r=r s & \Longrightarrow t(s r)=t(r s) \\
\Longrightarrow & \Longrightarrow(t s) r=(t r) s \Longrightarrow 1 r=(t r) s \Longrightarrow r=(t r) s \\
\Longrightarrow r t=((t r) s) t \Longrightarrow r t=(t r)(s t) \Longrightarrow r t & \Longrightarrow(t r) \cdot 1 \Longrightarrow r t=t r
\end{aligned}
$$

Thus, if we assume that $s \in S$, then $t r=r t$ for all $r \in R$. Therefore, $t \in S$. We have proved that if $s$ is a nonzero element of $S$, then there exists an element $t \in S$ such that $s t=1$ and $t s=1$. Hence $S$ is a division ring.

Finally, if $a \in S$, then $a r=r a$ for all $r \in R$. Since $S \subseteq R$, we can say that $a b=b a$ for all $b \in S$. Hence $S$ is a commutative ring. Since $S$ has been proved to be a division ring, it follows that $S$ is a field. We have proved that if $R$ is a division ring, then the center of $R$ is a field.

B: Show that $\mathbb{Z} \times \mathbb{Z}$ is not an integral domain.
SOLUTION: Let $R=\mathbb{Z} \times \mathbb{Z}$, the direct product of the ring $\mathbb{Z}$ with itself. The additive identity element of $R$ is $(0,0)$. Suppose that $a=(1,0)$ and $b=(0,1)$. Then $a$ and $b$ are elements of $R$, and neither is equal to the additive identity element $0_{R}=(0,0)$. However, $a b=(1,0)(0,1)=(0,0)=0_{R}$. Hence $a$ and $b$ are zero-divisors in the ring $R$. Thus, the implication $a b=0_{R} \Longrightarrow a=0_{R}$ or $b=0_{R}$ is not satisfied by the ring $R$. The above choice of $a$ and $b$ is a counterexample. This implies that $R$ is not an integral domain.

C: Let $R=\mathbb{Z}_{10}$. We know that $R$ is a commutative ring with unity. Show that $R$ is not an integral domain. Let $S=\{0,2,4,6,8\}$. Show that $S$ is an integral domain. Show that $S$ is a field.

SOLUTION: The fact that $R$ is not an integral domain follows by observing that $2 \cdot 5=0$ in the ring $R$. The elements 2 and 5 are nonzero elements of $R$, but their product is 0 .

Now we consider $S=\{0,2,4,6,8\}$. The fact that $S$ is a subring of $R$ is rather obvious. Under addition, $S$ is just the cyclic subgroup of $R$ generated by the element 2 . Hence $S$ is indeed a subgroup of $R$. It remains to point out that $S$ is closed under multiplication. Note that if $a, b \in \mathbb{Z}$ are even, then so is $a b$. But 10 is also even. Hence $a b+10 k$ is even for all $k \in \mathbb{Z}$. In particular, the remainder that $a b$ gives when divided by 10 must be even. This shows that the set $S$ is indeed closed under multiplication.

The ring $S$ is obviously commutative. Also, the ring $S$ has a multiplicative identity, namely the element 6. . This is verified by noticing that

$$
6 \cdot 0=0, \quad 6 \cdot 2=2, \quad 6 \cdot 4=4, \quad 6 \cdot 6=6, \quad 6 \cdot 8=8 .
$$

Thus, we have $1_{S}=6$. Note that $0_{S}=0$ and hence $1_{S} \neq 0_{S}$. We can verify that $S$ is a field by showing that the four nonzero elements of $S$ are all invertible. Indeed we have:

$$
2 \cdot 8=6, \quad 4 \cdot 4=6, \quad 6 \cdot 6=6, \quad 8 \cdot 2=6
$$

To verify that $S$ is an integral domain, we make the useful observation that every field is an integral domain. To see this, suppose that $F$ is a field. Then $F$ is a commutative ring with unity $1_{F}$ and $1_{F} \neq 0_{F}$. Furthermore, every nonzero element of $F$ is invertible. Now suppose that $a$ and $b$ are nonzero elements. Then $a$ and $b$ are units in $F$. Thus, $a, b \in U(F)$. As proved in class, it follows that $a b \in U(F)$. But $0_{F} \notin U(F)$ because $0_{F} \cdot c=0_{F}$ for all $c \in F$ and hence $0_{F} \cdot c \neq 1_{F}$ for all $c \in F$. We have proved that if $a$ and $b$ are nonzero elements of $F$, then $a b$ is also a nonzero element of $F$. Therefore, $F$ is indeed an integral domain.

Since $S$ is a field, the above useful observation implies that $S$ is also an integral domain.
D: $\quad$ Determine the center of the ring $M_{2}(\mathbb{R})$.
SOLUTION: To determine the center of the $\operatorname{ring} M_{2}(\mathbb{R})$, we will first find all $2 \times 2$ matrices with real entries that commute with the matrix

$$
E_{11}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) .
$$

We have

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)=\left(\begin{array}{ll}
a & 0 \\
c & 0
\end{array}\right), \quad\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{ll}
a & b \\
0 & 0
\end{array}\right)
$$

A necessary and sufficient condition for these two products to be equal is that $b=c=0$. Thus, the set of $2 \times 2$ matrices that commute with $E_{11}$ is

$$
\left\{\left.\left(\begin{array}{ll}
a & 0 \\
0 & d
\end{array}\right) \right\rvert\, a, d \in \mathbf{R}\right\}
$$

Now suppose that $A$ is an element of the center of the ring $M_{2}(\mathbb{R})$. Then $A B=B A$ for all $B \in M_{2}(\mathbb{R})$. In particular, we have $A E_{11}=E_{11} A$ and $A E_{21}=E_{21} A$, where

$$
E_{21}=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)
$$

As shown above, the fact that $A E_{11}=E_{11} A$ implies that $A$ has the form

$$
A=\left(\begin{array}{ll}
a & 0 \\
0 & d
\end{array}\right)
$$

where $a, d \in \mathbb{R}$. Now we use the fact that $A E_{21}=E_{21} A$. We have

$$
A E_{21}=\left(\begin{array}{ll}
a & 0 \\
0 & d
\end{array}\right)\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
d & 0
\end{array}\right), \quad E_{21} A=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
a & 0 \\
0 & d
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
a & 0
\end{array}\right)
$$

We have $A E_{21}=E_{21} A$ if and only if $a=d$. Thus,

$$
A=\left(\begin{array}{ll}
a & 0 \\
0 & a
\end{array}\right)=a I_{2}
$$

where $I_{2}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$, a scalar multiple of the identity matrix $I_{2}$. Note that $I_{2}$ is the multiplicative identity element in the ring $M_{2}(\mathbb{R})$. It is obvious that matrices of the form $a I_{2}$ do indeed commute with all elements of $M_{2}(\mathbb{R})$. Thus,

$$
\left\{A \in M_{2}(\mathbb{R}) \mid A B=B A \text { for all } B \in M_{2}(\mathbb{R})\right\}=\left\{a I_{2} \mid a \in \mathbb{R}\right\}
$$

That is, the center of the ring $M_{2}(\mathbb{R})$ is the subring $\left\{a I_{2} \mid a \in \mathbb{R}\right\}$.

E: Consider the following set of matrices:

$$
S=\left\{\left.\left(\begin{array}{cc}
a & b \\
-b & a
\end{array}\right) \right\rvert\, a, b \in \mathbb{R}\right\}
$$

Show that $S$ is a subring of $M_{2}(\mathbb{R})$ and that $S \cong \mathbb{C}$.
SOLUTION: We first prove that the subset

$$
S=\left\{\left.\left(\begin{array}{cc}
a & b \\
-b & a
\end{array}\right) \right\rvert\, a, b \in \mathbb{R}\right\} .
$$

is a subring of $M_{2}(\mathbb{R})$. We will then show that $S \cong \mathbb{C}$.
The additive identity element of $M_{2}(\mathbb{R})$ is $\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$ and this is clearly in $S$. For every element $A=\left(\begin{array}{cc}a & b \\ -b & a\end{array}\right)$ in $S$, its additive inverse is

$$
-A=\left(\begin{array}{cc}
-a & -b \\
-(-b) & -a
\end{array}\right)
$$

which is indeed in $S$. Furthermore, suppose that $A^{\prime}$ is also in $S$. Then we can write $A^{\prime}=\left(\begin{array}{cc}a^{\prime} & b^{\prime} \\ -b^{\prime} & a^{\prime}\end{array}\right)$, where $a^{\prime}, b^{\prime} \in \mathbb{R}$. Hence

$$
A+A^{\prime}=\left(\begin{array}{cc}
a & b \\
-b & a
\end{array}\right)+\left(\begin{array}{cc}
a^{\prime} & b^{\prime} \\
-b^{\prime} & a^{\prime}
\end{array}\right)=\left(\begin{array}{cc}
a+a^{\prime} & b+b^{\prime} \\
-\left(b+b^{\prime}\right) & a+a^{\prime}
\end{array}\right)
$$

which is in $S$. We have proved that $S$ is a subgroup of the underlying additive group of the ring $M_{2}(\mathbb{R})$.

To complete the verification that $S$ is a subring of $M_{2}(\mathbb{R})$, it suffices to show that $S$ is closed under the multiplication operation in $M_{2}(\mathbb{R})$. Let $A$ and $A^{\prime}$ be as in the previous paragraph. Then
$A A^{\prime}=\left(\begin{array}{cc}a & b \\ -b & a\end{array}\right)\left(\begin{array}{cc}a^{\prime} & b^{\prime} \\ -b^{\prime} & a^{\prime}\end{array}\right)=\left(\begin{array}{cc}a a^{\prime}-b b^{\prime} & a b^{\prime}+b a^{\prime} \\ -b a^{\prime}+a\left(-b^{\prime}\right) & -b b^{\prime}+a a^{\prime}\end{array}\right)=\left(\begin{array}{cc}a a^{\prime}-b b^{\prime} & a b^{\prime}+b a^{\prime} \\ -\left(a b^{\prime}+b a^{\prime}\right) & a a^{\prime}-b b^{\prime}\end{array}\right)$,
which is indeed in the subset $S$. We have proved that $S$ is a subring of $M_{2}(\mathbb{R})$.
Now define a map $\phi$ from $\mathbb{C}$ to $S$ as follows.: For all $a, b \in \mathbb{R}$, define

$$
\phi(a+b i)=\left(\begin{array}{cc}
a & b \\
-b & a
\end{array}\right)
$$

The map $\phi$ is clearly a bijection from $\mathbb{C}$ to $S$. We will prove that $\phi$ is a ring homomorphism and therefore that the subring $S$ of $M_{2}(\mathbf{R})$ is isomorphic to $\mathbf{C}$.

Consider $z=a+b i, w=c+d i \in \mathbf{C}$. We have

$$
z+w=(a+c)+(b+d) i, \quad z w=(a c-b d)+(a d+b c) i
$$

and so

$$
\phi(z+w)=\left(\begin{array}{cc}
a+c & b+d \\
-(b+d) & a+c
\end{array}\right)=\left(\begin{array}{cc}
a & b \\
-b & a
\end{array}\right)+\left(\begin{array}{cc}
c & d \\
-d & c
\end{array}\right)=\phi(z)+\phi(w)
$$

and

$$
\begin{aligned}
\phi(z) \phi(w) & =\left(\begin{array}{cc}
a & b \\
-b & a
\end{array}\right)\left(\begin{array}{cc}
c & d \\
-d & c
\end{array}\right)=\left(\begin{array}{cc}
a c-b d & a d+b c \\
-b c-a d & -b d+a c
\end{array}\right) \\
& =\left(\begin{array}{cc}
a c-b d & a d+b c \\
-(a d+b c) & a c-b d
\end{array}\right)=\phi(z w),
\end{aligned}
$$

showing that $\phi$ is indeed a ring homomorphism. Since $\phi$ is also a bijection, $\varphi$ is an isomorphism of the ring $\mathbb{C}$ to the ring $S$.

