Ring Theory Problem Set 1 — Solutions

Problem 16.1 Let R be a ring with unity 1. Show that (—1)a = —a for all a € R.

SOLUTION: We have 1+ (—1) = 0 by definition. Multiplying that equation on the right
by a, we obtain
(14+(=1))-a =0-a =0

by theorem 16.1, part i. By the distributive law, we obtain the equation
l-a+(=1)-a =0

and therefore we have a+(—1)a = 0. We also have a+(—a) = 0. Thus, a+(—1)a = a+(—a).
The ring R under addition is a group. The cancellation law in that group implies that

which is the result we wanted to prove.

Problem 16.7 Let F be a field and let a, b € F. Assume that a # 0, Show that there
exists an element x € F' satisfying the equation ax + b = 0.

SOLUTION: Since F is a field and a # 0, there exists an element ¢! in F such that
aa ' =1. Let c = —b. Let # = a~'c. Then x € F since both ¢! and ¢ are in F. We have

axr+b—= ala”'c)+b = (aa )e+b = le+b = c+b = 0

Hence the element x in F' chosen above has the property that ax + b = 0.

Problem 16.11 Find all units, zero-divisors, and nilpotent elements in the rings
Z@Z, Zg@Zg,, and Z4@ZG.

SOLUTION; In general, if Ry and Ry are rings with unity, then so is Ry & Ry. The
unity element is (1g,, 1g,). An element (aj, as) in Ry @ Ry is a unit if and only if there
is an element (by, by) in Ry @ Ry such that (a1, a2)(by, by) = (1g,, 1g,). By definition,
(a1, as)(by, ba) = (a1b1, asby). Therefore, the element (aq, as) is a unit if and only if there
exists elements b; € R; and by € Ry such that a1b; = 1, and asby = 1g,. This means that
(a1, as) is a unit in Ry @ Ry if and only if @y is a unit in Ry and as is a unit in Rs.



The units in Z are 1 and -1. The units in Z3 are 1 and 2. The units in Z4 are 1 and 3. The
units in Zg are 1 and 5. Therefore,

The units in Z & Z are (1,1), (1,—-1), (—=1,1), and (—1,—1).
The units in Zs & Zs are (1,1), (1,2), (2,1), and (2,2).
The units in Zy @ Zg are (1,1), (1,5), (3,1), and (3,5).

Suppose that (aj, ag) is an element of Ry & Ry and that n is a positive integer. Then
we clearly have (a1, as2)" = (af, a}). The additive identity in Ry & Ry is (Og,, Og,). The
equation (a1, as)® = (Og,, Og,) is equivalent to the two equations a} = Og, and ay = Og,.

Consequently, if (a1, ag) is a nilpotent element of Ry @ Ry, then it follows that a; is a
nilpotent element in R; and as is a nilpotent element in Ry. The converse is true too. To
see this, assume that a; is a nilpotent element in R; and ay is a nilpotent element in R,.
Then, by definition, there exists positive integers e and f such that af = O, and ag = Og,.
Let n =ef = fe. Then n is a positive integer and we have

af = ai’ = (af)) = 0, = Op and a; = a)® = (a})° = 0, = Op,
Therefore, (a1, ag)” = (Og,, Og,) and hence (a1, ay) is a nilpotent element of Ry & Ry. In

summary, we have shown that (a;, az) is a nilpotent element of Ry @ Ry if and only if a4 is
a nilpotent element in R; and as is a nilpotent element in R».

The only nilpotent element of Z is 0. The only nilpotent element of Z3 is 0. The nilpotent
elements of Z4 are 0 and 2. The only nilpotent element of Zg is 0. It follows that

The only nilpotent element in Z@®Z is (0,0). The only nilpotent element in Zs @ Zs is (0, 0).

The nilpotent elements in Z, @ Zg are (0,0) and (2,0).

Suppose that (a;, az) is an element of Ry @ Rs. Then (a, as) is a zero-divisor if and
only if there exists an element (b, be) in Ry @ Ry such that

(bla 62) 7& (0R17 ORQ) and (ala a2)(b17 62) = (OR17 ORQ)

The second equation just means that a1by = Og, and asby = Og,. Also, (b1, b2) # (Og,, Og,)
means that by # Og, or by # Og,. Consequently, it follows that if (a;, as) is a zero-divisor in
R, ® R,, then either a is a zero divisor in R; or as is a zero divisor in Ry. For the converse,
suppose that a; is a zero-divisor in R;. Then a1b; = Og, for some nonzero element b; € R;.
It follows that

(b17 ORQ) 7é (0R17 ORQ) and (a1> aQ)(bh ORz) = (OR1’ ORz)



Therefore, (a1, as) is a zero-divisor in Ry @ Ry . A similar argument shows that if ay is a
zero-divisor in Ry, then (a;, ag) is a zero-divisor in Ry & Ry . In summary, we have shown
that (a1, ag) is a zero-divisor in Ry @ Ry if and only if either a; is a zero divisor in Ry or ay
is a zero divisor in Rs.

The only zero-divisor in Z is 0. The only zero-divisor in Zs is 0. The zero-divisors in Z,
are 0 and 2. The zero-divisors in Zg are 0, 2, 3 and 4. The above remark shows that

The set of zero-divisors in Z® Z is { (a, 0) |a€Z } U { (0, b) | beZ }.
The set of zero-divisors in Z3 & Zs is { (a, 0) | a € Zs } U { (0, b) | b€ Z3 }.

The set of zero-divisors in Z4 ® Zg is

{(a, b) |a€Zy, b=0,2,3, 0r 4} U {(a, b) | bEZs, a=0o0r 2.}

Problem 16.13, part (a) Show that the multiplicative identity in a ring with unity R
is unique.

SOLUTION: Suppose that e € R and that ea = a = ae for all a € R. Suppose also that
f € R and that fa =a = af for all @ € R. Then we have

f=cef =ce¢

Therefore, e = f. Thus, there can only be one element in R satisfying the requirements for
the multiplicative identity of the ring R.

Problem 16.13, part (b) Suppose that R is a ring with unity and that a € R is a unit
of R. Show that the multiplicative inverse of a is unique.

SOLUTION: Suppose that b, ¢ € R and that ab = ba = 1 and that ac = ca = 1. Then
we have

¢ = le = (ba)e = blac) = bl = b .

Hence we have ¢ = b. The multiplicative inverse of a is indeed unique.

ADDITIONAL PROBLEMS:

A: Prove that if R is a division ring, then the center of R is a field.



SOLUTION: First of all, suppose that R is any ring with identity. Let S be the center of
R. That is,
S ={seR|sr=rsforallre R} .

We will show that S is a subring of R.

The fact that S is a subgroup of R under addition can be seen as follows. For this
purpose, suppose that s;, sy € S. Then, for all » € R, we have s17 = rs; and sor = 15o.
Therefore, using the distributive laws for R, we have

(s14 82)r = s1r 4 Sor = rs;+1rsy = r(s;+ $2)

for all r € R. Therefore, s; + s3 € S. Furthermore, letting 0 denote the additive identity of
R, we have 0-r =0 and r-0=0. Hence 0-r = r-0. Therefore, 0 € S.

Finally, suppose that s € S. Let t = —s, the additive inverse of s in R. We have s+t = 0.
Thus, s +t € S. Since s isin S and s + ¢ is in 9, it follows that, for all » € R, we have
sr=rs and (s +t)r = r(s +t). Therefore, we have

sr+itr = rs+rt = sr+rt

Thus, we have the equation sr+tr = sr+rt. Applying the cancellation law for the underlying
additive group of R to that equation, it follows that tr = rt for all » € R. Therefore, t € S.
That is, —s € S. This completes the verification that S is a subgroup of R under the
operation of addition.

To complete the proof that S is a subring of R, we must show that if s; and sy are in
S, then so is s182. So, assume that s;, so € S. Then, for all » € R, we have s;r = rs;
and sor = rsy. Consider s;s9, which is an element of R. Using the associative law for
multiplication in R many times, it follows that

(s182)r = s1(ser) = s1(rs2) = (s17)se = (rs1)s2 = r(s182)

for all » € R. Therefore, we indeed have s;s, € S.

We have shown that S is a subring of R.

If R is a ring with unity 1, then 1r = r = r1 for all » € R. Therefore 1 € S. Hence S is
a ring with unity.

Now we assume that R is a division ring. Then, by definition, R is a ring with unity 1,
1 #£ 0, and every nonzero element of R is a unit of R. Suppose that S is the center of R.
Then, as pointed out above, 1 € S and hence S is a ring with unity. Also, 0 is the additive
identity of R and is also the additive identity of the ring S. We have 1 # 0. We now prove



that S is a division ring. It suffices to prove that U(S) = S —{0}. For this purpose, assume
that s € S and s # 0. Since s € U(R), there exists an element ¢t € R such that st = 1 and
ts = 1. Since s € S, we have sr = rs for all r € R. We also have the implications

sr=rs = t(sr) =t(rs) = (ts)r = (tr)s = 1r = (tr)s = r = (tr)s

— rt=((tr)s)t = rt=(tr)(st) = rt=(tr)-1 = rt=tr .

Thus, if we assume that s € S, then tr = rt for all r € R. Therefore, t € S. We have proved
that if s is a nonzero element of S, then there exists an element ¢t € S such that st =1 and
ts = 1. Hence S is a division ring.

Finally, if a € S, then ar = ra for all » € R. Since S C R, we can say that ab = ba for
all b € S. Hence S is a commutative ring. Since S has been proved to be a division ring, it
follows that S is a field. We have proved that if R is a division ring, then the center of R is
a field.

B: Show that Z x Z is not an integral domain.

SOLUTION: Let R =7 x 7Z, the direct product of the ring Z with itself. The additive
identity element of R is (0,0). Suppose that a = (1,0) and b = (0,1). Then a and b are
elements of R, and neither is equal to the additive identity element Oz = (0,0). However,
ab = (1,0)(0,1) = (0,0) = Og. Hence a and b are zero-divisors in the ring R. Thus, the
implication ab = 0g = a = O or b = Op is not satisfied by the ring R. The above choice
of a and b is a counterexample. This implies that R is not an integral domain.

C: Let R = Zjp. We know that R is a commutative ring with unity. Show that R is not
an integral domain. Let S = {0, 2, 4, 6, 8}. Show that S is an integral domain. Show that
S is a field.

SOLUTION: The fact that R is not an integral domain follows by observing that 2-5 =0
in the ring R. The elements 2 and 5 are nonzero elements of R, but their product is 0.

Now we consider S = {0, 2, 4, 6, 8}. The fact that S is a subring of R is rather obvious.
Under addition, S is just the cyclic subgroup of R generated by the element 2. Hence S is
indeed a subgroup of R. It remains to point out that S is closed under multiplication. Note
that if a, b € Z are even, then so is ab. But 10 is also even. Hence ab 4 10k is even for all
k € Z. In particular, the remainder that ab gives when divided by 10 must be even. This
shows that the set S is indeed closed under multiplication.



The ring S is obviously commutative. Also, the ring S has a multiplicative identity, namely
the element 6. . This is verified by noticing that

6-0=0, 6-2=2  6-4=4, 6-6=6, 6-8=8

Thus, we have 1 = 6. Note that 0g = 0 and hence 15 # 0g. We can verify that S is a
field by showing that the four nonzero elements of S are all invertible. Indeed we have:

2-8=06, 4-4=06, 6-6=6, 8:-2=6

To verify that S is an integral domain, we make the useful observation that every field
is an integral domain. To see this, suppose that F'is a field. Then F' is a commutative ring
with unity 1p and 1p # Op. Furthermore, every nonzero element of F' is invertible. Now
suppose that a and b are nonzero elements. Then a and b are units in . Thus, a, b € U(F).
As proved in class, it follows that ab € U(F). But Op ¢ U(F') because Op - ¢ = Op for all
¢ € F and hence Op - ¢ # 1p for all ¢ € F. We have proved that if ¢ and b are nonzero
elements of F', then ab is also a nonzero element of F'. Therefore, F' is indeed an integral
domain.

Since S is a field, the above useful observation implies that .S is also an integral domain.
D: Determine the center of the ring Ms(R).

SOLUTION: To determine the center of the ring My(R), we will first find all 2 x 2 matrices
with real entries that commute with the matrix

b (00)
Cabo) =G (o -G

A necessary and sufficient condition for these two products to be equal is that b = ¢ = 0.
Thus, the set of 2 x 2 matrices that commute with F; is

o a) [reen)

We have



Now suppose that A is an element of the center of the ring My(R). Then AB = BA for
all B € My(R). In particular, we have AF,; = Ej1 A and AFEy = F9 A, where

00
As shown above, the fact that AF;; = E1; A implies that A has the form
a 0
= (0 a)
where a,d € R. Now we use the fact that AEy; = Fy A. We have
a 0\ /0 O 0 0 0 0\ (a O 0 0
AByn = (0 d) (1 0) - (d 0) ’ End = (1 0) (o d) - <a 0>

We have AFEy; = FEo A if and only if a = d. Thus,

a 0
A = (O CL) = CLIQ,
1

where [, = 0 (1)), a scalar multiple of the identity matrix I5. Note that I is the multi-

plicative identity element in the ring M>(R). It is obvious that matrices of the form aly do
indeed commute with all elements of M(R). Thus,

{Ae My(R) | AB=BA forall Be My(R)} = {alr]|aecR}

That is, the center of the ring My(R) is the subring {aly | a € R }.

E: Consider the following set of matrices:

=5

Show that S is a subring of M(R) and that S = C.

a,beR }

SOLUTION: We first prove that the subset

= (5

a,beR }



is a subring of M5(R). We will then show that S = C.

0 0

The additive identity element of My(R) is (0 0

) and this is clearly in S. For every

b\ . . e .
ab a) in 9, its additive inverse is

A= (—<_—ab> :2) ’

which is indeed in S. Furthermore, suppose that A’ is also in S. Then we can write

a b
A = ( a,), where o', b € R. Hence

;L a b a b\ a+ad b+V
A+ A= (—b a>+(—b’ a)  \—=0+0V) a+d)
which is in S. We have proved that S is a subgroup of the underlying additive group of the
ring Ms(R).

To complete the verification that S is a subring of My(R), it suffices to show that S is
closed under the multiplication operation in M;(R). Let A and A’ be as in the previous
paragraph. Then

AA — a b a b\ aa’ — bt ab’ + ba’ B aa’ —bb  ab + bd
\=b a)\=V d)  \=bd+a(=V) —=bV +ad )  \—(abl+bd") ad —bb) ’

which is indeed in the subset S. We have proved that S is a subring of My(R).

element A = (

Now define a map ¢ from C to S as follows.: For all a,b € R, define

. a b
dla+bi) = (—b a) :
The map ¢ is clearly a bijection from C to S. We will prove that ¢ is a ring homomorphism
and therefore that the subring S of My(R) is isomorphic to C.

Consider z = a + bi, w =c+ di € C. We have
z+w = (a+c)+ (b+d)i, 2w = (ac — bd) + (ad + bc)i

and so

= (5 01 = (3 )+ (8 oo



and b d bd d+b
. a c . ac — aa + bc
o(z)o(w) = <—b a> (—d c) N (—bc —ad —bd+ ac>
B ac—0bd ad+bc\ é(zw)
~ \—(ad+bc) ac—0bd) 2
showing that ¢ is indeed a ring homomorphism. Since ¢ is also a bijection, ¢ is an isomor-
phism of the ring C to the ring S.



