
Ring Theory Problem Set 1 – Solutions

Problem 16.1 Let R be a ring with unity 1. Show that (−1)a = −a for all a ∈ R.

SOLUTION: We have 1+(−1) = 0 by definition. Multiplying that equation on the right
by a, we obtain (

1 + (−1)
)
· a = 0 · a = 0

by theorem 16.1, part i. By the distributive law, we obtain the equation

1 · a+ (−1) · a = 0

and therefore we have a+(−1)a = 0. We also have a+(−a) = 0. Thus, a+(−1)a = a+(−a).
The ring R under addition is a group. The cancellation law in that group implies that

−a = (−1)a

which is the result we wanted to prove.

Problem 16.7 Let F be a field and let a, b ∈ F . Assume that a 6= 0, Show that there
exists an element x ∈ F satisfying the equation ax+ b = 0.

SOLUTION: Since F is a field and a 6= 0, there exists an element a−1 in F such that
aa−1 = 1. Let c = −b. Let x = a−1c. Then x ∈ F since both a−1 and c are in F . We have

ax+ b − = a(a−1c) + b = (aa−1)c+ b = 1c+ b = c+ b = 0 .

Hence the element x in F chosen above has the property that ax+ b = 0.

Problem 16.11 Find all units, zero-divisors, and nilpotent elements in the rings
Z⊕ Z, Z3 ⊕ Z3, and Z4 ⊕ Z6.

SOLUTION; In general, if R1 and R2 are rings with unity, then so is R1 ⊕ R2. The
unity element is (1R1 , 1R2). An element (a1, a2) in R1 ⊕ R2 is a unit if and only if there
is an element (b1, b2) in R1 ⊕ R2 such that (a1, a2)(b1, b2) = (1R1 , 1R2). By definition,
(a1, a2)(b1, b2) = (a1b1, a2b2). Therefore, the element (a1, a2) is a unit if and only if there
exists elements b1 ∈ R1 and b2 ∈ R2 such that a1b1 = 1R1 and a2b2 = 1R2 . This means that
(a1, a2) is a unit in R1 ⊕R2 if and only if a1 is a unit in R1 and a2 is a unit in R2.



The units in Z are 1 and -1. The units in Z3 are 1 and 2. The units in Z4 are 1 and 3. The
units in Z6 are 1 and 5. Therefore,

The units in Z⊕ Z are (1, 1), (1,−1), (−1, 1), and (−1,−1).

The units in Z3 ⊕ Z3 are (1, 1), (1, 2), (2, 1), and (2, 2).

The units in Z4 ⊕ Z6 are (1, 1), (1, 5), (3, 1), and (3, 5).

Suppose that (a1, a2) is an element of R1 ⊕ R2 and that n is a positive integer. Then
we clearly have (a1, a2)

n = (an1 , a
n
2 ). The additive identity in R1 ⊕ R2 is (0R1 , 0R2). The

equation (a1, a2)
n = (0R1 , 0R2) is equivalent to the two equations an1 = 0R1 and an2 = 0R2 .

Consequently, if (a1, a2) is a nilpotent element of R1 ⊕ R2, then it follows that a1 is a
nilpotent element in R1 and a2 is a nilpotent element in R2. The converse is true too. To
see this, assume that a1 is a nilpotent element in R1 and a2 is a nilpotent element in R2.
Then, by definition, there exists positive integers e and f such that ae1 = 0R1 and af2 = 0R2 .
Let n = ef = fe. Then n is a positive integer and we have

an1 = aef1 = (ae1)
f = 0f

R1
= 0R1 and an2 = afe2 = (af2)e = 0e

R2
= 0R2

Therefore, (a1, a2)
n = (0R1 , 0R2) and hence (a1, a2) is a nilpotent element of R1 ⊕R2. In

summary, we have shown that (a1, a2) is a nilpotent element of R1 ⊕R2 if and only if a1 is
a nilpotent element in R1 and a2 is a nilpotent element in R2.

The only nilpotent element of Z is 0. The only nilpotent element of Z3 is 0. The nilpotent
elements of Z4 are 0 and 2. The only nilpotent element of Z6 is 0. It follows that

The only nilpotent element in Z⊕Z is (0, 0). The only nilpotent element in Z3⊕Z3 is (0, 0).

The nilpotent elements in Z4 ⊕ Z6 are (0, 0) and (2, 0).

Suppose that (a1, a2) is an element of R1 ⊕ R2. Then (a1, a2) is a zero-divisor if and
only if there exists an element (b1, b2) in R1 ⊕R2 such that

(b1, b2) 6= (0R1 , 0R2) and (a1, a2)(b1, b2) = (0R1 , 0R2) .

The second equation just means that a1b1 = 0R1 and a2b2 = 0R2 . Also, (b1, b2) 6= (0R1 , 0R2)
means that b1 6= 0R1 or b2 6= 0R2 . Consequently, it follows that if (a1, a2) is a zero-divisor in
R1⊕R2, then either a1 is a zero divisor in R1 or a2 is a zero divisor in R2. For the converse,
suppose that a1 is a zero-divisor in R1. Then a1b1 = 0R1 for some nonzero element b1 ∈ R1.
It follows that

(b1, 0R2) 6= (0R1 , 0R2) and (a1, a2)(b1, 0R2) = (0R1 , 0R2) .



Therefore, (a1, a2) is a zero-divisor in R1 ⊕ R2 . A similar argument shows that if a2 is a
zero-divisor in R2, then (a1, a2) is a zero-divisor in R1 ⊕ R2 . In summary, we have shown
that (a1, a2) is a zero-divisor in R1 ⊕R2 if and only if either a1 is a zero divisor in R1 or a2
is a zero divisor in R2.

The only zero-divisor in Z is 0. The only zero-divisor in Z3 is 0. The zero-divisors in Z4

are 0 and 2. The zero-divisors in Z6 are 0, 2, 3 and 4. The above remark shows that

The set of zero-divisors in Z⊕ Z is { (a, 0)
∣∣ a ∈ Z } ∪ { (0, b)

∣∣ b ∈ Z }.
The set of zero-divisors in Z3 ⊕ Z3 is { (a, 0)

∣∣ a ∈ Z3 } ∪ { (0, b)
∣∣ b ∈ Z3 }.

The set of zero-divisors in Z4 ⊕ Z6 is

{ (a, b)
∣∣ a ∈ Z4, b = 0, 2, 3, or 4 } ∪ { (a, b)

∣∣ b ∈ Z6, a = 0 or 2.} .

Problem 16.13, part (a) Show that the multiplicative identity in a ring with unity R
is unique.

SOLUTION: Suppose that e ∈ R and that ea = a = ae for all a ∈ R. Suppose also that
f ∈ R and that fa = a = af for all a ∈ R. Then we have

f = ef = e

Therefore, e = f . Thus, there can only be one element in R satisfying the requirements for
the multiplicative identity of the ring R.

Problem 16.13, part (b) Suppose that R is a ring with unity and that a ∈ R is a unit
of R. Show that the multiplicative inverse of a is unique.

SOLUTION: Suppose that b, c ∈ R and that ab = ba = 1 and that ac = ca = 1. Then
we have

c = 1c = (ba)c = b(ac) = b1 = b .

Hence we have c = b. The multiplicative inverse of a is indeed unique.

ADDITIONAL PROBLEMS:

A: Prove that if R is a division ring, then the center of R is a field.



SOLUTION: First of all, suppose that R is any ring with identity. Let S be the center of
R. That is,

S = { s ∈ R | sr = rs for all r ∈ R } .

We will show that S is a subring of R.

The fact that S is a subgroup of R under addition can be seen as follows. For this
purpose, suppose that s1, s2 ∈ S. Then, for all r ∈ R, we have s1r = rs1 and s2r = rs2.
Therefore, using the distributive laws for R, we have

(s1 + s2)r = s1r + s2r = rs1 + rs2 = r(s1 + s2)

for all r ∈ R. Therefore, s1 + s2 ∈ S. Furthermore, letting 0 denote the additive identity of
R, we have 0 · r = 0 and r · 0 = 0. Hence 0 · r = r · 0. Therefore, 0 ∈ S.

Finally, suppose that s ∈ S. Let t = −s, the additive inverse of s in R. We have s+t = 0.
Thus, s + t ∈ S. Since s is in S and s + t is in S, it follows that, for all r ∈ R, we have
sr = rs and (s+ t)r = r(s+ t). Therefore, we have

sr + tr = rs+ rt = sr + rt

Thus, we have the equation sr+tr = sr+rt. Applying the cancellation law for the underlying
additive group of R to that equation, it follows that tr = rt for all r ∈ R. Therefore, t ∈ S.
That is, −s ∈ S. This completes the verification that S is a subgroup of R under the
operation of addition.

To complete the proof that S is a subring of R, we must show that if s1 and s2 are in
S, then so is s1s2. So, assume that s1, s2 ∈ S. Then, for all r ∈ R, we have s1r = rs1
and s2r = rs2. Consider s1s2, which is an element of R. Using the associative law for
multiplication in R many times, it follows that

(s1s2)r = s1(s2r) = s1(rs2) = (s1r)s2 = (rs1)s2 = r(s1s2)

for all r ∈ R. Therefore, we indeed have s1s2 ∈ S.

We have shown that S is a subring of R.

If R is a ring with unity 1, then 1r = r = r1 for all r ∈ R. Therefore 1 ∈ S. Hence S is
a ring with unity.

Now we assume that R is a division ring. Then, by definition, R is a ring with unity 1,
1 6= 0, and every nonzero element of R is a unit of R. Suppose that S is the center of R.
Then, as pointed out above, 1 ∈ S and hence S is a ring with unity. Also, 0 is the additive
identity of R and is also the additive identity of the ring S. We have 1 6= 0. We now prove



that S is a division ring. It suffices to prove that U(S) = S −{0}. For this purpose, assume
that s ∈ S and s 6= 0. Since s ∈ U(R), there exists an element t ∈ R such that st = 1 and
ts = 1. Since s ∈ S, we have sr = rs for all r ∈ R. We also have the implications

sr = rs =⇒ t(sr) = t(rs) =⇒ (ts)r = (tr)s =⇒ 1r = (tr)s =⇒ r = (tr)s

=⇒ rt =
(
(tr)s

)
t =⇒ rt = (tr)(st) =⇒ rt = (tr) · 1 =⇒ rt = tr .

Thus, if we assume that s ∈ S, then tr = rt for all r ∈ R. Therefore, t ∈ S. We have proved
that if s is a nonzero element of S, then there exists an element t ∈ S such that st = 1 and
ts = 1. Hence S is a division ring.

Finally, if a ∈ S, then ar = ra for all r ∈ R. Since S ⊆ R, we can say that ab = ba for
all b ∈ S. Hence S is a commutative ring. Since S has been proved to be a division ring, it
follows that S is a field. We have proved that if R is a division ring, then the center of R is
a field.

B: Show that Z× Z is not an integral domain.

SOLUTION: Let R = Z × Z, the direct product of the ring Z with itself. The additive
identity element of R is (0, 0). Suppose that a = (1, 0) and b = (0, 1). Then a and b are
elements of R, and neither is equal to the additive identity element 0R = (0, 0). However,
ab = (1, 0)(0, 1) = (0, 0) = 0R. Hence a and b are zero-divisors in the ring R. Thus, the
implication ab = 0R =⇒ a = 0R or b = 0R is not satisfied by the ring R. The above choice
of a and b is a counterexample. This implies that R is not an integral domain.

C: Let R = Z10. We know that R is a commutative ring with unity. Show that R is not
an integral domain. Let S = {0, 2, 4, 6, 8}. Show that S is an integral domain. Show that
S is a field.

SOLUTION: The fact that R is not an integral domain follows by observing that 2 · 5 = 0
in the ring R. The elements 2 and 5 are nonzero elements of R, but their product is 0.

Now we consider S = {0, 2, 4, 6, 8}. The fact that S is a subring of R is rather obvious.
Under addition, S is just the cyclic subgroup of R generated by the element 2. Hence S is
indeed a subgroup of R. It remains to point out that S is closed under multiplication. Note
that if a, b ∈ Z are even, then so is ab. But 10 is also even. Hence ab + 10k is even for all
k ∈ Z. In particular, the remainder that ab gives when divided by 10 must be even. This
shows that the set S is indeed closed under multiplication.



The ring S is obviously commutative. Also, the ring S has a multiplicative identity, namely
the element 6. . This is verified by noticing that

6 · 0 = 0, 6 · 2 = 2, 6 · 4 = 4, 6 · 6 = 6, 6 · 8 = 8 .

Thus, we have 1S = 6. Note that 0S = 0 and hence 1S 6= 0S. We can verify that S is a
field by showing that the four nonzero elements of S are all invertible. Indeed we have:

2 · 8 = 6, 4 · 4 = 6, 6 · 6 = 6, 8 · 2 = 6 .

To verify that S is an integral domain, we make the useful observation that every field
is an integral domain. To see this, suppose that F is a field. Then F is a commutative ring
with unity 1F and 1F 6= 0F . Furthermore, every nonzero element of F is invertible. Now
suppose that a and b are nonzero elements. Then a and b are units in F . Thus, a, b ∈ U(F ).
As proved in class, it follows that ab ∈ U(F ). But 0F 6∈ U(F ) because 0F · c = 0F for all
c ∈ F and hence 0F · c 6= 1F for all c ∈ F . We have proved that if a and b are nonzero
elements of F , then ab is also a nonzero element of F . Therefore, F is indeed an integral
domain.

Since S is a field, the above useful observation implies that S is also an integral domain.

D: Determine the center of the ring M2(R).

SOLUTION: To determine the center of the ring M2(R), we will first find all 2×2 matrices
with real entries that commute with the matrix

E11 =

(
1 0
0 0

)
.

We have (
a b
c d

)(
1 0
0 0

)
=

(
a 0
c 0

)
,

(
1 0
0 0

)(
a b
c d

)
=

(
a b
0 0

)
A necessary and sufficient condition for these two products to be equal is that b = c = 0.
Thus, the set of 2× 2 matrices that commute with E11 is{(

a 0
0 d

) ∣∣∣ a, d ∈ R

}



Now suppose that A is an element of the center of the ring M2(R). Then AB = BA for
all B ∈M2(R). In particular, we have AE11 = E11A and AE21 = E21A, where

E21 =

(
0 0
1 0

)
.

As shown above, the fact that AE11 = E11A implies that A has the form

A =

(
a 0
0 d

)
where a, d ∈ R. Now we use the fact that AE21 = E21A. We have

AE21 =

(
a 0
0 d

)(
0 0
1 0

)
=

(
0 0
d 0

)
, E21A =

(
0 0
1 0

)(
a 0
0 d

)
=

(
0 0
a 0

)
We have AE21 = E21A if and only if a = d. Thus,

A =

(
a 0
0 a

)
= aI2,

where I2 =

(
1 0
0 1

)
, a scalar multiple of the identity matrix I2. Note that I2 is the multi-

plicative identity element in the ring M2(R). It is obvious that matrices of the form aI2 do
indeed commute with all elements of M2(R). Thus,

{A ∈M2(R) | AB = BA for all B ∈M2(R) } = {aI2 | a ∈ R }

That is, the center of the ring M2(R) is the subring {aI2 | a ∈ R }.

E: Consider the following set of matrices:

S =

{ (
a b
−b a

) ∣∣∣∣ a, b ∈ R
}

.

Show that S is a subring of M2(R) and that S ∼= C.

SOLUTION: We first prove that the subset

S =

{ (
a b
−b a

) ∣∣∣∣ a, b ∈ R
}

.



is a subring of M2(R). We will then show that S ∼= C.

The additive identity element of M2(R) is

(
0 0
0 0

)
and this is clearly in S. For every

element A =

(
a b
−b a

)
in S, its additive inverse is

−A =

(
−a −b
−(−b) −a

)
,

which is indeed in S. Furthermore, suppose that A′ is also in S. Then we can write

A′ =

(
a′ b′

−b′ a′

)
, where a′, b′ ∈ R. Hence

A+ A′ =

(
a b
−b a

)
+

(
a′ b′

−b′ a′

)
=

(
a+ a′ b+ b′

−(b+ b′) a+ a′

)
,

which is in S. We have proved that S is a subgroup of the underlying additive group of the
ring M2(R).

To complete the verification that S is a subring of M2(R), it suffices to show that S is
closed under the multiplication operation in M2(R). Let A and A′ be as in the previous
paragraph. Then

AA′ =

(
a b
−b a

)(
a′ b′

−b′ a′

)
=

(
aa′ − bb′ ab′ + ba′

−ba′ + a(−b′) −bb′ + aa′

)
=

(
aa′ − bb′ ab′ + ba′

−(ab′ + ba′) aa′ − bb′
)

,

which is indeed in the subset S. We have proved that S is a subring of M2(R).

Now define a map φ from C to S as follows.: For all a, b ∈ R, define

φ(a+ bi) =

(
a b
−b a

)
.

The map φ is clearly a bijection from C to S. We will prove that φ is a ring homomorphism
and therefore that the subring S of M2(R) is isomorphic to C.

Consider z = a+ bi, w = c+ di ∈ C. We have

z + w = (a+ c) + (b+ d)i, zw = (ac− bd) + (ad+ bc)i

and so

φ(z + w) =

(
a+ c b+ d
−(b+ d) a+ c

)
=

(
a b
−b a

)
+

(
c d
−d c

)
= φ(z) + φ(w)



and

φ(z)φ(w) =

(
a b
−b a

)(
c d
−d c

)
=

(
ac− bd ad+ bc
−bc− ad −bd+ ac

)
=

(
ac− bd ad+ bc
−(ad+ bc) ac− bd

)
= φ(zw) ,

showing that φ is indeed a ring homomorphism. Since φ is also a bijection, ϕ is an isomor-
phism of the ring C to the ring S.


