Practice Questions for the Final

A. Let σ be the following element in S_{10} :

 $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 3 & 5 & 2 & 4 & 8 & 7 & 9 & 1 & 6 \end{pmatrix} \quad .$

(a) Find the cycle decomposition of σ .

(b) Does there exist an element $\tau \in S_9$ such that $\tau \sigma \tau^{-1} = \sigma^4$? If so, find such a τ . If not, explain why.

(c) Does there exist an element $\tau \in S_9$ such that $\tau \sigma \tau^{-1} = \sigma^6$? If so, find such a τ . If not, explain why.

B. Consider the element $\sigma = (1 \ 3)(2 \ 4)$ in S_4 . Let $C(\sigma)$ denote the centralizer of σ in S_4 . Determine $C(\sigma)$. (Hint: Problem 5 on the handout about Conjugacy might be helpful.)

C. Suppose that G is a group. Suppose that N is a normal subgroup of G and that |N| = 2. Prove that $N \subseteq Z(G)$.

D. Suppose that G is a group and that M and N are normal subgroups of G. Assume also that $M \cap N = \{e\}$, where e is the identity element in G. Suppose that $m \in M$ and $n \in N$. Prove that mn = nm.

E. Let $A = \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$. For each of the following groups G, determine if G has a subgroup isomorphic to A. Justify your answers fully.

 $G = S_3, \qquad G = S_4 \quad , \qquad G = Q_8 \quad ,$

$$G = D_4$$
 , $G = \mathbf{Z}/4\mathbf{Z} \times \mathbf{Z}/2\mathbf{Z}$, $G = \mathbf{Z}/48\mathbf{Z}$.

- **F**: Recall that \mathbb{R} is a group under + and that \mathbb{Z} is a subgroup of \mathbb{R} .
- (a) Explain why \mathbb{Z} is a normal subgroup of \mathbb{R} .
- (b) Show that \mathbb{R}/\mathbb{Z} contains infinitely many elements of finite order.
- (c) How many elements in \mathbb{R}/\mathbb{Z} have order 7? How many elements have order 49?
- (d) Show that \mathbb{R}/\mathbb{Z} contains infinitely many elements of infinite order.

G. In this problem, suppose that G and G' are groups and that $\varphi : G \to G'$ is a homomorphism. Suppose that $a \in G$ and that |a| = m, where $m \ge 1$.

(a) Prove that $|\varphi(a)|$ divides m.

(b) Let $N = Ker(\varphi)$. Suppose that N is finite and that gcd(m, |N|) = 1. Prove that $|\varphi(a)| = m$.

(c) Give a specific example where |a| = 25 and $|\varphi(a)| = 5$. Justify your answer. (Note: You must specify G, G', φ , and a in your example.)