SOLUTIONS FOR PROBLEM SET 3

Section 6.4, Problem 5. b, c, f, (just the left cosets for part f), Solution.

(b) There are two left cosets:

$$\{1+8\mathbb{Z}, 3+8\mathbb{Z}\}, \{5+8\mathbb{Z}, 7+8\mathbb{Z}\}$$
.

These sets are also the right cosets.

(c) There are three left cosets:

$$3\mathbb{Z}, \qquad 1+3\mathbb{Z}, \qquad 2+3\mathbb{Z}$$
.

These sets are also the right cosets.

(f) There are three left cosets of
$$D_4$$
 in S_4 :
 $D_4 = \{ i, (1 2 3 4), (1 3)(2 4), (1 4 3 2), (1 2)(3 4), (1 4)(2 3), (1 3), (2 4) \}, \}$

$$(1\ 2)D_4 = \{ (1\ 2), (2\ 3\ 4), (2\ 4\ 1\ 3), (1\ 4\ 3), (3\ 4), (1\ 4\ 2\ 3), (1\ 3\ 2), (1\ 2\ 4) \},$$

$$(1 4)D_4 = \{ (1 4), (1 2 3), (1 3 4 2), (2 4 3), (1 2 4 3), (2 3), (1 3 4), (1 4 2) \}$$

Section 6.4, Problem 6.

Solution. We will use various properties of the determinant of a matrix. A left coset of $SL_2(\mathbb{R})$ in $GL_2(\mathbb{R})$ has the form

$$ASL_2(\mathbb{R}) = \{AB \mid B \in SL_2(\mathbb{R}) \}$$

where $A \in GL_2(\mathbb{R})$. Let d = det(A). Then $d \in \mathbb{R}$ and $d \neq 0$. If $B \in SL_2(\mathbb{R})$, then det(B) = 1. We then have $det(AB) = det(A)det(B) = d \cdot 1 = d$. Thus, all the elements in the above left coset have their determinant equal to d.

Conversely, suppose that $C \in GL_2(\mathbb{R})$ and $\det(C) = d$. Let $B = A^{-1}C$. Then C = AB. Furthermore,

$$det(B) = det(A^{-1})det(C) = det(A)^{-1}det(C) = d^{-1}d = 1$$

Hence $B \in SL_2(\mathbb{R})$. Thus, $C = AB \in ASL_2(\mathbb{R})$. We have proved that

$$ASL_2(\mathbb{R}) = \{ C \mid C \in GL_2(\mathbb{R}) \text{ and } det(C) = d \}.$$

Every left coset of $SL_2(\mathbb{R})$ in $GL_2(\mathbb{R})$ has the above description for some $d \in \mathbb{R}$, $d \neq 0$.

There are infinitely many possible choices of d and therefore infinitely many distinct left cosets of $SL_2(\mathbb{R})$ in $GL_2(\mathbb{R})$. Thus, the index of $SL_2(\mathbb{R})$ in $GL_2(\mathbb{R})$ is infinite.

Section 6.4, Problem 9.

Solution. The group operation in \mathbb{Q} is addition. Of course, \mathbb{Z} is a subgroup of \mathbb{Q} . A typical left coset has the form

$$r + \mathbb{Z} = \{ r + n \mid n \in \mathbb{Z} \} .$$

Notice that if r has denominator d (when expressed in reduced form), then r + n also has denominator d (when expressed in reduced form). Thus all the elements in the above left coset have exactly the same denominator.

Consider the sequence of rational numbers $r_d = \frac{1}{d}$, where d is any positive integer. The denominator of r_d is d. Therefore, if d, d' are positive integers and $d \neq d'$, then r_d and $r_{d'}$ are in different left cosets. Thus, the left cosets $r_d + \mathbb{Z}$ and $r_{d'} + \mathbb{Z}$ are different.

It follows that there are infinitely many distinct left cosets of \mathbb{Z} in \mathbb{Q} . This means that the index of \mathbb{Z} in \mathbb{Q} is infinite.

Section 9.3, Problem 8.

Solution. Suppose that A and B are groups and that $\varphi : A \to B$ is an isomorphism. Suppose also that A is a cyclic group. Then $A = \langle a \rangle$ for some $a \in A$. Let $b = \varphi(a)$. Then $b \in B$. Every element in A is of the form a^k for some $k \in \mathbb{Z}$. Since φ is surjective, every element in B has the form $\varphi(a^k)$ for some $k \in \mathbb{Z}$. Note that $\varphi(a^k) = \varphi(a)^k = b^k$. Thus, every element in B has the form b^k for some $k \in \mathbb{Z}$. Therefore, $B = \langle b \rangle$. We have proved that if A is a cyclic group, then B is also a cyclic group. We can apply the above observation to $A = \mathbb{Z}$ and $B = \mathbb{Q}$. We know that A is a cyclic group. In problem set 2, we proved that B is not a cyclic group. Therefore, there cannot be an isomorphism from A to B.

Section 9.3, Problem 9.

Solution. Let $G = \{r \in \mathbb{R} \mid r \neq -1\}$. We define an operation on G by

$$a * b = a + b + ab$$

for all $a, b \in G$. Note that G is a group. This was proved in problem set 1. Define a map $\varphi: G \to U(\mathbb{R})$ by

$$\varphi(a) = 1 + a$$

Since $a \neq -1$ means that $1 + a \neq 0$, it is clear that φ is a bijective map from G to $U(\mathbb{R})$. Furthermore, we have

$$\varphi(a * b) = \varphi(a + b + ab) = 1 + a + b + ab = (1 + a)(1 + b) = \varphi(a)\varphi(b)$$
.

Hence φ is a homomorphism. Therefore, φ is indeed an isomorphism from G to $U(\mathbb{R})$ and so those two groups are indeed isomorphic.

Section 9.3, Problem 48.

Solution. By definition,

$$G \times H = \{ (g, h) \mid g \in G, h \in H \}, \qquad H \times G = \{ (h, g) \mid h \in H, g \in G \} .$$

The group operations on these sets were defined in class one day. We can define a map φ from $G \times H$ to $H \times G$ by $\varphi((g, h)) = (h, g)$. Thus, any element (h, g) in $H \times G$ is the image under the map φ of the element (g, h) in $G \times H$, and of no other element in $G \times H$. That is, the map φ is a bijective map.

It remains to verify that φ is a homomorphism. To see this, suppose that (g_1, h_1) and (g_2, h_2) are elements of $G \times H$. Then, by definition, $(g_1, h_1)(g_2, h_2) = (g_1g_2, h_1h_2)$. Hence

$$\varphiig((g_1,\ h_1)(g_2,\ h_2) ig) \ = \ \varphiig((g_1g_2,\ h_1h_2) ig) \ = \ (h_1h_2,\ g_1g_2) \ = \ (h_1,\ g_1)(h_2,\ g_2) \ .$$

On the other hand, we have

$$\varphi((g_1, h_1))\varphi((g_2, h_2)) = (h_1, g_1)(h_2, g_2)$$

Hence we have $\varphi((g_1, h_1)(g_2, h_2)) = \varphi((g_1, h_1))\varphi((g_2, h_2))$. This means that φ is indeed a homomorphism from $G \times H$ to $H \times G$. Since φ is also bijective, φ is an isomorphism. Therefore, $G \times H$ is isomorphic to $H \times G$, as stated.

Section 9.3, Problem 50.

Solution. Suppose that A and B are abelian groups. This means that if $a_1, a_2 \in A$, then $a_1a_2 = a_2a_1$. Similarly, if $b_1, b_2 \in B$, then $b_1b_2 = b_2b_1$. To show that $A \times B$ is abelian, suppose that (a_1, b_1) and (a_2, b_2) are arbitrary elements of $A \times B$. Then

$$(a_1, b_1)(a_2, b_2) = (a_1a_2, b_1b_2) = (a_2a_1, b_2b_1) = (a_2, b_2)(a_1, b_1)$$

which proves that $A \times B$ is indeed an abelian group.

Conversely, suppose that A and B are groups and that $A \times B$ is abelian. We will prove that A is abelian. Suppose that $a_1, a_2 \in A$. Let f be the identity element in B. Consider the elements (a_1, f) and (a_2, f) in $A \times B$. Since $A \times B$ is abelian, we have

$$(a_1, f)(a_2, f) = (a_2, f)(a_1, f)$$

This means that $(a_1a_2, f) = (a_2a_1, f)$. Equivalently, we have $a_1a_2 = a_2a_1$ and f = f. Thus, if $a_1, a_2 \in A$, then $a_1a_2 = a_2a_1$. This proves that A is indeed an abelian group. A similar proof will show that B is also an abelian group.

ADDITIONAL PROBLEMS:

A: Let $G = Q_8$. Let $H = \langle -1 \rangle$. Let $K = \langle i \rangle$. Both H and K are subgroups of G. Find the left cosets of H in G. Find the right cosets of H in G. Find the left cosets of K in G. Find the right cosets of K in G.

Solution. Since [G : H] = |G|/|H| = 8/2 = 4, there are four left cosets and four right cosets of H in G. However, since hg = gh for all $h \in H$ and $g \in G$, it follows that H is a normal subgroup of G. Each left coset will be a right coset. Here they are:

$$H = \{1, -1\}, \qquad iH = Hi = \{i, -i\}, \qquad jH = Hj = \{j, -j\}, \qquad kH = Hk = \{k, -k\}$$

Now K is a subgroup of G and [G:K] = |G|/|K| = 8/4 = 2. As explained in class, this implies that K is a normal subgroup of G, that each left coset is also a right coset, and that there are just two left cosets. Here they are:

$$K = \{1, -1, i, -i\}$$
 and $jK = Kj = \{j, -j, k, -k\}$.

B: Let $G = S_3$. Let $H = \langle (1 \ 2) \rangle$. Find the left cosets of H in G. Find the right cosets of H in G.

Solution. We have [G:H] = 6/2 = 3. The three left cosets are

$$H = \{e, (1 2)\}, \qquad (1 3)H = \{(1 3), (1 2 3)\}, \qquad (2 3)H = \{(2 3), (1 3 2)\}$$

There are also three right cosets of H in G. They are

 $H = \{e, (1 2)\}, \qquad H(1 3) = \{(1 3), (1 3 2)\}, \qquad H(2 3) = \{(2 3), (1 2 3)\}.$

C: Suppose that G is a group and that $c \in G$. Let $H = \{h \in G \mid hc = ch\}$. Thus, H is the set of elements in G which commute with c.

(a) Prove that H is a subgroup of G.

Solution. Let e be the identity element in G. Then ec = c and ce = c. Thus, ec = ce. It follows that $e \in H$. Now suppose that $h_1, h_2 \in H$. This means that $h_1c = ch_1$ and $h_2c = ch_2$. It follows that

$$(h_1h_2)c = h_1(h_2c) = h_1(ch_2) = (h_1c)h_2 = (ch_1)h_2 = c(h_1h_2)$$
.

Therefore, $h_1h_2 \in H$. Finally, suppose that $h \in H$. We must verify that $h^{-1} \in H$. We know that hc = ch. We also have the following implications:

$$hc = ch \implies h^{-1}hc = h^{-1}ch \implies ec = h^{-1}ch \implies c = h^{-1}ch$$
$$\implies ch^{-1} = h^{-1}chh^{-1} \implies ch^{-1} = h^{-1}ce \implies ch^{-1} = h^{-1}c$$

and this proves that if $h \in H$, then $h^{-1} \in H$. The above observations show that H is a subgroup of G.

(b) Suppose that $d \in G$ and that d is conjugate to c in G. Prove that the set

$$\{a \in G \mid aca^{-1} = d\}$$

is a left coset of H in G.

Solution. We will let A_d denote the set in question. Since we are assuming that d is a conjugate of c, the set A_d is nonempty. Pick an element $k \in A_d$. This means that $kck^{-1} = d$. We will prove that

$$A_d = kH$$

Thus, indeed, A_d is a left coset of H in G.

We first prove that $kH \subseteq A_d$. To see this, suppose that $a \in kH$. Then a = kh, where $h \in H$. Using the definition of H, it follows that hc = ch. Hence $hch^{-1} = c$. We have

$$aca^{-1} = (kh)c(kh)^{-1} = (kh)c(h^{-1}k^{-1}) = k(hch^{-1})k^{-1} = kck^{-1} = d$$

This shows that $a \in A_d$. Thus, as claimed, we have $kH \subseteq A_d$.

Now we will prove that $A_d \subseteq kH$. To see this, suppose that $a \in A_d$. Then $aca^{-1} = d$. We also have $kck^{-1} = d$. Thus, $aca^{-1} = kck^{-1}$. This equation implies that

$$k^{-1}(aca^{-1})k = k^{-1}(kck^{-1})k = (k^{-1}k)c(k^{-1}k) = ece = c$$

Therefore, $(k^{-1}a)c(a^{-1}k) = c$. Let $h = k^{-1}a$. Note that $h^{-1} = a^{-1}k$. Therefore, combining these remarks, we see that

$$hch^{-1} = c$$

and therefore hc = ch. It follows that $h = k^{-1}a \in H$. We have a = kh. Therefore, $a = kh \in kH$. We have proved that $A_d \subseteq kH$.

In summary, we have proved that $kH \subseteq A_d$ and that $A_d \subseteq kH$. Therefore, $A_d = kH$, as we stated above.

- **D:** Let $G = S_4$. Let $H = \{ \sigma \in G \mid \sigma(4) = 4 \}$.
- (a) Prove that H is a subgroup of G and that |H| = 6.

Solution. First we show that H is a subgroup of G. Clearly, $e \in H$ because e(j) = j for all $j \in \{1, 2, 3, 4\}$ and hence e(4) = 4. Also, if $\sigma_1, \sigma_2 \in H$, then $\sigma_1(4) = 4, \sigma_2(4) = 4$. Hence

$$\sigma_1 \circ \sigma_2(4) = \sigma_1(\sigma_2(4)) = \sigma_1(4) = 4$$

This implies that $\sigma_1 \sigma_2 = \sigma_1 \circ \sigma_2 \in H$. Thus, H is closed under the group operation for G. Finally, suppose that $\sigma \in H$. Then $\sigma(4) = 4$. Thus, the inverse function σ^{-1} satisfies $\sigma^{-1}(4) = 4$ and therefore $\sigma^{-1} \in H$. These remarks imply that H is a subgroup of G.

The elements of H are of the form $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ a & b & c & 4 \end{pmatrix}$, where a, b, and c are distinct elements of the set $\{1, 2, 3\}$. There are six possibilities for σ . Hence |H| = 6.

(b) Suppose that $j \in \{1, 2, 3, 4\}$. Prove that the set $\{\sigma \in G \mid \sigma(4) = j\}$ is a left coset of H in G.

Solution. There exists an element $g \in G$ such that g(4) = j. Pick one such element g. We will consider the left coset gH. Consider any element $h \in H$. Then h(4) = 4 and

$$gh(4) = g \circ h(4) = g(h(4)) = g(4) = j.$$

Therefore, we have $gH = \{gh \mid h \in H\} \subseteq \{\sigma \mid \sigma \in G, \sigma(4) = j\}.$

To prove the reverse inclusion, suppose that $\sigma \in G$ satisfies $\sigma(4) = j$. Thus, $\sigma(4) = g(4)$. We can write $\sigma = gu$ by letting $u = g^{-1}\sigma \in G$. We want to prove that $u \in H$. We have

$$u(4) = g^{-1}\sigma(4) = g^{-1}\circ\sigma(4) = g^{-1}(\sigma(4)) = g^{-1}(j) = 4,$$

the final equality following from the fact that g(4) = j and g^{-1} is the inverse function for g. Therefore, u(4) = 4, $u \in H$, and $\sigma = gu \in gH$. This proves the inclusion

$$\{\sigma \mid \sigma \in G, \ \sigma(4) = j\} \subseteq gH.$$

Combining the two inclusions, we see that $\{\sigma \mid \sigma \in G, \sigma(4) = j\} = gH$. Therefore, each left coset of H in G is indeed of the form stated in the problem.

Although it is not part of this question, we will describe the right cosets of H in G. The right cosets have the following description. If $g \in G$ and $g^{-1}(4) = j$, where $j \in T$, then

(1)
$$Hg = \{\sigma \mid \sigma \in G, \ \sigma(j) = 4\}$$

The proof is similar to the one for the left cosets. We have g(j) = 4. If $h \in H$, then h(4) = 4 and so

$$hg(j) = h(g(j)) = h(4) = 4$$

and so $hg \in \{\sigma \mid \sigma \in G, \sigma(j) = 4\}$. Hence, $Hg \subseteq \{\sigma \mid \sigma \in G, \sigma(j) = 4\}$. Conversely, suppose $\sigma(j) = 4$, then write $\sigma = ug$ where $u \in G$. We have $4 = \sigma(j) = u(g(j)) = u(4)$ and hence $u \in H$. Thus, $\sigma \in Hg$. This proves the inclusion $\{\sigma \mid \sigma \in G, \sigma(j) = 4\} \subset Hg$. Therefore, the equality (1) is proved.