SOLUTIONS FOR PROBLEM SET 3

Section 6.4, Problem 5. b, ¢, f, (just the left cosets for part f),
Solution.

(b) There are two left cosets:
{1+82Z, 3+ 8Z}, {b+8Z, 7+ 8Z}
These sets are also the right cosets.
(c) There are three left cosets:
3Z, 1+ 3Z, 2+ 37
These sets are also the right cosets.
(f) There are three left cosets of Dy in Sy:

Dy = {i, (1234), (13)(24), (1432), (12)(34), (14)(23), (13), (24)},

(12)Dy = {(12), (234), (2413), (143), (34), (1423), (132), (124)},

(14)Dy = {(14), (123), (1342), (243), (1243), (23), (134), (142)} .

Section 6.4, Problem 6.

Solution. We will use various properties of the determinant of a matrix. A left coset of
SLy(R) in GLy(R) has the form

ASLy(R) = {AB | B€ SLy(R) }

where A € GLy(R). Let d = det(A). Then d € R and d # 0. If B € SLy(R), then
det(B) = 1. We then have det(AB) = det(A)det(B) = d-1 = d. Thus, all the elements in
the above left coset have their determinant equal to d.
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Conversely, suppose that C' € GLy(R) and det(C) = d. Let B= A7'C. Then C' = AB.
Furthermore,

det(B) = det(A™Y)det(C) = det(A)'det(C) = d7'd = 1 .
Hence B € SLy(R). Thus, C = AB € ASLy(R). We have proved that
ASLy(R) = { C| C € GLy(R) and det(C)=4d }.

Every left coset of SLy(R) in GLy(R) has the above description for some d € R, d # 0.

There are infinitely many possible choices of d and therefore infinitely many distinct left
cosets of SLy(R) in GLy(R). Thus, the index of SLy(R) in GLo(R) is infinite.

Section 6.4, Problem 9.

Solution. The group operation in Q is addition. Of course, Z is a subgroup of Q. A typical
left coset has the form
r+7Z = {r+n|lneZ} .

Notice that if  has denominator d (when expressed in reduced form), then r + n also has
denominator d ( when expressed in reduced form). Thus all the elements in the above left
coset have exactly the same denominator.

1
Consider the sequence of rational numbers r; = 7 where d is any positive integer. The

denominator of r4 is d. Therefore, if d, d' are positive integers and d # d’, then ry and ry
are in different left cosets. Thus, the left cosets ry + Z and ry + Z are different.

It follows that there are infinitely many distinct left cosets of Z in Q. This means that
the index of Z in Q is infinite.

Section 9.3, Problem 8.

Solution. Suppose that A and B are groups and that ¢ : A — B is an isomorphism.
Suppose also that A is a cyclic group. Then A = (a) for some a € A. Let b = p(a). Then
b € B. Every element in A is of the form a* for some k € Z. Since ¢ is surjective, every
element in B has the form op(a*) for some k € Z. Note that p(a*) = p(a)* = b*. Thus, every
element in B has the form b* for some k € Z. Therefore, B = (b). We have proved that if
A is a cyclic group, then B is also a cyclic group.



We can apply the above observation to A = Z and B = Q. We know that A is a cyclic
group. In problem set 2, we proved that B is not a cyclic group. Therefore, there cannot be
an isomorphism from A to B.

Section 9.3, Problem 9.
Solution. Let G = {r ¢ R | r # —1}. We define an operation on G by

axb = a + b + ab

for all a,b € GG. Note that G is a group. This was proved in problem set 1. Define a map
¢:G— U(R) by
pla) = 1+4a

Since a # —1 means that 1 + a # 0, it is clear that ¢ is a bijective map from G to U(R).
Furthermore, we have

plaxb) = pla+b+ab) = 1+a+b+ab = (1+a)(1+0b) = pla)pd) .

Hence ¢ is a homomorphism. Therefore, ¢ is indeed an isomorphism from G to U(R) and
so those two groups are indeed isomorphic.

Section 9.3, Problem 48.
Solution. By definition,

GxH ={(g, h)|geG, he H}, HxG = {(h,g)|heH, geG} .

The group operations on these sets were defined in class one day. We can define a map ¢
from G x H to H x G by ¢( (9, h) ) = (h, g). Thus, any element (h, g) in H x G is the
image under the map ¢ of the element (g, h) in G x H, and of no other element in G x H.
That is, the map ¢ is a bijective map.

It remains to verify that ¢ is a homomorphism. To see this, suppose that (g1, hy) and
(g2, ho) are elements of G x H. Then, by definition, (g1, h1)(g2, h2) = (9192, hihs). Hence

90( (g1, h1)(ge, h2)) = 90( (9192, h1h2)) = (hiha, g192) = (h1, g1)(h2, 92) .
On the other hand, we have

o( (g1, h) )eo( (g2, ha) ) = (b1, g1)(ha, g2) -
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Hence we have ¢( (g1, h1)(g2, h2) ) = ¢( (91, h1) )( (g2, h2) ). This means that ¢ is
indeed a homomorphism from G x H to H x G. Since ¢ is also bijective, ¢ is an isomorphism.
Therefore, G x H is isomorphic to H x G, as stated.

Section 9.3, Problem 50.

Solution. Suppose that A and B are abelian groups. This means that if a;,as € A, then
12 = A207. Slmllarly, if bl,bg € B, then ble = bgbl. To show that A x B is abelian,
suppose that (aj, b) and (ag, be) are arbitrary elements of A x B. Then

(ab bl)(CLz, b2) = (alCLz; 5152) = (a2a1, b2b1) = (027 52)(6117 bl)

which proves that A x B is indeed an abelian group.

Conversely, suppose that A and B are groups and that A x B is abelian. We will prove
that A is abelian. Suppose that a;, as € A. Let f be the identity element in B. Consider
the elements (a1, f) and (ag, f) in A x B. Since A x B is abelian, we have

(ala f)(a27 f) = (a27 f)(alv f) :

This means that (ajas, f) = (agaq, f). Equivalently, we have ajas = asa; and f = f. Thus,
if a1,as € A, then ajas = asaq. This proves that A is indeed an abelian group. A similar
proof will show that B is also an abelian group.

ADDITIONAL PROBLEMS:

A: Let G =Qs. Let H= (—1). Let K = (i). Both H and K are subgroups of G. Find
the left cosets of H in GG. Find the right cosets of H in G. Find the left cosets of K in G.
Find the right cosets of K in G.

Solution. Since [G : H| = |G|/|H| = 8/2 = 4, there are four left cosets and four right
cosets of H in G. However, since hg = gh for all h € H and g € G, it follows that H is a
normal subgroup of G. Each left coset will be a right coset. Here they are:

H={1,-1}, iH=Hi={i, —i}, jH=Hj=1{j, —j}, kH=Hk={k —k} .



Now K is a subgroup of G and [G : K] = |G|/|K| = 8/4 = 2. As explained in class, this
implies that K is a normal subgroup of (G, that each left coset is also a right coset, and that
there are just two left cosets. Here they are:

K={1, —=1,4, —i} and jK=Kj={j, —j, k —k} .

B: Let G = S35. Let H = ((1 2)). Find the left cosets of H in G. Find the right cosets of
Hin G.

Solution. We have [G : H| = 6/2 = 3. The three left cosets are

H={e, (12)}, (13)H ={(13), (123)}, (23)H={(23), (132)} .
There are also three right cosets of H in GG. They are

H={e, (12)}, H(13)={(13), (132)}, H(23)={(23), (123)} .
C: Suppose that G is a group and that c € G. Let H ={h € G ‘ hc = ch }. Thus, H is
the set of elements in G which commute with c.
(a) Prove that H is a subgroup of G.

Solution.. Let e be the identity element in G. Then ec = ¢ and ce = ¢. Thus, ec = ce.
It follows that e € H. Now suppose that hy, hy € H. This means that hic = ch; and
hoc = chs. It follows that

(h1h2>c = h1<h20) = hl(ChQ) = (th)hQ = (Chl)hQ = C(hlhg) .

Therefore, hihy € H. Finally, suppose that h € H. We must verify that h~' € H. We know
that hc = ch. We also have the following implications:

he=ch = h™‘he=h"'¢h = ec=h"'¢ch = c=h"'ch

— chl=h"techh™! = chl=h"tce = cht=h"tc

and this proves that if h € H, then A=t € H. The above observations show that H is a
subgroup of G.



(b) Suppose that d € G and that d is conjugate to ¢ in G. Prove that the set
{acG|aca =d}
is a left coset of H in G.

Solution.. We will let A; denote the set in question. Since we are assuming that d is a
conjugate of ¢, the set A, is nonempty. Pick an element k € A;. This means that kck™! = d.
We will prove that

Ay = kH

Thus, indeed, A, is a left coset of H in G.

We first prove that kH C A;. To see this, suppose that a € kH. Then a = kh, where
h € H. Using the definition of H, it follows that hc = ch. Hence hch™! = ¢. We have

aca”" = (kh)e(kh)™" = (kh)e(h'k™") = k(hch™ " )k™" = kek™ = d .

This shows that a € A;. Thus, as claimed, we have kH C A,.

Now we will prove that A; C kH. To see this, suppose that a € A;. Then aca™! = d.
We also have kck™! = d. Thus, aca™! = kck~!. This equation implies that

k™ (aca™k = k7' (kek ")k = (k'k)e(k™'k) = ece = ¢

Therefore, (k™'a)c(a™'k) = ¢. Let h = k™*a. Note that h~* = a~'k. Therefore, combining
these remarks, we see that
heh™! = ¢

and therefore hc = ch. It follows that h = k~'a € H. We have a = kh. Therefore,
a = kh € kH. We have proved that A; C kH.

In summary, we have proved that kH C A, and that Ay C kH. Therefore, Ay = kH, as
we stated above.
D: Let G=05;. Let H={0€G |o(4) =4}
(a) Prove that H is a subgroup of G and that |H| = 6.

Solution. First we show that H is a subgroup of G. Clearly, e € H because e(j) = j for
all j € {1,2,3,4} and hence e(4) = 4. Also, if 01, 09 € H, then 01(4) = 4, 09(4) = 4. Hence

o1005(4) = 01(02(4)) = 01(4) =4
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This implies that o100 = 07 009 € H. Thus, H is closed under the group operation for
G. Finally, suppose that 0 € H. Then o(4) = 4. Thus, the inverse function o~! satisfies
0~!(4) = 4 and therefore ¢~ € H. These remarks imply that H is a subgroup of G.

The elements of H are of the form o = 61L 2 i i , where a,b, and ¢ are distinct

elements of the set {1,2,3}. There are six possibilities for . Hence |H| = 6.

(b) Suppose that j € {1, 2, 3, 4}. Prove that the set { 0 € G | o(4) = j } is a left
coset of H in G.

Solution. There exists an element g € G such that g(4) = j. Pick one such element g.
We will consider the left coset gH. Consider any element h € H. Then h(4) = 4 and

gh(4) = go h(4) = g(h(4)) = g(4) = J.
Therefore, we have gH = {gh|he€ H} C {o|o€G, o(4) =7}

To prove the reverse inclusion, suppose that o € G satisfies 0(4) = j. Thus, o(4) = g(4).
We can write 0 = gu by letting u = g 'o € G. We want to prove that v € H. We have

u(d) =g lo(4) =g loo(d) =g ' (c(4) =g '(j) =4,

the final equality following from the fact that g(4) = j and ¢! is the inverse function for g.

Therefore, u(4) = 4, uw € H, and 0 = gu € gH. This proves the inclusion
{oc|oce@G, o(4) =4} CgH.

Combining the two inclusions, we see that {c | ¢ € G, 0(4) = j} = gH. Therefore, each
left coset of H in G is indeed of the form stated in the problem.

Although it is not part of this question, we will describe the right cosets of H in G. The
right cosets have the following description. If g € G and g~'(4) = j, where j € T, then

(1) Hg = {o|oeG, o(j) =4}

The proof is similar to the one for the left cosets. We have ¢g(j) = 4. If h € H, then h(4) =4
and so

hg(5) = h(9(7)) = h(4) =4
and so hg € {0 | 0 € G, o(j) = 4}. Hence, Hg C {0 | 0 € G, o(j) = 4}. Conversely,
suppose o(j) = 4, then write ¢ = ug where u € G. We have 4 = o(j) = u(g(j)) = u(4)
and hence u € H. Thus, 0 € Hg. This proves the inclusion {0 | 0 € G, o(j) =4} C Hg.
Therefore, the equality (1) is proved.



