
SOLUTIONS FOR PROBLEM SET 3

Section 6.4, Problem 5. b, c, f, (just the left cosets for part f),

Solution.

(b) There are two left cosets:

{1 + 8Z, 3 + 8Z}, {5 + 8Z, 7 + 8Z} .

These sets are also the right cosets.

(c) There are three left cosets:

3Z, 1 + 3Z, 2 + 3Z .

These sets are also the right cosets.

(f) There are three left cosets of D4 in S4:

D4 = { i, (1 2 3 4), (1 3)(2 4), (1 4 3 2), (1 2)(3 4), (1 4)(2 3), (1 3), (2 4) },

(1 2)D4 = { (1 2), (2 3 4), (2 4 1 3), (1 4 3), (3 4), (1 4 2 3), (1 3 2), (1 2 4) },

(1 4)D4 = { (1 4), (1 2 3), (1 3 4 2), (2 4 3), (1 2 4 3), (2 3), (1 3 4), (1 4 2) } .

Section 6.4, Problem 6.

Solution. We will use various properties of the determinant of a matrix. A left coset of
SL2(R) in GL2(R) has the form

ASL2(R) = {AB
∣∣ B ∈ SL2(R) }

where A ∈ GL2(R). Let d = det(A). Then d ∈ R and d 6= 0. If B ∈ SL2(R), then
det(B) = 1. We then have det(AB) = det(A)det(B) = d · 1 = d. Thus, all the elements in
the above left coset have their determinant equal to d.

1



Conversely, suppose that C ∈ GL2(R) and det(C) = d. Let B = A−1C. Then C = AB.
Furthermore,

det(B) = det(A−1)det(C) = det(A)−1det(C) = d−1d = 1 .

Hence B ∈ SL2(R). Thus, C = AB ∈ ASL2(R). We have proved that

ASL2(R) = { C
∣∣ C ∈ GL2(R) and det(C) = d }.

Every left coset of SL2(R) in GL2(R) has the above description for some d ∈ R, d 6= 0.

There are infinitely many possible choices of d and therefore infinitely many distinct left
cosets of SL2(R) in GL2(R). Thus, the index of SL2(R) in GL2(R) is infinite.

Section 6.4, Problem 9.

Solution. The group operation in Q is addition. Of course, Z is a subgroup of Q. A typical
left coset has the form

r + Z = { r + n | n ∈ Z } .

Notice that if r has denominator d (when expressed in reduced form), then r + n also has
denominator d ( when expressed in reduced form). Thus all the elements in the above left
coset have exactly the same denominator.

Consider the sequence of rational numbers rd =
1

d
, where d is any positive integer. The

denominator of rd is d. Therefore, if d, d′ are positive integers and d 6= d′, then rd and rd′
are in different left cosets. Thus, the left cosets rd + Z and rd′ + Z are different.

It follows that there are infinitely many distinct left cosets of Z in Q. This means that
the index of Z in Q is infinite.

Section 9.3, Problem 8.

Solution. Suppose that A and B are groups and that ϕ : A → B is an isomorphism.
Suppose also that A is a cyclic group. Then A = 〈a〉 for some a ∈ A. Let b = ϕ(a). Then
b ∈ B. Every element in A is of the form ak for some k ∈ Z. Since ϕ is surjective, every
element in B has the form ϕ(ak) for some k ∈ Z. Note that ϕ(ak) = ϕ(a)k = bk. Thus, every
element in B has the form bk for some k ∈ Z. Therefore, B = 〈b〉. We have proved that if
A is a cyclic group, then B is also a cyclic group.
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We can apply the above observation to A = Z and B = Q. We know that A is a cyclic
group. In problem set 2, we proved that B is not a cyclic group. Therefore, there cannot be
an isomorphism from A to B.

Section 9.3, Problem 9.

Solution. Let G = {r ∈ R | r 6= −1}. We define an operation on G by

a ∗ b = a + b + ab

for all a, b ∈ G. Note that G is a group. This was proved in problem set 1. Define a map
ϕ : G→ U(R) by

ϕ(a) = 1 + a

Since a 6= −1 means that 1 + a 6= 0, it is clear that ϕ is a bijective map from G to U(R).
Furthermore, we have

ϕ(a ∗ b) = ϕ(a+ b+ ab) = 1 + a+ b+ ab = (1 + a)(1 + b) = ϕ(a)ϕ(b) .

Hence ϕ is a homomorphism. Therefore, ϕ is indeed an isomorphism from G to U(R) and
so those two groups are indeed isomorphic.

Section 9.3, Problem 48.

Solution. By definition,

G×H = { (g, h) | g ∈ G, h ∈ H }, H ×G = { (h, g) | h ∈ H, g ∈ G } .

The group operations on these sets were defined in class one day. We can define a map ϕ
from G×H to H ×G by ϕ

(
(g, h)

)
= (h, g). Thus, any element (h, g) in H ×G is the

image under the map ϕ of the element (g, h) in G×H, and of no other element in G×H.
That is, the map ϕ is a bijective map.

It remains to verify that ϕ is a homomorphism. To see this, suppose that (g1, h1) and
(g2, h2) are elements of G×H. Then, by definition, (g1, h1)(g2, h2) = (g1g2, h1h2). Hence

ϕ
(

(g1, h1)(g2, h2)
)

= ϕ
(

(g1g2, h1h2)
)

= (h1h2, g1g2) = (h1, g1)(h2, g2) .

On the other hand, we have

ϕ
(

(g1, h1)
)
ϕ
(

(g2, h2)
)

= (h1, g1)(h2, g2) .
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Hence we have ϕ
(

(g1, h1)(g2, h2)
)

= ϕ
(

(g1, h1)
)
ϕ
(

(g2, h2)
)
. This means that ϕ is

indeed a homomorphism from G×H to H×G. Since ϕ is also bijective, ϕ is an isomorphism.
Therefore, G×H is isomorphic to H ×G, as stated.

Section 9.3, Problem 50.

Solution. Suppose that A and B are abelian groups. This means that if a1, a2 ∈ A, then
a1a2 = a2a1. Similarly, if b1, b2 ∈ B, then b1b2 = b2b1. To show that A × B is abelian,
suppose that (a1, b1) and (a2, b2) are arbitrary elements of A×B. Then

(a1, b1)(a2, b2) = (a1a2, b1b2) = (a2a1, b2b1) = (a2, b2)(a1, b1)

which proves that A×B is indeed an abelian group.

Conversely, suppose that A and B are groups and that A× B is abelian. We will prove
that A is abelian. Suppose that a1, a2 ∈ A. Let f be the identity element in B. Consider
the elements (a1, f) and (a2, f) in A×B. Since A×B is abelian, we have

(a1, f)(a2, f) = (a2, f)(a1, f) .

This means that (a1a2, f) = (a2a1, f). Equivalently, we have a1a2 = a2a1 and f = f . Thus,
if a1, a2 ∈ A, then a1a2 = a2a1. This proves that A is indeed an abelian group. A similar
proof will show that B is also an abelian group.

ADDITIONAL PROBLEMS:

A: Let G = Q8. Let H = 〈−1〉. Let K = 〈i〉. Both H and K are subgroups of G. Find
the left cosets of H in G. Find the right cosets of H in G. Find the left cosets of K in G.
Find the right cosets of K in G.

Solution. Since [G : H] = |G|
/
|H| = 8/2 = 4, there are four left cosets and four right

cosets of H in G. However, since hg = gh for all h ∈ H and g ∈ G, it follows that H is a
normal subgroup of G. Each left coset will be a right coset. Here they are:

H = {1, −1}, iH = Hi = {i, −i}, jH = Hj = {j, −j}, kH = Hk = {k, −k} .
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Now K is a subgroup of G and [G : K] = |G|
/
|K| = 8/4 = 2. As explained in class, this

implies that K is a normal subgroup of G, that each left coset is also a right coset, and that
there are just two left cosets. Here they are:

K = {1, − 1, i, − i} and jK = Kj = {j, − j, k, − k} .

B: Let G = S3. Let H = 〈(1 2)〉. Find the left cosets of H in G. Find the right cosets of
H in G.

Solution. We have [G : H] = 6/2 = 3. The three left cosets are

H = {e, (1 2)}, (1 3)H = {(1 3), (1 2 3)}, (2 3)H = {(2 3), (1 3 2)} .

There are also three right cosets of H in G. They are

H = {e, (1 2)}, H(1 3) = {(1 3), (1 3 2)}, H(2 3) = {(2 3), (1 2 3)} .

C: Suppose that G is a group and that c ∈ G. Let H = {h ∈ G
∣∣ hc = ch }. Thus, H is

the set of elements in G which commute with c.

(a) Prove that H is a subgroup of G.

Solution.. Let e be the identity element in G. Then ec = c and ce = c. Thus, ec = ce.
It follows that e ∈ H. Now suppose that h1, h2 ∈ H. This means that h1c = ch1 and
h2c = ch2. It follows that

(h1h2)c = h1(h2c) = h1(ch2) = (h1c)h2 = (ch1)h2 = c(h1h2) .

Therefore, h1h2 ∈ H. Finally, suppose that h ∈ H. We must verify that h−1 ∈ H. We know
that hc = ch. We also have the following implications:

hc = ch =⇒ h−1hc = h−1ch =⇒ ec = h−1ch =⇒ c = h−1ch

=⇒ ch−1 = h−1chh−1 =⇒ ch−1 = h−1ce =⇒ ch−1 = h−1c

and this proves that if h ∈ H, then h−1 ∈ H. The above observations show that H is a
subgroup of G.

5



(b) Suppose that d ∈ G and that d is conjugate to c in G. Prove that the set

{a ∈ G
∣∣ aca−1 = d }

is a left coset of H in G.

Solution.. We will let Ad denote the set in question. Since we are assuming that d is a
conjugate of c, the set Ad is nonempty. Pick an element k ∈ Ad. This means that kck−1 = d.
We will prove that

Ad = kH

Thus, indeed, Ad is a left coset of H in G.

We first prove that kH ⊆ Ad. To see this, suppose that a ∈ kH. Then a = kh, where
h ∈ H. Using the definition of H, it follows that hc = ch. Hence hch−1 = c. We have

aca−1 = (kh)c(kh)−1 = (kh)c(h−1k−1) = k
(
hch−1

)
k−1 = kck−1 = d .

This shows that a ∈ Ad. Thus, as claimed, we have kH ⊆ Ad.

Now we will prove that Ad ⊆ kH. To see this, suppose that a ∈ Ad. Then aca−1 = d.
We also have kck−1 = d. Thus, aca−1 = kck−1. This equation implies that

k−1
(
aca−1

)
k = k−1

(
kck−1

)
k = (k−1k)c(k−1k) = ece = c

Therefore,
(
k−1a

)
c
(
a−1k

)
= c. Let h = k−1a. Note that h−1 = a−1k. Therefore, combining

these remarks, we see that
hch−1 = c

and therefore hc = ch. It follows that h = k−1a ∈ H. We have a = kh. Therefore,
a = kh ∈ kH. We have proved that Ad ⊆ kH.

In summary, we have proved that kH ⊆ Ad and that Ad ⊆ kH. Therefore, Ad = kH, as
we stated above.

D: Let G = S4. Let H = { σ ∈ G
∣∣ σ(4) = 4 }.

(a) Prove that H is a subgroup of G and that |H| = 6.

Solution. First we show that H is a subgroup of G. Clearly, e ∈ H because e(j) = j for
all j ∈ {1, 2, 3, 4} and hence e(4) = 4. Also, if σ1, σ2 ∈ H, then σ1(4) = 4, σ2(4) = 4. Hence

σ1 ◦ σ2(4) = σ1
(
σ2(4)

)
= σ1(4) = 4
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This implies that σ1σ2 = σ1 ◦ σ2 ∈ H. Thus, H is closed under the group operation for
G. Finally, suppose that σ ∈ H. Then σ(4) = 4. Thus, the inverse function σ−1 satisfies
σ−1(4) = 4 and therefore σ−1 ∈ H. These remarks imply that H is a subgroup of G.

The elements of H are of the form σ =

(
1 2 3 4
a b c 4

)
, where a, b, and c are distinct

elements of the set {1, 2, 3}. There are six possibilities for σ. Hence |H| = 6.

(b) Suppose that j ∈ {1, 2, 3, 4}. Prove that the set { σ ∈ G
∣∣ σ(4) = j } is a left

coset of H in G.

Solution. There exists an element g ∈ G such that g(4) = j. Pick one such element g.
We will consider the left coset gH. Consider any element h ∈ H. Then h(4) = 4 and

gh(4) = g ◦ h(4) = g
(
h(4)

)
= g(4) = j.

Therefore, we have gH = {gh | h ∈ H} ⊆ {σ | σ ∈ G, σ(4) = j}.
To prove the reverse inclusion, suppose that σ ∈ G satisfies σ(4) = j. Thus, σ(4) = g(4).

We can write σ = gu by letting u = g−1σ ∈ G. We want to prove that u ∈ H. We have

u(4) = g−1σ(4) = g−1 ◦ σ(4) = g−1
(
σ(4)

)
= g−1(j) = 4,

the final equality following from the fact that g(4) = j and g−1 is the inverse function for g.
Therefore, u(4) = 4, u ∈ H, and σ = gu ∈ gH. This proves the inclusion

{σ | σ ∈ G, σ(4) = j} ⊆ gH.

Combining the two inclusions, we see that {σ | σ ∈ G, σ(4) = j} = gH. Therefore, each
left coset of H in G is indeed of the form stated in the problem.

Although it is not part of this question, we will describe the right cosets of H in G. The
right cosets have the following description. If g ∈ G and g−1(4) = j, where j ∈ T , then

(1) Hg = {σ | σ ∈ G, σ(j) = 4}

The proof is similar to the one for the left cosets. We have g(j) = 4. If h ∈ H, then h(4) = 4
and so

hg(j) = h
(
g(j)

)
= h(4) = 4

and so hg ∈ {σ | σ ∈ G, σ(j) = 4}. Hence, Hg ⊆ {σ | σ ∈ G, σ(j) = 4}. Conversely,
suppose σ(j) = 4, then write σ = ug where u ∈ G. We have 4 = σ(j) = u

(
g(j)

)
= u(4)

and hence u ∈ H. Thus, σ ∈ Hg. This proves the inclusion {σ | σ ∈ G, σ(j) = 4} ⊂ Hg.
Therefore, the equality (1) is proved.
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