Solutions for Problem Set 5.

A. Let $G=A \times B$, where A and B are groups. Define a map $\varphi: G \rightarrow B$ by

$$
\varphi((a, b))=b
$$

for all elements $(a, b) \in G$. Prove that φ is a surjective group homomorphism. Determine the kernel of φ.

Solution. Let e denote the identity element of A and let f denote the identity element of B. To show that φ is a homomorphism, suppose that $g_{1}, g_{2} \in G$. Then $g_{1}=\left(a_{1}, b_{1}\right)$ and $g_{2}=\left(a_{2}, b_{2}\right)$, where $a_{1}, a_{2} \in A$ and $b_{1}, b_{2} \in B$. Then $\varphi\left(g_{1}\right)=b_{1}$ and $\varphi\left(g_{2}\right)=b_{2}$. We have

$$
\varphi\left(g_{1} g_{2}\right)=\varphi\left(\left(a_{1}, b_{1}\right)\left(a_{2}, b_{2}\right)\right)=\varphi\left(\left(a_{1} a_{2}, b_{1} b_{2}\right)\right)=b_{1} b_{2}=\varphi\left(g_{1}\right) \varphi\left(g_{2}\right) .
$$

Therefore, φ is a homomorphism from G to B. The fact that φ is surjective follows by noticing that, for any $b \in B$, if we let $g=(e, b)$, then $g \in G$ and $\varphi(g)=b$.

The kernel of φ has the following description
$\operatorname{Ker}(\varphi)=\{(a, b) \in G \mid \varphi((a, b))=f\}=\{(a, b) \in G \mid b=f\}=\{(a, f) \mid a \in A\}$.
B. Let $G=A \times A$, where A is a nonabelian group. Consider

$$
H=\{(a, a) \mid a \in A\}
$$

Prove that H is a subgroup of G, but that H is not a normal subgroup of G. Prove that H is isomorphic to A. Does G have any normal subgroups which are isomorphic to A ?

Solution. Let e denote the identity element of A. Since A is nonabelian, there exists elements $b, c \in A$ such that $b c \neq c b$. It then follows that $c b c^{-1} \neq b$. (Reason: We have the implication $c b c^{-1}=b \Longrightarrow c b=b c$.). Let $d=c b c^{-1}$. Then $d \neq b$. Consider the element $h=(b, b)$. By definition, $h \in H$. Let $g=(c, e)$. Then $g \in G$ and $g^{-1}=\left(c^{-1}, e\right)$. Furthermore, we have

$$
g h g^{-1}=(c, e)(b, b)\left(c^{-1}, e\right)=\left(c b c^{-1}, e b e\right)=(d, b)
$$

Since $d \neq b$, it follows that $(d, b) \notin H$. Thus, $h \in H$, but $g h g^{-1} \notin H$. As discussed in class, a normal subgroup N of a group G must have the following property:

If $n \in N$ and $g \in G$, then $g n g^{-1} \in N$. More succinctly, $g N g^{-1} \subseteq N$ for all $g \in G$.
However, with the above choice of g and h, we have $h \in H$, but $g h g^{-1} \notin H$. Therefore H is not a normal subgroup of G.

The fact that $H \cong A$ can be verified by considering the homomorphism $\psi: H \rightarrow A$ defined by

$$
\psi((a, a))=a
$$

for all elements (a, a) in H. The fact that ψ is a homomorphism is easily verified. In fact, if one uses the result from problem \mathbf{A}, and one takes $B=A$, then $\psi=\left.\varphi\right|_{H}$. The fact that φ is a homomorphism implies that ψ is a homomorphism. The fact that ψ is a bijection from H to A is clear. Therefore, ψ is an isomorphism from H to A.

Finally, G does have a normal subgroup which is isomorphic to A. The following is such a subgroup:

$$
K=\{(a, e) \mid a \in A\} .
$$

One can verify directly that K is a normal subgroup of G. Alternatively, one can also notice that if one takes $B=A$ in problem \mathbf{A}, then $K=\operatorname{Ker}(\varphi)$ and therefore K must be a normal subgroup of G. The fact that K is isomorphic to A can be seen by considering the map $\rho: A \rightarrow K$ defined by $\rho(a)=(a, e)$.
C. Suppose that G is a finite group and that M and N are normal subgroups of G. Suppose also $M \cap N=\{e\}$, where e is the identity element of G. Suppose also that $|G|=|N| \cdot|M|$. Consider the map $\varphi: G \rightarrow(G / M) \times(G / N)$ defined as follows:

$$
\varphi(g)=(g M, g N)
$$

for all $g \in G$. Prove that φ is an isomorphism from the group G to the group $(G / M) \times(G / N)$.

Solution. First of all, we verify that φ is a homomorphism. To see this, let $g_{1}, g_{2} \in G$. Then
$\varphi\left(g_{1} g_{2}\right)=\left(g_{1} g_{2} M, g_{1} g_{2} N\right)=\left(g_{1} M g_{2} M, g_{1} N g_{2} N\right)=\left(g_{1} M, g_{1} N\right)\left(g_{2} M, g_{2} N\right)=\varphi\left(g_{1}\right) \varphi\left(g_{2}\right)$.
This shows that φ is a homomorphism.

The identity element in $(G / M) \times(G / N)$ is (M, N). If $g \in \operatorname{Ker}(\varphi)$, then

$$
\varphi(g)=(g M, g N)=(M, N)
$$

and hence $g M=M$ and $g N=N$. It follows that $g \in M$ and $g \in N$. Therefore, $g \in M \cap N$. Since we are assuming that $M \cap N=\{e\}$, it follows that $g=e$. Thus, $\operatorname{Ker}(\varphi)=\{e\}$. Therefore, φ is injective.

Finally, we will use the assumption that $|G|=|N| \cdot|M|$. Thus,

$$
|G / M|=[G: M]=\frac{|G|}{|M|}=|N| \quad \text { and } \quad|G / N|=[G: N]=\frac{|G|}{|N|}=|M|
$$

and hence the group $(G / M) \times(G / N)$ has order

$$
|G / M| \cdot|G / N|=|N| \cdot|M|=|G|
$$

The $\operatorname{map} \varphi: G \rightarrow(G / M) \times(G / N)$ is an injective map and the sets G and $(G / M) \times(G / N)$ have the same cardinality. It follows that φ is surjective.

We have proved that φ is a bijective homomorphism and hence φ is an isomorphism.
D. Let σ be the following element in S_{9} :

$$
\sigma=\left(\begin{array}{lllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
2 & 3 & 4 & 5 & 1 & 8 & 9 & 7 & 6
\end{array}\right)
$$

(a) Find the cycle decomposition of σ.

Solution. We notice the following orbits under the action of powers of σ :

$$
1 \mapsto 2 \mapsto 3 \mapsto 4 \mapsto 5 \mapsto 1, \quad 6 \mapsto 8 \mapsto 7 \mapsto 9 \mapsto 6
$$

and hence the cycle decomposition of σ is

$$
\sigma=(12345)(6879)
$$

(b) Let $H=\langle\sigma\rangle$, the cyclic subgroup of S_{9} generated by σ. Determine $|H|$ and $\left[S_{9}: H\right]$.

Solution. We know that $|H|=|\sigma|$. The cycle decomposition for σ tells us that the order of σ is the least common multiple of the cycle lengths 5 and 4 . Thus, $|\sigma|=l c m(5,4)=20$. Therefore, $|H|=20$. The index of H in S_{9} is given by

$$
\left[S_{9}: H\right]=\frac{\left|S_{9}\right|}{|H|}=\frac{9!}{20} .
$$

(c) Does there exist an element $\tau \in S_{9}$ such that $\tau \sigma \tau^{-1}=\tau^{3}$? If so, find such a τ. If not, explain why.

Solution. Multiplying the stated equation by $t a u^{-1}$ on the left and by τ on the right, we obtain the equation $\sigma=\tau^{3}$. The group H is a cyclic group of order 20. Suppose that r is an integer such that $\operatorname{gcd}(r, 20)=1$. As explained in class, the map $\varphi: H \rightarrow H$ defined by $\varphi(h)=h^{r}$ is an automorphism of H. In particular, φ is a bijection of H to itself. Take $r=3$. Obviously, $\operatorname{gcd}(3,20)=1$. Thus, there must exist an element $\tau \in H$ such that $\varphi(\tau)=\sigma$. Since H is a subgroup of S_{9}, we have $\tau \in S_{9}$.

Alternatively, and explicitly, we can simply notice that $\tau=\sigma^{7}$ works. Indeed, for that choice of τ, we have

$$
\sigma=\sigma^{21}=\left(\sigma^{7}\right)^{3}=\tau^{3}
$$

(d) Does there exist an element $\tau \in S_{9}$ such that $\tau \sigma \tau^{-1}=\tau^{2}$? If so, find such a τ. If not, explain why.

Solution. As in part (c), the stated equation is equivalent to $\sigma=\tau^{2}$. If such a $\tau \in S_{9}$ exists, then we claim that $|\tau|=40$. To see this, let $m=|\tau|$. It is clear that

$$
\tau^{40}=\left(\tau^{2}\right)^{20}=\sigma^{20}=e
$$

and hence m divides 40. However,

$$
\sigma^{m}=\tau^{2 m}=\left(\tau^{m}\right)^{2}=e^{2}=e
$$

Since $|\sigma|=20$, it follows that m is divisible by 20. It follows that $m \in\{20,40\}$. On the other hand,

$$
\tau^{20}=\left(\tau^{2}\right)^{10}=\sigma^{10} \neq e
$$

since $10<20$ and $|\sigma|=20$. Thus, $m \neq 20$. Therefore, $m=40$, as claimed.

Thus, $\tau \in S_{9}$ and $|\tau|=40$. But no such τ exists. To verify that, consider the cycle decomposition of τ. There are many possibilities. The length of each k-cycle in the cycle decomposition of τ must divide 40 and the sum of the lengths is 9 . If there is no 8 -cycle in that decomposition, then the lengths will not be divisible by 8 . The lcm of the lengths will not be divisible by 8 and cannot equal 40 . However, if there is a cycle of length 8 , then τ is a product of an 8 -cycle and a 1 -cycle, and will have order 8 instead of order 40 . We have proved that S_{9} has no elements of order 40. It follows that the equation $\sigma=\tau^{2}$ cannot hold for any $\tau \in S_{9}$.
(e) Determine the cardinality of the conjugacy class of σ in S_{9}.

Solution. The conjugacy class of σ in S_{9} consists of all elements of S_{9} of the form

$$
(a b c d e)(f g h i)
$$

Here a, b, c, \ldots, h, i is any permutation of $1,2,3, \ldots, 8,9$. There are 9 ! such permutations. But the 5 -cycle can be expressed in 5 different ways and the 4 -cycle can be expressed in 4 different ways. Thus, the number of conjugates of σ in S_{9} is $9!/ 20$.

There is a reason why this answer is the same as the index $\left[S_{9}: H\right]$ given in part (b) of this problem. In fact, it turns out that H is the centralizer of σ in S_{9}. Proposition 5 on the Conjugacy handout states that the cardinality of a conjugacy class of an element a in a group G is equal to the index $[G: C(a)]$.

E: Suppose that G is a group of order 35 . We will prove in class that G must have at least one normal subgroup N of order 7 . You may use that fact in this problem. Prove that if H is any subgroup of G such that $|H|=7$, then $H=N$. (Thus, it follows that G has exactly one subgroup of order 7.)

Solution: We will assume that G has a normal subgroup N of order 7. Consider the quotient group G / N. Then

$$
|G / N|=[G: N]=|G| /|N|=35 / 7=5
$$

Thus, G / N is a group of order 5 . Every element of G / N must have order 1 or 5 .
Suppose that H is a subgroup of G and that $|H|=7$. Since 7 is a prime, we know that H must be cyclic. That is, $H=\langle h\rangle$ for some $h \in H$. Thus, $h^{7}=e$, the identity element in G. Consider the element $h N$ in the group G / N. We have

$$
(h N)^{7}=h^{7} N=e N=N
$$

which is the identity element in G / N. Therefore, the order of the element $h N$ must divide 7 . Thus, the order of $h N$ is 1 or 7 . However, every element of G / N has order 1 or 5 . Therefore, $h N$ must have order 1 or 5 . It follows that $h N$ has order 1 . This means that $h N=N$. Hence $h \in N$. Since N is a subgroup of G, any power of h is also in N. Therefore,

$$
H=\langle h\rangle \subseteq N .
$$

Finally, since both H and N have the same cardinality (namely, 7), it follows that $H=N$, as claimed.
F. Suppose that G is a finite, abelian group. Let $n=|G|$. Suppose that $k \in \mathbb{Z}$ and that $\operatorname{gcd}(k, n)=1$. Consider the map $\varphi: G \rightarrow G$ defined by

$$
\varphi(g)=g^{k}
$$

for all $g \in G$. Prove that φ is an automorphism of the group G.
Solution. If $a, b \in G$, then

$$
\varphi(a b)=(a b)^{k}=a^{k} b^{k}=\varphi(a) \varphi(b)
$$

The second equality follows from the assumption that G is an abelian group. Hence φ is a homomorphism from G to G.

Let $N=\operatorname{Ker}(\varphi)$. Suppose that $a \in N$. Then $\varphi(a)=e$, where e is the identity element in G. Thus, $a^{k}=e$. It follows that $|a|$ divides k. However, we also know that $|a|$ divides $n=|G|$. Therefore, $|a|$ is a common divisor of k and n. Since $\operatorname{gcd}(k, n)=1$, it follows that $|a|=1$. Hence, $a=e$. Therefore, $\operatorname{Ker}(\varphi)=\{e\}$. It follows that φ is injective.

Finally, we use the fact that G is finite. Since $\varphi: G \rightarrow G$ is an injective map and G is a finite set, it follows that φ is also surjective. Thus, φ is a bijective homomorphism and therefore an isomorphism of G to itself. That means that φ is an automorphism of G.

