Solutions for Problem Set 5.

A. Let $G = A \times B$, where A and B are groups. Define a map $\varphi : G \to B$ by

$$\varphi((a, b)) = b$$

for all elements $(a, b) \in G$. Prove that φ is a surjective group homomorphism. Determine the kernel of φ .

Solution. Let *e* denote the identity element of *A* and let *f* denote the identity element of *B*. To show that φ is a homomorphism, suppose that $g_1, g_2 \in G$. Then $g_1 = (a_1, b_1)$ and $g_2 = (a_2, b_2)$, where $a_1, a_2 \in A$ and $b_1, b_2 \in B$. Then $\varphi(g_1) = b_1$ and $\varphi(g_2) = b_2$. We have

$$\varphi(g_1g_2) = \varphi((a_1, b_1)(a_2, b_2)) = \varphi((a_1a_2, b_1b_2)) = b_1b_2 = \varphi(g_1)\varphi(g_2)$$

Therefore, φ is a homomorphism from G to B. The fact that φ is surjective follows by noticing that, for any $b \in B$, if we let g = (e, b), then $g \in G$ and $\varphi(g) = b$.

The kernel of φ has the following description

 $Ker(\varphi) \; = \; \{ \; (a, \; b) \in G \; \big| \; \varphi \big((a, \; b) \big) = f \} \; = \; \{ \; (a, \; b) \in G \; \big| \; b = f \} \; = \; \{ \; (a, \; f) \; \big| \; a \in A \} \; \; .$

B. Let $G = A \times A$, where A is a nonabelian group. Consider

$$H = \{ (a, a) \mid a \in A \}$$
.

Prove that H is a subgroup of G, but that H is not a normal subgroup of G. Prove that H is isomorphic to A. Does G have any normal subgroups which are isomorphic to A?

Solution. Let *e* denote the identity element of *A*. Since *A* is nonabelian, there exists elements *b*, $c \in A$ such that $bc \neq cb$. It then follows that $cbc^{-1} \neq b$. (Reason: We have the implication $cbc^{-1} = b \Longrightarrow cb = bc$.). Let $d = cbc^{-1}$. Then $d \neq b$. Consider the element h = (b, b). By definition, $h \in H$. Let g = (c, e). Then $g \in G$ and $g^{-1} = (c^{-1}, e)$. Furthermore, we have

$$ghg^{-1} = (c, e)(b, b)(c^{-1}, e) = (cbc^{-1}, ebe) = (d, b)$$
.

Since $d \neq b$, it follows that $(d, b) \notin H$. Thus, $h \in H$, but $ghg^{-1} \notin H$. As discussed in class, a normal subgroup N of a group G must have the following property:

If $n \in N$ and $g \in G$, then $gng^{-1} \in N$. More succinctly, $gNg^{-1} \subseteq N$ for all $g \in G$.

However, with the above choice of g and h, we have $h \in H$, but $ghg^{-1} \notin H$. Therefore H is not a normal subgroup of G.

The fact that $H \cong A$ can be verified by considering the homomorphism $\psi : H \to A$ defined by

$$\psi((a, a)) = a$$

for all elements (a, a) in H. The fact that ψ is a homomorphism is easily verified. In fact, if one uses the result from problem **A**, and one takes B = A, then $\psi = \varphi|_H$. The fact that φ is a homomorphism implies that ψ is a homomorphism. The fact that ψ is a bijection from H to A is clear. Therefore, ψ is an isomorphism from H to A.

Finally, G does have a normal subgroup which is isomorphic to A. The following is such a subgroup:

$$K = \{ (a, e) \mid a \in A \}$$
.

One can verify directly that K is a normal subgroup of G. Alternatively, one can also notice that if one takes B = A in problem **A**, then $K = Ker(\varphi)$ and therefore K must be a normal subgroup of G. The fact that K is isomorphic to A can be seen by considering the map $\rho: A \to K$ defined by $\rho(a) = (a, e)$.

C. Suppose that G is a finite group and that M and N are normal subgroups of G. Suppose also $M \cap N = \{e\}$, where e is the identity element of G. Suppose also that $|G| = |N| \cdot |M|$. Consider the map $\varphi : G \to (G/M) \times (G/N)$ defined as follows:

$$\varphi(g) = (gM, gN)$$

for all $g \in G$. Prove that φ is an isomorphism from the group G to the group $(G/M) \times (G/N)$.

Solution. First of all, we verify that φ is a homomorphism. To see this, let $g_1, g_2 \in G$. Then

$$\varphi(g_1g_2) = (g_1g_2M, g_1g_2N) = (g_1Mg_2M, g_1Ng_2N) = (g_1M, g_1N)(g_2M, g_2N) = \varphi(g_1)\varphi(g_2)$$

This shows that φ is a homomorphism.

The identity element in $(G/M) \times (G/N)$ is (M, N). If $g \in Ker(\varphi)$, then

$$\varphi(g) = (gM, gN) = (M, N)$$

and hence gM = M and gN = N. It follows that $g \in M$ and $g \in N$. Therefore, $g \in M \cap N$. Since we are assuming that $M \cap N = \{e\}$, it follows that g = e. Thus, $Ker(\varphi) = \{e\}$. Therefore, φ is injective.

Finally, we will use the assumption that $|G| = |N| \cdot |M|$. Thus,

$$|G/M| = [G:M] = \frac{|G|}{|M|} = |N|$$
 and $|G/N| = [G:N] = \frac{|G|}{|N|} = |M|$

and hence the group $(G/M) \times (G/N)$ has order

$$|G/M| \cdot |G/N| = |N| \cdot |M| = |G|$$

The map $\varphi : G \to (G/M) \times (G/N)$ is an injective map and the sets G and $(G/M) \times (G/N)$ have the same cardinality. It follows that φ is surjective.

We have proved that φ is a bijective homomorphism and hence φ is an isomorphism.

D. Let σ be the following element in S_9 :

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 2 & 3 & 4 & 5 & 1 & 8 & 9 & 7 & 6 \end{pmatrix}$$

(a) Find the cycle decomposition of σ .

Solution. We notice the following orbits under the action of powers of σ :

$$1 \mapsto 2 \mapsto 3 \mapsto 4 \mapsto 5 \mapsto 1, \qquad \qquad 6 \mapsto 8 \mapsto 7 \mapsto 9 \mapsto 6$$

and hence the cycle decomposition of σ is

$$\sigma = (1 \ 2 \ 3 \ 4 \ 5)(6 \ 8 \ 7 \ 9) \quad .$$

(b) Let $H = \langle \sigma \rangle$, the cyclic subgroup of S_9 generated by σ . Determine |H| and $[S_9 : H]$.

Solution. We know that $|H| = |\sigma|$. The cycle decomposition for σ tells us that the order of σ is the least common multiple of the cycle lengths 5 and 4. Thus, $|\sigma| = lcm(5, 4) = 20$. Therefore, |H| = 20. The index of H in S_9 is given by

$$[S_9:H] = \frac{|S_9|}{|H|} = \frac{9!}{20}$$

(c) Does there exist an element $\tau \in S_9$ such that $\tau \sigma \tau^{-1} = \tau^3$? If so, find such a τ . If not, explain why.

Solution. Multiplying the stated equation by tau^{-1} on the left and by τ on the right, we obtain the equation $\sigma = \tau^3$. The group H is a cyclic group of order 20. Suppose that r is an integer such that gcd(r, 20) = 1. As explained in class, the map $\varphi : H \to H$ defined by $\varphi(h) = h^r$ is an automorphism of H. In particular, φ is a bijection of H to itself. Take r = 3. Obviously, gcd(3, 20) = 1. Thus, there must exist an element $\tau \in H$ such that $\varphi(\tau) = \sigma$. Since H is a subgroup of S_9 , we have $\tau \in S_9$.

Alternatively, and explicitly, we can simply notice that $\tau = \sigma^7$ works. Indeed, for that choice of τ , we have

$$\sigma = \sigma^{21} = (\sigma^7)^3 = \tau^3$$

(d) Does there exist an element $\tau \in S_9$ such that $\tau \sigma \tau^{-1} = \tau^2$? If so, find such a τ . If not, explain why.

Solution. As in part (c), the stated equation is equivalent to $\sigma = \tau^2$. If such a $\tau \in S_9$ exists, then we claim that $|\tau| = 40$. To see this, let $m = |\tau|$. It is clear that

$$\tau^{40} = (\tau^2)^{20} = \sigma^{20} = e$$

and hence m divides 40. However,

$$\sigma^m \; = \; \tau^{2m} \; = \; (\tau^m)^2 \; = \; e^2 \; = \; e \; \; .$$

Since $|\sigma| = 20$, it follows that m is divisible by 20. It follows that $m \in \{20, 40\}$. On the other hand,

$$\tau^{20} = (\tau^2)^{10} = \sigma^{10} \neq \epsilon$$

since 10 < 20 and $|\sigma| = 20$. Thus, $m \neq 20$. Therefore, m = 40, as claimed.

Thus, $\tau \in S_9$ and $|\tau| = 40$. But no such τ exists. To verify that, consider the cycle decomposition of τ . There are many possibilities. The length of each k-cycle in the cycle decomposition of τ must divide 40 and the sum of the lengths is 9. If there is no 8-cycle in that decomposition, then the lengths will not be divisible by 8. The lcm of the lengths will not be divisible by 8 and cannot equal 40. However, if there is a cycle of length 8, then τ is a product of an 8-cycle and a 1-cycle, and will have order 8 instead of order 40. We have proved that S_9 has no elements of order 40. It follows that the equation $\sigma = \tau^2$ cannot hold for any $\tau \in S_9$.

(e) Determine the cardinality of the conjugacy class of σ in S_9 .

Solution. The conjugacy class of σ in S_9 consists of all elements of S_9 of the form

$$(a b c d e)(f g h i)$$
.

Here a, b, c, ..., h, i is any permutation of 1, 2, 3, ..., 8, 9. There are 9! such permutations. But the 5-cycle can be expressed in 5 different ways and the 4-cycle can be expressed in 4 different ways. Thus, the number of conjugates of σ in S_9 is 9!/20.

There is a reason why this answer is the same as the index $[S_9 : H]$ given in part (b) of this problem. In fact, it turns out that H is the centralizer of σ in S_9 . Proposition 5 on the Conjugacy handout states that the cardinality of a conjugacy class of an element a in a group G is equal to the index [G : C(a)].

E: Suppose that G is a group of order 35. We will prove in class that G must have at least one normal subgroup N of order 7. You may use that fact in this problem. Prove that if H is any subgroup of G such that |H| = 7, then H = N. (Thus, it follows that G has exactly one subgroup of order 7.)

Solution: We will assume that G has a normal subgroup N of order 7. Consider the quotient group G/N. Then

$$|G/N| = [G:N] = |G|/|N| = 35/7 = 5$$

Thus, G/N is a group of order 5. Every element of G/N must have order 1 or 5.

Suppose that H is a subgroup of G and that |H| = 7. Since 7 is a prime, we know that H must be cyclic. That is, $H = \langle h \rangle$ for some $h \in H$. Thus, $h^7 = e$, the identity element in G. Consider the element hN in the group G/N. We have

$$(hN)^7 = h^7 N = eN = N$$

which is the identity element in G/N. Therefore, the order of the element hN must divide 7. Thus, the order of hN is 1 or 7. However, every element of G/N has order 1 or 5. Therefore, hN must have order 1 or 5. It follows that hN has order 1. This means that hN = N. Hence $h \in N$. Since N is a subgroup of G, any power of h is also in N. Therefore,

$$H = \langle h \rangle \subseteq N$$
 .

Finally, since both H and N have the same cardinality (namely, 7), it follows that H = N, as claimed.

F. Suppose that G is a finite, abelian group. Let n = |G|. Suppose that $k \in \mathbb{Z}$ and that gcd(k, n) = 1. Consider the map $\varphi : G \to G$ defined by

$$\varphi(g) = g^k$$

for all $g \in G$. Prove that φ is an automorphism of the group G.

Solution. If $a, b \in G$, then

$$\varphi(ab) = (ab)^k = a^k b^k = \varphi(a)\varphi(b)$$

The second equality follows from the assumption that G is an abelian group. Hence φ is a homomorphism from G to G.

Let $N = Ker(\varphi)$. Suppose that $a \in N$. Then $\varphi(a) = e$, where e is the identity element in G. Thus, $a^k = e$. It follows that |a| divides k. However, we also know that |a| divides n = |G|. Therefore, |a| is a common divisor of k and n. Since gcd(k, n) = 1, it follows that |a| = 1. Hence, a = e. Therefore, $Ker(\varphi) = \{e\}$. It follows that φ is injective.

Finally, we use the fact that G is finite. Since $\varphi : G \to G$ is an injective map and G is a finite set, it follows that φ is also surjective. Thus, φ is a bijective homomorphism and therefore an isomorphism of G to itself. That means that φ is an automorphism of G.