SOLUTIONS FOR PROBLEM SET 4

A. Suppose that G is a group and that H is a subgroup of G such that $[G: H]=2$. Suppose that $a, b \in G$, but $a \notin H$ and $b \notin H$. Prove that $a b \in H$.

Solution. Since $[G: H]=2$, it follows that H is a normal subgroup of G. Consider the quotient group G / H. It is a group of order 2 . The identity element in that group is H. The other element (the element which is not the identity) in that group is of order 2 . If $a \in G$, but $a \notin H$, then $a H$ is that other element in G. Thus, we have $(a H)^{2}=H$. However, if $b \in G$, but $b \notin H$, then $b H$ is also that other element. That is, we have $b H=a H$.

Therefore, we have $(a H)(b H)=(a H)(a H)=(a H)^{2}=H$. Now, $(a H)(b H)=a b H$. Thus, we have $a b H=H$. This means that $a b \in H$, which is what we wanted to prove.

B: This problem concerns the group $G=\mathbb{Q} / \mathbb{Z}$. The group operation will be written as + .
(a) Prove that every element of G has finite order.

Solution. We will prove that every element of G has finite order. If $g \in G$, then $g=r+\mathbb{Z}$, where $r \in \mathbb{Q}$. There exists a positive integer n such that $n r \in \mathbb{Z}$. (For example, one could write r in reduced form and let n be the denominator of r.) We then have

$$
n g=n(r+\mathbb{Z})=n r+\mathbb{Z}=\mathbb{Z}
$$

the last equality following from the fact that $n r \in \mathbb{Z}$. The second equality is a consequence of the definition of addition in the quotient group \mathbb{Q} / \mathbb{Z}. We have proved that $n g$ is the identity element in G and therefore g has finite order. Thus, every element of G indeed has finite order.
(b) Prove that every finite subgroup of G is a cyclic group.

Solution. We will prove that every finite subgroup of G is a cyclic group. Suppose H is a finite subgroup of G. Let $|H|=t$. Then

$$
H=\left\{h_{1}, \ldots, h_{t}\right\}, \text { where } h_{i}=r_{i}+\mathbb{Z} \text { and } r_{i} \in \mathbb{Q}
$$

for $1 \leq i \leq t$. We can write the rational numbers r_{1}, \ldots, r_{t} in the following way

$$
r_{i}=\frac{n_{i}}{m}
$$

where m is a positive integer and $n_{i} \in \mathbb{Z}$ for $1 \leq i \leq t$. To do this, we can take m to be any positive integer which is a multiple of the denominators of all the rational numbers r_{1}, \ldots, r_{t}, i.e., a common denominator for those rational numbers. Let

$$
a=\frac{1}{m}+\mathbb{Z} \in G
$$

Then we have

$$
n_{i} a=n_{i}\left(\frac{1}{m}+\mathbb{Z}\right)=\frac{n_{i}}{m}+\mathbb{Z}=r_{i}+\mathbb{Z}=h_{i}
$$

for $1 \leq i \leq t$. Therefore, $h_{i} \in\langle a\rangle$ for $1 \leq i \leq t$, where $\langle a\rangle$ is the cyclic subgroup of G generated by a. Therefore, H is a subgroup of $\langle a\rangle$. Since H is a subgroup of a cyclic group, we can conclude that H itself is a cyclic group. We are using one of the propositions we have proved about cyclic groups.
(c) Give a specific example of a proper subgroup H of G which is not finite.

Solution. Let

$$
H=\left\{g \in G| | g \mid=2^{m}, \text { where } m \text { is a nonnegative integer }\right\}
$$

To verify that H is a subgroup of G, note that the identity element has order $1=2^{0}$ and so is in H. Also, if $h \in H$, then its inverse $-h$ has the same order as h and so the inverse $-h$ is in H. Also, if $h_{1}, h_{2} \in H$, then let their orders be $2^{m_{1}}, 2^{m_{2}}$, respectively. Let $m=\max \left\{m_{1}, m_{2}\right\}$. Note that both $2^{m_{1}}$ and $2^{m_{2}}$ divide 2^{m}. Therefore, $2^{m} h_{1}=e$ and $2^{m} h_{2}=e$, where e is the identity element of G. Since G is an abelian group, we have

$$
2^{m}\left(h_{1}+h_{2}\right)=2^{m} h_{1}+2^{m} h_{2}=e+e=e
$$

and so the order of $h_{1}+h_{2}$ must divide 2^{m}. It follows (from number theory) that the order of $h_{1}+h_{2}$ is a power of 2 and therefore $h_{1}+h_{2} \in H$. Thus, H is closed under the group operation for G. We have verified that H is a subgroup of G.
Suppose m is any positive integer. Let $h_{m}=\frac{1}{2^{m}}+\mathbb{Z}$. Then
$2^{m} h_{m}=2^{m}\left(\frac{1}{2^{m}}+\mathbb{Z}\right)=1+\mathbb{Z}=\mathbb{Z}=e, \quad 2^{m-1} h_{m}=2^{m-1}\left(\frac{1}{2^{m}}+\mathbb{Z}\right)=\frac{1}{2}+\mathbb{Z} \neq e$.
Hence the order of h_{m} divides 2^{m}, but does not divide 2^{m-1}. It follows that the order of h_{m} is equal to 2^{m}. Thus, the cyclic subgroup $\left\langle h_{m}\right\rangle$ of H has order 2^{m}. Since m can be chosen as
large as we wish, and H contains a subgroup of order 2^{m}, it is clear that H cannot be finite.

To show that $H \neq G$, consider the element $g=\frac{1}{3}+\mathbb{Z} \in G$. Clearly, $g \neq e$ and $3 g=e$. Thus, g has order 3 and so $g \notin H$. Hence $H \neq G$.
(d) Prove that no proper subgroup of G can have finite index.

Solution. Suppose that H is a subgroup of G of finite index. Since G is abelian, H will be a normal subgroup of G. The quotient group G / H is finite, by assumption. Let $n=|G / H|$. Then every element of G / H has order dividing n. This means that, for every $g \in G$, $n(g+H)$ is the identity element of G / H, which is the coset H. Thus, $n(g+H)=H$. But, $n(g+H)=n g+H$. It follows that $n g \in H$ for all $g \in G$.
Let $n G$ denote $\{n g \mid g \in G\}$. We have proved that $n G \subseteq H \subseteq G$. We will now prove that $n G=G$. To see this, suppose that $f \in G$. Write $f=r+\mathbb{Z}$, where $r \in \mathbb{Q}$. Let $s=\frac{1}{n} r$. Then $s \in \mathbb{Q}$. Let $g=s+\mathbb{Z}$. Then

$$
n g=n(s+\mathbb{Z})=n s+\mathbb{Z}=r+\mathbb{Z}=f
$$

Since $f \in G$ is arbitrary, we have proved that $n G=G$. Since $n G \subseteq H \subseteq G$, we can now conclude that $H=G$. Thus, if H is a subgroup of G of finite index, then $H=G$ and hence H is not a proper subgroup of G.

C: Suppose that G is a group and that N and M are normal subgroups of G.
TRUE OR FALSE: If $G / M \cong G / N$, then $M \cong N$.
If this statement is true, give a proof. If it is false, give a specific counterexample.
Solution The statement is false. Here is a counterexample. Let $G=D_{4}$, the group of symmetries of a square. We can regard D_{4} as a subgroup of S_{4}. Suppose that N is the Klein 4 -group. That is,

$$
N=\{e .(12)(34), \quad(13)(24), \quad(14)(23)\}
$$

As discussed in class one day, N is a subgroup of D_{4}. We have $[G: N]=|G| /|N|=8 / 4=2$. Since the index is 2 , it follows that N is a normal subgroup of G. Furthermore, G / N is a group of order 2. It must be a cyclic group of order 2. Note that every element of N has order 1 or 2 . Thus, N has no element of order 4.

On the other hand, let M be the subgroup of D_{4} consisting of the rotations. Then M is a cyclic group of order 4. It has two elements of order 4. Furthermore, we have $[G: M]=|G| /|M|=8 / 4=2$. Thus M is a normal subgroup of G and G / M is a group of order 2 . Thus, G / M is a cyclic group of order 2 .

Thus, both G / N and G / M are cyclic groups of order 2 and are therefore isomorphic to each other. However, N and M are not isomorphic to each other. The group M has elements of order 4, but the group N has no such elements.

D: If G is an abelian group, then every subgroup of G is a normal subgroup. Is the converse of that fact true? If true, give a proof. If false, give a counterexample.

Solution. The converse is false. The group $G=Q_{8}$ is a counterexample. This group is nonabelian. However, every subgroup of G is a normal subgroup of G. This is obvious for G itself and for the trivial subgroup $\{1\}$. It is also true for any subgroup H of G such that $|H|=4$. This is so because if $|H|=4$, then $[G: H]=2$. Therefore, such a subgroup H will be a normal subgroup of G.

It remains to consider subgroups H of G such that $|H|=2$. However, there is only one such subgroup, namely $H=\{1,-1\}$. But this subgroup is actually the center of G, and is therefore a normal subgroup of G.

E: Suppose that G is a finite group and that N is a normal subgroup of G. Suppose also that G / N has an element of order m, where m is a positive integer. Carefully prove that G has an element of order m.

Solution. Suppose that G is a finite group, that N is a normal subgroup of G, and that G / N has an element of order m, where m is a positive integer.

The elements of G / N are of the form $a N$, where $a \in G$. Suppose that a is chosen so that $a N$ is an element of G / N which has order m. The rest of this proof will concern the element a.

Since $a \in G$ and G is finite, it follows that the subgroup $\langle a\rangle$ of G is a finite group. Thus a has finite order. Let n be the order of a. In particular, $a^{n}=e$, where e is the identity element of G.

Since $a^{n}=e$, it follows that $(a N)^{n}=a^{n} N=e N=N$. Now we chose a at the beginning of this proof so that $a N$ is an element in the group G / N of order m. Therefore, the fact that $(a N)^{n}=e$ implies that m divides n.

The subgroup $\langle a\rangle$ of G which is generated by a has order n. It is a cyclic group of order n. We proved in class that if m is a positive integer which divides n, then a cyclic group of order n must contain a subgroup H of order m and that subgroup must be cyclic. If $H=\langle b\rangle$, then b must have order m. Obviously, $b \in\langle a\rangle \subseteq G$. Hence G contains the element b and b has order m, as we wanted.

F: Suppose that A and B are groups. Let $G=A \times B$. Let e be the identity element of A and let f be the identity element of B. Then (e, f) is the identity element in G. Let

$$
H=\{(a, f) \mid a \in A\}
$$

Prove that H is a normal subgroup of G. Furthermore, prove that $H \cong A$ and that $G / H \cong B$.
Solution. To prove that H is a subgroup of G, observe that H obviously contains (e, f) which is the identity element in G. Also, consider two elements $\left(a_{1}, f\right)$ and $\left(a_{2}, f\right)$ in H. Their product is $\left(a_{1} a_{2}, f f\right)=\left(a_{1} a_{2}, f\right)$ which is clearly in H. Finally, the inverse of an element (a, f) in H is $\left(a^{-1}, f\right)$, which is also in H. These remarks show that H is indeed a subgroup of G.

It will be useful to recall the following fact. If $a \in A$, then $a A=A$. We also have $A a=A$. Now consider an element $(a, b) \in G$. Here $a \in A$ and $b \in B$. By definition, $H=\{(c, f) \mid c \in A\}$. We have

$$
\begin{aligned}
(a, b) H & =\{(a, b)(c, f) \mid c \in A\}=\{(a c, b f) \mid c \in A\} \\
& =\{(a c, b) \mid c \in A\}=\{(k, b) \mid k \in A\}
\end{aligned}
$$

We have used the fact that $\{a c \mid c \in A\}=a A=A=\{k \mid k \in A\}$. Thus, the above left coset is just the set of elements in G whose second entry is equal to b. Similarly,

$$
\begin{aligned}
H(a, b) & =\{(c, f)(a, b) \mid c \in A\}=\{(c a, f b) \mid c \in A\} \\
& =\{(c a, b) \mid c \in A\}=\{(k, b) \mid k \in A\}
\end{aligned}
$$

We have used the fact that $A a=A$. It follows that $(a, b) H=H(a, b)$ for all elements $(a, b) \in G$. Therefore, H is a normal subgroup of G.

To prove that H and A are isomorphic, consider the map $\varphi: A \rightarrow H$ defined by

$$
\varphi(a)=(a, f)
$$

for all $a \in A$. The map φ is clearly a bijection from A to H. Furthermore, if $a_{1}, a_{2} \in A$, then we have

$$
\varphi\left(a_{1} a_{2}\right)=\left(a_{1} a_{2}, f\right)=\left(a_{1}, f\right)\left(a_{2}, f\right)=\varphi\left(a_{1}\right) \varphi\left(a_{2}\right)
$$

and hence the bijection φ is indeed an isomorphism from A to H.
Finally, we will prove that G / H and B are isomorphic. Note that the left coset $(a, b) H$ depends only on b, and not on a. Thus $(a, b) H=(e, b) H$. Thus, the elements of G / H are all of the form $(e, b) H$ for some $b \in B$. Furthermore, if $b_{1}, b_{2} \in B$, we have $\left(e, b_{1}\right) H=\left(e, b_{2}\right) H$ if and only if $b_{1}=b_{2}$. Define a map $\psi: B \rightarrow G / H$ by

$$
\psi(b)=(e, b) H
$$

for all $b \in B$. The above remarks show that ψ is bijective. Furthermore, for $b_{1}, b_{2} \in B$, we have

$$
\psi\left(b_{1} b_{2}\right)=\left(e, b_{1} b_{2}\right) H=\left(e, b_{1}\right)\left(e, b_{2}\right) H=\left(e, b_{1}\right) H\left(e, b_{2}\right) H=\psi\left(b_{1}\right) \psi\left(b_{2}\right) .
$$

Thus, ψ is an isomorphism from B to G / H and hence those two groups are indeed isomorphic.

