
SOLUTIONS FOR PROBLEM SET 4

A. Suppose that G is a group and that H is a subgroup of G such that [G : H] = 2.
Suppose that a, b ∈ G, but a 6∈ H and b 6∈ H. Prove that ab ∈ H.

Solution. Since [G : H] = 2, it follows that H is a normal subgroup of G. Consider the
quotient group G/H. It is a group of order 2. The identity element in that group is H. The
other element (the element which is not the identity) in that group is of order 2. If a ∈ G,
but a 6∈ H, then aH is that other element in G. Thus, we have (aH)2 = H. However, if
b ∈ G, but b 6∈ H, then bH is also that other element. That is, we have bH = aH.

Therefore, we have (aH)(bH) = (aH)(aH) = (aH)2 = H. Now, (aH)(bH) = abH.
Thus, we have abH = H. This means that ab ∈ H, which is what we wanted to prove.

B: This problem concerns the group G = Q/Z. The group operation will be written as +.

(a) Prove that every element of G has finite order.

Solution. We will prove that every element of G has finite order. If g ∈ G, then g = r+Z,
where r ∈ Q. There exists a positive integer n such that nr ∈ Z. (For example, one could
write r in reduced form and let n be the denominator of r.) We then have

ng = n(r + Z) = nr + Z = Z,

the last equality following from the fact that nr ∈ Z. The second equality is a consequence
of the definition of addition in the quotient group Q/Z. We have proved that ng is the
identity element in G and therefore g has finite order. Thus, every element of G indeed has
finite order.

(b) Prove that every finite subgroup of G is a cyclic group.

Solution. We will prove that every finite subgroup of G is a cyclic group. Suppose H is a
finite subgroup of G. Let |H| = t. Then

H = {h1, ..., ht}, where hi = ri + Z and ri ∈ Q

for 1 ≤ i ≤ t. We can write the rational numbers r1, ..., rt in the following way

ri =
ni

m
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where m is a positive integer and ni ∈ Z for 1 ≤ i ≤ t. To do this, we can take m to be any
positive integer which is a multiple of the denominators of all the rational numbers r1, ..., rt,
i.e., a common denominator for those rational numbers. Let

a =
1

m
+ Z ∈ G

Then we have

nia = ni

(
1

m
+ Z

)
=

ni

m
+ Z = ri + Z = hi

for 1 ≤ i ≤ t. Therefore, hi ∈ 〈a〉 for 1 ≤ i ≤ t, where 〈a〉 is the cyclic subgroup of G
generated by a. Therefore, H is a subgroup of 〈a〉. Since H is a subgroup of a cyclic group,
we can conclude that H itself is a cyclic group. We are using one of the propositions we have
proved about cyclic groups.

(c) Give a specific example of a proper subgroup H of G which is not finite.

Solution. Let

H = {g ∈ G | |g| = 2m, where m is a nonnegative integer }

To verify that H is a subgroup of G, note that the identity element has order 1 = 20 and
so is in H. Also, if h ∈ H, then its inverse −h has the same order as h and so the inverse
−h is in H. Also, if h1, h2 ∈ H, then let their orders be 2m1 , 2m2 , respectively. Let
m = max{m1, m2} . Note that both 2m1 and 2m2 divide 2m. Therefore, 2mh1 = e and
2mh2 = e, where e is the identity element of G. Since G is an abelian group, we have

2m(h1 + h2) = 2mh1 + 2mh2 = e+ e = e

and so the order of h1 + h2 must divide 2m. It follows (from number theory) that the order
of h1 + h2 is a power of 2 and therefore h1 + h2 ∈ H. Thus, H is closed under the group
operation for G. We have verified that H is a subgroup of G.

Suppose m is any positive integer. Let hm =
1

2m
+ Z. Then

2mhm = 2m

(
1

2m
+ Z

)
= 1+Z = Z = e, 2m−1hm = 2m−1

(
1

2m
+ Z

)
=

1

2
+Z 6= e .

Hence the order of hm divides 2m, but does not divide 2m−1. It follows that the order of hm
is equal to 2m. Thus, the cyclic subgroup 〈hm〉 of H has order 2m. Since m can be chosen as
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large as we wish, and H contains a subgroup of order 2m, it is clear that H cannot be finite.

To show that H 6= G, consider the element g = 1
3

+Z ∈ G. Clearly, g 6= e and 3g = e. Thus,
g has order 3 and so g 6∈ H. Hence H 6= G.

(d) Prove that no proper subgroup of G can have finite index.

Solution. Suppose that H is a subgroup of G of finite index. Since G is abelian, H will be
a normal subgroup of G. The quotient group G/H is finite, by assumption. Let n = |G/H|.
Then every element of G/H has order dividing n. This means that, for every g ∈ G,
n(g +H) is the identity element of G/H, which is the coset H. Thus, n(g +H) = H. But,
n(g +H) = ng +H. It follows that ng ∈ H for all g ∈ G.

Let nG denote {ng | g ∈ G }. We have proved that nG ⊆ H ⊆ G. We will now prove that
nG = G. To see this, suppose that f ∈ G. Write f = r+Z, where r ∈ Q. Let s = 1

n
r. Then

s ∈ Q. Let g = s+ Z. Then

ng = n(s+ Z) = ns+ Z = r + Z = f.

Since f ∈ G is arbitrary, we have proved that nG = G. Since nG ⊆ H ⊆ G, we can now
conclude that H = G. Thus, if H is a subgroup of G of finite index, then H = G and hence
H is not a proper subgroup of G.

C: Suppose that G is a group and that N and M are normal subgroups of G.

TRUE OR FALSE: If G/M ∼= G/N , then M ∼= N .

If this statement is true, give a proof. If it is false, give a specific counterexample.

Solution The statement is false. Here is a counterexample. Let G = D4, the group of
symmetries of a square. We can regard D4 as a subgroup of S4. Suppose that N is the Klein
4-group. That is,

N = { e. (1 2)(3 4), (1 3)(2 4), (1 4)(2 3) } .

As discussed in class one day, N is a subgroup of D4. We have [G : N ] = |G|
/
|N | = 8/4 = 2.

Since the index is 2, it follows that N is a normal subgroup of G. Furthermore, G/N is a
group of order 2. It must be a cyclic group of order 2. Note that every element of N has
order 1 or 2. Thus, N has no element of order 4.
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On the other hand, let M be the subgroup of D4 consisting of the rotations. Then
M is a cyclic group of order 4. It has two elements of order 4. Furthermore, we have
[G : M ] = |G|

/
|M | = 8/4 = 2. Thus M is a normal subgroup of G and G/M is a group of

order 2. Thus, G/M is a cyclic group of order 2.

Thus, both G/N and G/M are cyclic groups of order 2 and are therefore isomorphic to
each other. However, N and M are not isomorphic to each other. The group M has elements
of order 4, but the group N has no such elements.

D: If G is an abelian group, then every subgroup of G is a normal subgroup. Is the converse
of that fact true? If true, give a proof. If false, give a counterexample.

Solution. The converse is false. The group G = Q8 is a counterexample. This group is
nonabelian. However, every subgroup of G is a normal subgroup of G. This is obvious for
G itself and for the trivial subgroup {1}. It is also true for any subgroup H of G such that
|H| = 4. This is so because if |H| = 4, then [G : H] = 2. Therefore, such a subgroup H will
be a normal subgroup of G.

It remains to consider subgroups H of G such that |H| = 2. However, there is only one
such subgroup, namely H = {1,−1}. But this subgroup is actually the center of G, and is
therefore a normal subgroup of G.

E: Suppose that G is a finite group and that N is a normal subgroup of G. Suppose also
that G/N has an element of order m, where m is a positive integer. Carefully prove that G
has an element of order m.

Solution. Suppose that G is a finite group, that N is a normal subgroup of G, and that
G/N has an element of order m, where m is a positive integer.

The elements of G/N are of the form aN , where a ∈ G. Suppose that a is chosen so that
aN is an element of G/N which has order m. The rest of this proof will concern the element
a.

Since a ∈ G and G is finite, it follows that the subgroup 〈a〉 of G is a finite group. Thus
a has finite order. Let n be the order of a. In particular, an = e, where e is the identity
element of G.

Since an = e, it follows that (aN)n = anN = eN = N . Now we chose a at the beginning
of this proof so that aN is an element in the group G/N of order m. Therefore, the fact
that (aN)n = e implies that m divides n.
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The subgroup 〈a〉 of G which is generated by a has order n. It is a cyclic group of order
n. We proved in class that if m is a positive integer which divides n, then a cyclic group
of order n must contain a subgroup H of order m and that subgroup must be cyclic. If
H = 〈b〉, then b must have order m. Obviously, b ∈ 〈a〉 ⊆ G. Hence G contains the element
b and b has order m, as we wanted.

F: Suppose that A and B are groups. Let G = A×B. Let e be the identity element of A
and let f be the identity element of B. Then (e, f) is the identity element in G. Let

H = { (a, f)
∣∣ a ∈ A } .

Prove thatH is a normal subgroup ofG. Furthermore, prove thatH ∼= A and thatG/H ∼= B.

Solution. To prove that H is a subgroup of G, observe that H obviously contains (e, f)
which is the identity element in G. Also, consider two elements (a1, f) and (a2, f) in H.
Their product is (a1a2, ff) = (a1a2, f) which is clearly in H. Finally, the inverse of an
element (a, f) in H is (a−1, f), which is also in H. These remarks show that H is indeed a
subgroup of G.

It will be useful to recall the following fact. If a ∈ A, then aA = A. We also have
Aa = A. Now consider an element (a, b) ∈ G. Here a ∈ A and b ∈ B. By definition,
H = { (c, f)

∣∣ c ∈ A }. We have

(a, b)H = { (a, b)(c, f)
∣∣ c ∈ A } = { (ac, bf)

∣∣ c ∈ A }
= { (ac, b)

∣∣ c ∈ A } = { (k, b)
∣∣ k ∈ A } .

We have used the fact that {ac |c ∈ A} = aA = A = {k|k ∈ A}. Thus, the above left coset
is just the set of elements in G whose second entry is equal to b. Similarly,

H(a, b) = { (c, f)(a, b)
∣∣ c ∈ A } = { (ca, fb)

∣∣ c ∈ A }
= { (ca, b)

∣∣ c ∈ A } = { (k, b)
∣∣ k ∈ A } .

We have used the fact that Aa = A. It follows that (a, b)H = H(a, b) for all elements
(a, b) ∈ G. Therefore, H is a normal subgroup of G.

To prove that H and A are isomorphic, consider the map ϕ : A→ H defined by

ϕ(a) = (a, f)

for all a ∈ A. The map ϕ is clearly a bijection from A to H. Furthermore, if a1, a2 ∈ A,
then we have

ϕ(a1a2) = (a1a2, f) = (a1, f)(a2, f) = ϕ(a1)ϕ(a2)
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and hence the bijection ϕ is indeed an isomorphism from A to H.

Finally, we will prove that G/H and B are isomorphic. Note that the left coset (a, b)H
depends only on b , and not on a. Thus (a, b)H = (e, b)H. Thus, the elements of G/H are all
of the form (e, b)H for some b ∈ B. Furthermore, if b1, b2 ∈ B, we have (e, b1)H = (e, b2)H
if and only if b1 = b2. Define a map ψ : B → G/H by

ψ(b) = (e, b)H

for all b ∈ B. The above remarks show that ψ is bijective. Furthermore, for b1, b2 ∈ B, we
have

ψ(b1b2) = (e, b1b2)H = (e, b1)(e, b2)H = (e, b1)H(e, b2)H = ψ(b1)ψ(b2) .

Thus, ψ is an isomorphism from B toG/H and hence those two groups are indeed isomorphic.
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