PROBLEM SET 3 (due on Friday, February 22nd)

FROM THE TEXT:

Section 6.4: Problems $5 \mathrm{~b}, \mathrm{c}, \mathrm{f}$, (just the left cosets for part f), 6, 9.
Section 9.3: Problems 8, 9, 48, 50.

ADDITIONAL PROBLEMS:

A: Let $G=Q_{8}$. Let $H=\langle-1\rangle$. Let $K=\langle i\rangle$. Both H and K are subgroups of G. Find the left cosets of H in G. Find the right cosets of H in G. Find the left cosets of K in G. Find the right cosets of K in G.

B: Let $G=S_{3}$. Let $H=\left\langle\left(\begin{array}{ll}1 & 2\end{array}\right)\right\rangle$. Find the left cosets of H in G. Find the right cosets of H in G.

C: Suppose that G is a group and that $c \in G$. Let $H=\{h \in G \mid h c=c h\}$. Thus, H is the set of elements in G which commute with c.
(a) Prove that H is a subgroup of G.
(b) Suppose that $d \in G$ and that d is conjugate to c in G. Prove that the set

$$
\left\{a \in G \mid a c a^{-1}=d\right\}
$$

is a left coset of H in G.

D: Let $G=S_{4}$. Let $H=\{\sigma \in G \mid \sigma(4)=4\}$.
(a) Prove that H is a subgroup of G and that $|H|=6$.
(b) Suppose that $j \in\{1,2,3,4\}$. Prove that the set $\{\sigma \in G \mid \sigma(4)=j\}$ is a left coset of H in G.

