PROBLEM SET 3 (due on Friday, February 22nd)

FROM THE TEXT:

Section 6.4: Problems 5 b, c, f, (just the left cosets for part f), 6, 9.

Section 9.3: Problems 8, 9, 48, 50.

ADDITIONAL PROBLEMS:

A: Let $G = Q_8$. Let $H = \langle -1 \rangle$. Let $K = \langle i \rangle$. Both H and K are subgroups of G. Find the left cosets of H in G. Find the right cosets of H in G. Find the left cosets of K in G. Find the right cosets of K in G.

B: Let $G = S_3$. Let $H = \langle (1 \ 2) \rangle$. Find the left cosets of H in G. Find the right cosets of H in G.

C: Suppose that G is a group and that $c \in G$. Let $H = \{h \in G \mid hc = ch\}$. Thus, H is the set of elements in G which commute with c.

- (a) Prove that H is a subgroup of G.
- (b) Suppose that $d \in G$ and that d is conjugate to c in G. Prove that the set

$$\{a \in G \mid aca^{-1} = d\}$$

is a left coset of H in G.

- **D:** Let $G = S_4$. Let $H = \{ \sigma \in G \mid \sigma(4) = 4 \}$.
- (a) Prove that H is a subgroup of G and that |H| = 6.
- (b) Suppose that $j \in \{1, 2, 3, 4\}$. Prove that the set $\{\sigma \in G \mid \sigma(4) = j\}$ is a left coset of H in G.