Solutions for Assignment 2

Solutions for Problem 46 from section 3.4.

The statement is false. We will give two counterexamples to the statement in this problem.

Suppose that G is the quaternion group Q_{8}. Let $H=\{1,-1, i,-i\}$ and let $K=$ $\{1,-1, j,-j\}$. Both are subgroups of G. Then

$$
H \cup K=\{1,-1, i,-i, j,-j\}
$$

But this set is not closed under the group operation for G. For example, we have

$$
i, j \in H \cup K, \quad \text { but } \quad i j=k \notin H \cup K .
$$

As a second counterexample, let $G=\mathbb{Z}$, which is a group under the operation + . Let $H=5 \mathbb{Z}$ and $K=7 \mathbb{Z}$. Both H and K are subgroups of G. But $H \cup K$ is not a subgroup of G. It is not closed under the group operation for G. For example, $5 \in H \cup K$ and $7 \in H \cup K$, but $5+7=12$ and $12 \notin H \cup K$.

Solution for Problem 48 from section 3.4.

Let G be a group. Consider the following subset of G :

$$
Z(G)=\{z \in G \mid z g=g z \text { for all } g \in G\}
$$

We will prove that $Z(G)$ is actually a subgroup of G.
Let e be the identity element of G. By definition, we have $e g=g$ and $g e=g$ for all $g \in G$. It follows that $e g=g e$ for all $g \in G$. Hence $e \in Z(G)$.

Suppose that $a, b \in Z(G)$. Let g be any element of G. Then we have

$$
a g=g a \quad a n d \quad b g=g b
$$

It follows that

$$
(a b) g=a(b g)=a(g b)=(a g) b=(g a) b=g(a b)
$$

and hence we have $(a b) g=g(a b)$. This is true for all $g \in G$. Therefore, we have proved that if $a, b \in Z(G)$, then $a b \in Z(G)$.

Finally, suppose that $a \in Z(G)$. Let g be any element of G. We have $a g=g a$. Also, implicitly using the associative law repeatedly

$$
\begin{gathered}
a g=g a \Longrightarrow a^{-1} a g=a^{-1} g a \Longrightarrow e g=a^{-1} g a \Longrightarrow g=a^{-1} g a \\
\Longrightarrow g a^{-1}=a^{-1} g a a^{-1} \Longrightarrow g a^{-1}=a^{-1} g e \Longrightarrow g a^{-1}=a^{-1} g
\end{gathered}
$$

This is true for all $g \in G$. Therefore, if $a \in Z(G)$, then $a^{-1} \in Z(G)$.
We have shown that $Z(G)$ is indeed a subgroup of G.

Solution for Problem 53 from section 3.4.

The argument is very similar to the argument presented in the solution to problem 48. In fact, we can take H to be any subset of G. Define

$$
C(H)=\{x \in G \mid x h=h x \text { for all } h \in H\}
$$

Since $e h=h=h e$ for all $h \in H$, it follows that $e \in C(H)$.
Suppose $a, b \in C(H)$. Let h be any element of H. Then $a h=h a$ and $b h=h b$. As in the solution to problem 47, it follows that $(a b) h=h(a b)$. This is true for all $h \in H$. Hence $a b \in C(H)$.

Suppose $a \in C(H)$. Let h be any element of H. Then $a h=h a$. As before, it follows that $a^{-1} h=h a^{-1}$. This is true for all $h \in H$. Hence $a^{-1} \in C(H)$.

We have shown that $C(H)$ is indeed a subgroup of G.

Solution for Problem 1b, c, d from section 4.4.

(b) In fact, $U(8)$ is not cyclic. To see this, note that

$$
U(8)=\{1+8 \mathbb{Z}, \quad 3+8 \mathbb{Z}, \quad 5+8 \mathbb{Z}, \quad 7+8 \mathbb{Z}\} .
$$

Furthermore, the identity element is $1+8 \mathbb{Z}$. We have

$$
\begin{gathered}
(1+8 \mathbb{Z})^{1}=1+8 \mathbb{Z}, \quad(3+8 \mathbb{Z})^{2}=9+8 \mathbb{Z}=1+8 \mathbb{Z} \\
(5+8 \mathbb{Z})^{2}=25+8 \mathbb{Z}=1+8 \mathbb{Z}, \quad(7+8 \mathbb{Z})^{2}=49+8 \mathbb{Z}=1+8 \mathbb{Z}
\end{gathered}
$$

The group $U(8)$ has order 4, but the elements in $U(8)$ have order 1 or 2. It follows that $U(8)$ is not a cyclic group.
(c) The group \mathbb{Q} is the group of rational numbers under the operation of addition. We will show that \mathbb{Q} is not a cyclic group.

Suppose that $r \in \mathbb{Q}$. Let $H=\langle r\rangle$. If $r=0$, then $H=\langle r\rangle=\{0\}$ which is a proper subset of \mathbb{Q}. Hence $H \neq \mathbb{Q}$ in that case.

Now suppose that $r \neq 0$. We can write $r=\frac{m}{n}$, where $m, n \in \mathbb{Z}$. Both m and n are fixed, nonzero integers. Suppose that $h \in H=\langle r\rangle$. By definition, it follows that $h=k r=\frac{k m}{n}$, where $k \in \mathbb{Z}$. Consequently, we have $n h=k m \in \mathbb{Z}$. Thus, for some fixed nonzero integer n, we have $n h \in \mathbb{Z}$ for all $h \in H$.

Consider $s=\frac{1}{2 n}$. Then $s \in \mathbb{Q}$. However, notice that $n s=\frac{1}{2} \notin \mathbb{Z}$. Using the observation in the previous paragraph, it follows that $s \notin H$. Therefore, $H \neq \mathbb{Q}$.

We have proved that every cyclic subgroup of \mathbb{Q} is a proper subgroup of \mathbb{Q}. Therefore, \mathbb{Q} is not a cyclic group.
(d) This statement is false. The quaternion group Q_{8} is a counterexample. As found in homework assignment 1, there are six distinct subgroups of Q_{8}. The five proper subgroups of Q_{8} are:

$$
\begin{array}{rlrl}
\{1\}= & \langle 1\rangle, & \{1,-1\}=\langle-1\rangle, & \{1,-1, \quad i,-i\}=\langle i\rangle, \\
\{1,-1, \quad j,-j\}=\langle j\rangle, & \{1,-1, \quad k,-k\}=\langle k\rangle
\end{array}
$$

They are all indeed cyclic. But Q_{8} is not cyclic because none of the elements in Q_{8} has order equal to 8 . Those elements all have order 1,2 , or 4.

Solution for Problem 4a from section 4.4.

The identity element in the group $G L_{2}(\mathbb{R})$ is $I_{2}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$. Let $A=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$. We find that

$$
\begin{gathered}
A^{1}=A \neq I_{2}, \quad A^{2}=\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right)=-I_{2} \neq I_{2}, \\
A^{3}=A^{2} A=-I_{2} A=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right) \neq I_{2}, \quad A^{4}=A^{2} A^{2}=\left(-I_{2}\right)\left(-I_{2}\right)=I_{2}
\end{gathered}
$$

It follows that A has order 4 and that

$$
\langle A\rangle=\left\{I_{2}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \quad\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right), \quad\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right), \quad\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)\right\}
$$

Solution to problem 31 from section 4.4.

Let e be the identity element in the group G. An element a in G has finite order if and only if there exists a positive integer k such that $a^{k}=e$. Let T denote the set of elements of G which have finite order.

Notice that $e^{1}=e$ and hence e has finite order. Therefore, $e \in T$.
Suppose that $a \in T$. Then a positive integer k exists such that $a^{k}=e$. By the law of exponents, we have

$$
\left(a^{-1}\right)^{k}=a^{-k}=\left(a^{k}\right)^{-1}=e^{-1}=e
$$

and therefore we have $a^{-1} \in T$.
So far, we have not assumed that G is abelian. But for the next step, we will need that assumption.

Suppose that G is abelian and that $a, b \in G$. Then we will first show that if k is any positive integer, then

$$
\begin{equation*}
(a b)^{k}=a^{k} b^{k} . \tag{1}
\end{equation*}
$$

We will use Mathematical Induction. Obviously, (1) is true for $k=1$. Assume it is true for $k=n$, where $n \in \mathbb{N}$. We then have

$$
(a b)^{n+1}=(a b)^{n}(a b)=\left(a^{n} b^{n}\right)(a b)=a^{n}\left(b^{n} a\right) b=a^{n}\left(a b^{n}\right) b=\left(a^{n} a\right)\left(b^{n} b\right)=a^{n+1} b^{n+1}
$$

and hence (1) is true for $k=n+1$. By Mathematical Induction, it follows that (1) is true for all $k \in \mathbb{N}$.

Now suppose that $a, b \in T$. Then there exist positive integers s and t such that $a^{s}=e$ and $b^{t}=e$. Let $k=s t$. Then k is a positive integer and we have

$$
a^{k}=a^{s t}=\left(a^{s}\right)^{t}=e^{t}=e \quad \text { and } \quad b^{k}=b^{s t}=\left(b^{t}\right)^{s}=e^{s}=e
$$

Using (1), it follows that

$$
(a b)^{k}=a^{k} b^{k}=e e=e .
$$

It follows that $a b \in T$. We have proved that if $a, b \in T$, then $a b \in T$.
The above observations show that if G is abelian, then T is indeed a subgroup of G.

Solution for Problem A.

First of all, note that $i^{4}=1$. Hence the order of i must divide 4. The positive divisors of 4 are 1,2 , and 4 . But $i^{2}=-1 \neq 1$. Thus, the order of i cannot divide 2 . The only possibility left is that the order of i is equal to 4 .

Let $\beta=\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2} i$. Note that

$$
\beta^{2}=\left(\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2} i\right)\left(\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2} i\right)=\left(\frac{1}{2}-\frac{1}{2}\right)+\left(\frac{1}{2}+\frac{1}{2}\right) i=i .
$$

Therefore,

$$
\beta^{8}=\left(\beta^{2}\right)^{4}=i^{4}=1
$$

Therefore, the order of β must divide 8 . Thus, the order of β is $1,2,4$, or 8 . But

$$
\beta^{4}=\left(\beta^{2}\right)^{2}=i^{2}=-1
$$

and so $\beta^{4} \neq 1$. Therefore, the order of β cannot divide 4 . The only possibility is that the order of β is exactly 8 .

Let $\gamma=\frac{1}{2}+\frac{\sqrt{3}}{2} i$. Then

$$
\gamma^{2}=\left(\frac{1}{4}-\frac{3}{4}\right)+\left(\frac{\sqrt{3}}{4}+\frac{\sqrt{3}}{4}\right) i=-\frac{1}{2}+\frac{\sqrt{3}}{2} i
$$

and

$$
\gamma^{3}=\gamma^{2} \gamma=\left(-\frac{1}{2}+\frac{\sqrt{3}}{2} i\right)\left(\frac{1}{2}+\frac{\sqrt{3}}{2} i\right)=\left(-\frac{1}{4}-\frac{3}{4}\right)+\left(-\frac{\sqrt{3}}{4}+\frac{\sqrt{3}}{4}\right) i=-1 .
$$

It follows that

$$
\gamma^{6}=\left(\gamma^{3}\right)^{2}=(-1)^{2}=1
$$

and hence the order of γ must divide 6. Thus the order of γ is $1,2,3$, or 6 . However, neither γ^{2} nor γ^{3} is equal to 1 . Thus, the order of γ cannot divide 2 or 3 . This leaves just one possibility. The order of γ must be 6 .

Finally, we consider $\delta=1+i$. Note that $\delta^{2}=(1+i)(1+i)=-2 i$ and

$$
\delta^{4}=\left(\delta^{2}\right)^{2}=(-2 i)^{2}=-4 \quad \text { and } \quad \delta^{8}=\left(\delta^{4}\right)^{2}=(-4)^{2}=16
$$

Thus, $16 \in\langle\delta\rangle$. Thus, $\langle 16\rangle$ is a subgroup of $\langle\delta\rangle$. It is clear that $16^{k}=1$ holds if and only if $k=0$. Thus, 16 has infinite order. Thus, $\langle 16\rangle$ is an infinite group. It is a subgroup of $\langle\delta\rangle$ and hence that group must also be infinite. Therefore, δ has infinite order.

Solution for Problem B.

$|G|=4: \quad$ The solution for problem 1 b above gives us an example. Take $G=U(8)$. It has order 4 and is noncyclic as explained above.
$|G|=6: \quad$ Let $G=S_{3}$. The $|G|=6$. As discussed in class, there is one element in G of order 1, three elements of order 2, and two elements of order 3. There are no elements of order 6 . Hence G is not cyclic.

One can also point out that $G=S_{3}$ is a nonabelian group. However, every cyclic group is abelian. Hence G cannot be cyclic.
$|G|=8$. We can take $G=Q_{8}$. Since Q_{8} is nonabelian, it cannot be cyclic.
Before finishing this problem, we make the following helpful observation. Suppose that A and B are groups. Let e be the identity element of A and let f be the identity element of B. Suppose that m and n are positive integers with the following property: $a^{m}=e$ for all $a \in A$ and $b^{n}=f$ for all $b \in B$. Let $G=A \times B$, which is the direct product of A and B defined in class one day. Then G is a group and the identity element of G is (e, f). Notice that for any element $(a, b) \in G$, we have

$$
\left.(a, b)^{m n}=\left(a^{m n}, b^{m n}\right)=\left(\left(a^{m}\right)^{n},\left(b^{n}\right)^{m}\right)=9 e^{n}, f^{m}\right)=(e, f)
$$

and hence every element $g \in G$ satisfies $g^{m n}=(e, f)$
Now we continue the solution to this problem. We will use the notation in the above observation.
$|G|=12$. Let $G=A \times B$, where A is cyclic of order 3 and $B=U\left(\mathbb{Z}_{8}\right)$. Note that B has order 4 , but every element in B has order 1 or 2 . Thus, we have $a^{3}=e$ for all $a \in A$ and $b^{2}=f$ for all $b \in B$. We can take $m=3$ and $n=2$ in the notation of the observation. Thus, if $g \in G$, then $g^{6}=(e, f)$. Thus, every element of G has order dividing 6. However, $|G|=|A||B|=12$. Since G has no element of order 12, it cannot be a cyclic group.
$|G|=49$. Now we take A and B to be cyclic groups of order 7 . Let $G=A \times B$. Then every element of A has order 1 or 7 . Every element of B has order 1 or 7 . Thus, if $a \in A$ and $b \in B$, then $a^{7}=e$ and $b^{7}=f$. Thus,

$$
(a, b)^{7}=\left(a^{7}, b^{7}\right)=(e, f)
$$

which is the identity element in G. Hence every element in G has order dividing 7. However, $|G|=|A||B|=7 \cdot 7=49$. This group G is not cyclic because G has no element of order 49 .
$|G|=64$. One could take $G=A \times B$ where A and B are cyclic groups of order 8 . Then just as in the previous case, every element of G has order dividing 8 . But $|G|=64$. The group G cannot be cyclic because it has no element of order 64 .

Another example is $G=Q_{8} \times Q_{8}$. It is a nonabelian group of order $8 \cdot 8=64$ and hence cannot be cyclic.

Solution for Problem C.

We are assuming that $a, b \in G$ and that $a b=b a$. Let e be the identity element of G. We are also assuming that

$$
a^{2}=e, \quad b^{3}=e \quad \text { and } \quad a \neq e, \quad b \neq e, \quad b^{2} \neq e .
$$

To prove that $a b$ has order 6 , let $c=a b$ and let m denote the order of c. Since $a b=b a$, we have

$$
c^{6}=(a b)(a b)(a b)(a b)(a b)(a b)=a^{6} b^{6}=\left(a^{2}\right)^{3}\left(b^{3}\right)^{2}=e^{3} e^{2}=e
$$

Suppose $k \in \mathbb{Z}$. According to a result proved in class, $c^{k}=e$ if and only if m divides k. It follows that m divides 6 . This means that $m \in\{1,2,3,6\}$. However,

$$
c^{3}=a^{3} b^{3}=a^{3} e=a^{3}=a a^{2}=a e=a \neq e, \quad c^{2}=a^{2} b^{2}=e b^{2}=b^{2} \neq e
$$

and therefore m doesn't divide 3 or 2 . Thus, $m \notin\{1,2,3\}$. It follows that $m=6$, as stated in the problem.

Solution for Problem D.

The statement is false. Consider the group $G=S_{3}$. Let

$$
a=\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 3 & 2
\end{array}\right) \quad \text { and } \quad b=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 1
\end{array}\right)
$$

Then a has order 2 and b has order 3. However,

$$
a b==\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 3 & 2
\end{array}\right)\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 1
\end{array}\right)=\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 2 & 1
\end{array}\right)
$$

which has order 2 . Thus, $a b$ has order 2 , and not 6 .

