
Solutions for Homework Assignment 1

Solution for Problem 2:

(a) G is not a group because an identity element does not exist.

(b) G is a group. The easiest way to explain this is to point out that the given multiplication
table is precisely the multiplication table for the group

U(Z8) = { [1]8, [3]8, [5]8, [7]8 }

discussed in class one day. Recall that U(Z8) is the group of units in the ring Z8. We can
take

a = [1]8, b = [3]8, c = [5]8, d = [7]8

to make the comparison.

(c) G is a group. The easiest way to explain this is to point out that the given multiplication
table is precisely the multiplication table for the group {1,−1, i,−i} described in class.
This group is the group of units in the ring Z[i] of Gaussian integers. To compare the
multiplication tables, take a = 1, c = −1, b = i, and d = −i.
(d) G is not a group. One can see this by noticing that a would be the identity element, but
d has no inverse.

Solution for Problem 6:

The elements of U(Z12) are of the form [a]12, where 0 ≤ a ≤ 11 and gcd(a, 12) = 1.
Explicitly,

U(Z12) = { [1]12, [5]12, [7]12, [11]12 } .

Thus, U(Z12) is a group with 4 elements. For brevity, we will write

e = [1]12, u = [5]12, v = [7]12, w = [11]12 .

The multiplication table is the following:

· e u v w

e e u v w
u u e w v
v v w e u
w w v u e
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Solution for Problem 7:

As a guide to doing this problem, it is useful to notice that

(1) (1 + a)(1 + b) = 1 + a+ b+ ab = 1 + a ∗ b

Also, note that if a 6= −1, then 1 + a 6= 0.

If a 6= −1 and b 6= −1, then 1+a 6= 0 and 1+b 6= 0. It follows that (1+a)(1+b) 6= 0. Hence
1 + a ∗ b 6= 0. Therefore, a ∗ b 6= −1. This argument shows that the set S = {a ∈ R|a 6= −1}
is indeed closed under the operation ∗.

The identity element in S for ∗ is 0. To verify this, note that for all a ∈ R, we have

0 ∗ a = 0 + a+ 0 · a = a and a ∗ 0 = a+ 0 + a · 0 = a .

As for the associative law, we use the above identity (1) and the fact that the associative
law of multiplication is valid for R. For a, b, c ∈ R, we have(

(1 + a)(1 + b)
)
(1 + c) =

(
1 + a ∗ b

)
(1 + c) = 1 + (a ∗ b) ∗ c

and
(1 + a)

(
(1 + b)(1 + c)

)
= (1 + a)

(
1 + b ∗ c

)
= 1 + a ∗ (b ∗ c) .

Since we know that
(
(1 + a)(1 + b)

)
(1 + c) = (1 + a)

(
(1 + b)(1 + c)

)
for all a, b, c ∈ R, it

follows that
(a ∗ b) ∗ c = a ∗ (b ∗ c)

for all a, b, c ∈ R.

Finally, we prove the existence of inverses. Suppose a ∈ S. Note that 1 + a 6= 0. Hence
1

1 + a
exists in R and is nonzero. Let b =

1

1 + a
− 1. Then b ∈ R and b 6= −1. That is,

b ∈ S. We have

(1 + a)(1 + b) = (1 + a)

(
1

1 + a

)
= 1 = 1 + 0 .

Using the identity (1), it follows that a ∗ b = 0. Recall that the identity element in S is
0. One similarly sees that b ∗ a = 0. Therefore, every element a ∈ S indeed has an inverse
b ∈ S.
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We have verified that S is a group under the operation ∗.

Solution for Problem 8:

One can almost just take two randomly chosen 2×2 matrices for A and B. It is extremely
likely AB 6= BA. Let us take

A =

(
1 1
0 1

)
and B =

(
1 0
1 1

)
.

Then one finds that

AB =

(
2 1
1 1

)
and BA =

(
1 1
1 2

)
.

Clearly, AB 6= BA.

Solution for Problem 10:

Let G be the set of matrices of the form stated in this problem. We assume that the
entries x, y, and z are in R, although this is not specified in the problem. Note that the
matrices in G have determinant equal to 1. Thus, G is a subset of GL3(R) (and even a
subset of SL3(R)).

We will prove that G is a group by verifying that G is a subgroup of GL3(R). First of
all, note that the identity element of GL3(R), namely the identity matrix I3, is clearly in G.
(Just take x = y = z = 0.)

Secondly, we must show that G is closed under the group operation for GL3(R), which
is just matrix multiplication. This is clear from the formula for the product given in the
problem.

Finally, we must verify that if A ∈ G, then its inverse in GL3(R) is also in G. However,
we have the following formula for the inverse:

A =

1 x y
0 1 z
0 0 1

 , A−1 =

1 −x xz − y
0 1 −z
0 0 1


One can check easily that the second matrix is the inverse of A. It is clear that we indeed
have A−1 ∈ G.
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These observations suffice to show that G is a subgroup of GL3(R) and therefore is a
group.

Solution for Problem 15:

The statement is false. The group S3 has order 6 and is nonabelian. Using the notation
from class, let

a =

(
1 2 3
1 3 2

)
and b =

(
1 2 3
2 3 1

)
Then

ab =

(
1 2 3
3 2 1

)
and ba =

(
1 2 3
2 1 3

)
and so ab 6= ba. This shows that S3 is nonabelian.

Solution for Problem 25:

Suppose that a, b ∈ G, where G is a group. Let e denote the identity element of G. We
want to consider

(2) abna−1 = (aba−1)n

For brevity, we will let c = aba−1 in this proof. Thus, (2) is equivalent to abna−1 = cn.

The statement (2) is true if n = 0 because b0 = e, ab0a−1 = aea−1 = e and c0 = e.

Let us write down the inverses of both sides in (2). Recall the general fact that if
x, y, z ∈ G, then (xyz)−1 = z−1y−1x−1. Thus,(

abna−1
)−1

= (a−1)−1(bn)−1a−1 = ab−na−1

is the inverse of the left hand side in (2). The inverse of the right hand side is (cn)−1 = c−n.
If the two sides of (2) are equal, then their inverses will also be equal and so we will have

ab−na−1 = c−n = (aba−1)−n

which is precisely (2) with n replaced by −n. Thus, it is sufficient to prove (2) for all positive
integers n. It will then be true for all negative integers n.

We now assume that n ≥ 1. We will use a mathematical induction argument to prove
(2). If n = 1, then ab1a−1 = aba−1 = c and c1 = c. Both sides in (2) are indeed equal.
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For the induction step, assume that the equation in (2) is true for n = k, where k is a
positive integer. That is, we assume that

abka−1 = ck .

Then

ck+1 = ckc = (abka−1)(aba−1) = abka−1aba−1 = abkeba−1 = abkba−1 = abk+1a−1 .

Hence we have
abk+1a−1 = ck+1

which means that (2) is true when n = k + 1.

By Mathematical Induction, we can conclude that (2) is true for all positive integers n.
We also have verified (2) for n = 0. As we stated before, it then follows for all negative
integers n.

Solution for Problem 26:

Consider the element k = −1 + nZ. Since gcd(−1, n) = 1, we do have k ∈ U(n).
Furthermore,

k2 = kk = (−1 + nZ)(−1 + nZ) = 1 + nZ

which is the identity element in U(n).

Finally, note that −1 + nZ = 1 + nZ implies that −1 ≡ 1 (mod n). However, this
congruence is only true if n divides 2. Since it is assumed that n > 2, it is clear that
−1 + nZ 6= 1 + nZ.

Thus, k2 is the identity element in U(n), but k1 is not the identity element. This means
that k has order 2.

Solution for Problem 31:

Suppose that G is a group. Let e be the identity element in G. We will assume that
x2 = e for all x ∈ G. Suppose that a, b ∈ G. We will apply the assumption to the elements
x = a, x = b, and x = ab in G. Thus, we have a2 = e, b2 = e, and (ab)2 = e. That is, we
have aa = e, bb = e, and (ab)(ab) = e. These equations imply that

a(ba)b = (ab)(ab) = e and a(ab)b = (aa)(bb) = ee = e
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and hence we have
a(ba)b = a(ab)b .

We can use the left cancellation law to conclude that (ba)b = (ab)b. We can then use the
right cancellation law to conclude that ba = ab.

Thus, we have proved that ab = ba for all a, b ∈ G. This proves that G is indeed an
abelian group.

Solution for Problem 40:

The notation SL2(R) refers to the subgroup of GL2(R) consisting of matrices which have
determinant equal to 1.

We will use the notation R(θ) =

(
cos θ −sin θ
sin θ cos θ

)
. With this notation,

G = { R(θ)
∣∣ θ ∈ R } .

Notice that the determinant of the matrix R(θ) is given by

(cos θ)2 −
(
− (sin θ)2

)
= (cos θ)2 + (sin θ)2 = 1

and hence R(θ) ∈ SL2(R) for all θ ∈ R. That is, G is a subset of SL2(R).

Note that R(0) ==

(
cos 0 −sin 0
sin 0 cos 0

)
=

(
1 0
0 1

)
, which is the identity element in SL2(R).

Suppose θ, ψ ∈ R. Then we have

R(θ)R(ψ) =

(
cos θ −sin θ
sin θ cos θ

)(
cos ψ −sin ψ
sin ψ cos ψ

)

=

(
(cos θ)(cos ψ)− (sin θ)(sin ψ) −(cos θ)(sin ψ)− (sin θ)(cos ψ)
(sin θ)(cos ψ) + (cos θ)(sin ψ) −(sin θ)(sin ψ) + (cos θ)(cos ψ)

)
=

(
cos (θ + ψ) −sin (θ + ψ)
sin (θ + ψ) cos (θ + ψ)

)
= R(θ + ψ) .

Thus, we have shown that R(θ)R(ψ) is in G for all θ, ψ ∈ R. Therefore, G is closed
under the group operation for SL2(R).
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Finally, notice that for all θ ∈ R, we have

R(θ)R(−θ) = R(θ + (−θ)) = R(0) =

(
1 0
0 1

)
which is the identity element in SL2(R). Therefore, the inverse of the matrix R(θ) is R(−θ)
and is therefore an element of G.

We have verified that G is indeed a subgroup of SL2(R).

Solution for Problem 44:

Using the notation from class, the subgroups of Q8 are as follows:

{1}, {1, − 1}, {1, − 1, i, − i},

{1, − 1, j, − j}, {1, − 1, k, − k}, Q8

One checks easily that all of the above subsets of Q8 are indeed subgroups. The above
list is complete. We illustrate how to verify that by considering an arbitrary subgroup H of
Q8. Assume that H is not one of the first two subgroups in the above list.

To illustrate, suppose that the subgroup H contains i, then H must also contain i2 = −1
and i3 = −i. Thus, H must contain {1, − 1, i, − i}. If H = {1, − 1, i, − i}, then H
is in the above list. Otherwise, H must contain at least one more element. Suppose that
H also contains k. Then H must contain {k1, k(−1), ki, k(−i)}. Thus, H also contains
{1, − 1, i, − i} ∪ {k,−k,−j, j} = Q8. Therefore, H = Q8, and is therefore in the above
list.

Similarly, if we assume that H contains −k, j, or −j, then we find that H = Q8.

This type of argument shows that if H is any subgroup of Q8, then H is one of the six
subgroups listed above.

Solution for Problem 45:

Let H and K be subgroups of a group G. We will prove that H ∩K is a subgroup of G.

Let e be the identity element of G. Since H and K are subgroups of G, we certainly have
e ∈ H and e ∈ K. Therefore, we have e ∈ H ∩K.
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Suppose that a, b ∈ H ∩K. Then a, b ∈ H. Since H is a subgroup of G, it follows that
ab ∈ H. We also have a, b ∈ K. Since K is a subgroup of G, it follows that ab ∈ K. Hence
ab ∈ H and ab ∈ K. Therefore, ab ∈ H ∩K. We have shown that H ∩K is closed under
the group operation for G.

Finally, suppose that a ∈ H ∩K. Since a ∈ H and H is a subgroup of G, it follows that
a−1 ∈ H. Since a ∈ K and K is a subgroup of G, it follows that a−1 ∈ K. Thus, a−1 ∈ H
and a−1 ∈ K. Therefore, a−1 ∈ H∩K. We have shown that if a ∈ H∩K, then a−1 ∈ H∩K.

We have shown that H ∩K is a subgroup of G.
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