Solutions for Some Ring Theory Problems

1. Suppose that I and J are ideals in a ring R. Assume that $I \cup J$ is an ideal of R. Prove that $I \subseteq J$ or $J \subseteq I$.

SOLUTION. Assume to the contrary that I is not a subset of J and that J is not a subset of I. It follows that there exists an element $i \in I$ such that $i \notin J$. Also, there exists an element $j \in J$ such that $j \notin I$. Note that $i \in I \cup J$ and $j \in I \cup J$. Since we are assuming that $I \cup J$ is an ideal of R, it follows that $i+j \in I \cup J$.

Let $k=i+j$. If $k \in I$, then $k-i \in I$ too. That is, $j \in I$. This is not true and hence $k \notin I$. If $k \in J$, then $k-j \in J$ too. That is, $i \in J$. However, this is not true and hence $k \notin J$. We have shown that $k \notin I$ and $k \notin J$. That is, $k \notin I \cup J$. Thus, $i+j \notin I \cup J$, contradicting what was found in the previous paragraph.

This contradiction prove the stated assertion.
2. Find an example of an integral domain R with identity and two ideals I and J of R with the following properties: Both I and J are principal ideals of R, but $I+J$ is not a principal ideal of R.

SOLUTION. Let $R=\mathbb{Z}[\sqrt{-5}]$. We gave examples in class of non-principal maximal ideals in R. One such example arose by considering the homomorphism

$$
\varphi: \mathbb{Z}[\sqrt{-5}] \longrightarrow \mathbb{Z} / 2 \mathbb{Z}
$$

defined by $\varphi(a+b \sqrt{-5})=a+b+2 \mathbb{Z}$ for all $a, b \in \mathbb{Z}$. This definition is based on the fact that $(1+2 \mathbb{Z})^{2}=-5+2 \mathbb{Z}$.

Let $K=\operatorname{Ker}(\varphi)$. Then K is a maximal ideal in R. Notice that K contains 2 and $1+\sqrt{-5}$. Let $I=(2)$ and let $J=(1+\sqrt{-5})$. Then I and J are principal ideals in R. Furthermore, $I \subseteq K$ and $J \subseteq K$. Note that $2 \notin J$ and $1+\sqrt{-5} \notin I$. This is true because $N(2)=4$ and $N(1+\sqrt{-5})=6$, and neither of these norms divides the other.

Since $I \subseteq K$ and $J \subseteq K$, it follows that $I+J \subseteq K$. Furthermore, suppose that $\kappa \in K$. Then $\kappa=a+b \sqrt{-5}$, where $a, b \in \mathbb{Z}$. We have

$$
\varphi(\kappa)=a+b+2 \mathbb{Z}=0+2 \mathbb{Z}
$$

and so we have $a+b \in 2 \mathbb{Z}$. We also clearly have $a-b=a+b-2 b \in 2 \mathbb{Z}$. That is, $a-b=2 c$ for some $c \in \mathbb{Z}$. It then follows that

$$
\kappa=a+b \sqrt{-5}=a+b(1+\sqrt{-5})-b=2 c+b(1+\sqrt{-5} \in I+J .
$$

We have proven that $K \subseteq I+J$. Since, $I+J \subseteq K$ is also true, it follows that $K=I+J$.
Finally, we will show that K is not a principal ideal. In fact, this was shown in class one day. Suppose to the contrary that $K=(\kappa)$. Since $2 \in K$, it follows that κ divides 2 in the ring R. Thus, $2=\kappa \lambda$, where $\lambda \in R$. Therefore, $N(2)=N(\kappa) N(\lambda)$. Now $N(2)=4$. Furthermore, κ is not a unit in R because $K \neq R$. Also, λ is not a unit in R because $K \neq I$. The fact that $K \neq I$ is true is true because $1+\sqrt{-5}$ is in K, but not in I. It follows that $N(\kappa) \neq 1$ and $N(\lambda) \neq 1$. Thus, $N(\kappa)=2$. But the equation $a^{2}+5 b^{2}=2$ has no solutions where $a, b \in \mathbb{Z}$. Therefore, it follows that K cannot be a principal ideal.

In summary, I and J are principal ideals in R, but $K=I+J$ is not a principal ideal in R.
3. Suppose that R is a commutative ring with identity and that K is an ideal of R. Let $R^{\prime}=R / K$. The correspondence theorem gives a certain one-to-one correspondence between the set of ideals of R containing K and the set of ideals of R^{\prime}. If I is an ideal of R containing K, we let I^{\prime} denote the corresponding ideal of R^{\prime}. Show that if I is principal, then so is I^{\prime}. Show by example that the converse is not true in general.

SOLUTION. Let $\varphi: R \longrightarrow R^{\prime}$ be defined by $\varphi(r)=r+K$. Then φ is a surjective ring homomorphism from R to R^{\prime}. Suppose that I is an ideal of R which contains K. The corresponding ideal in R^{\prime} is $\varphi(I)=\{\varphi(i) \mid i \in I\}$.

Suppose that I is a principal ideal in R. Then $I=(a)$ for some $a \in R$. That is, we have $I=\{r a \mid r \in R\}$. Then

$$
I^{\prime}=\varphi(I)=\{\varphi(r a) \mid r \in R\}=\{\varphi(r) \varphi(a) \mid r \in R\}=\left\{r^{\prime} \varphi(a) \mid r^{\prime} \in R^{\prime}\right\} .
$$

The last equality is true because $\varphi: R \rightarrow R^{\prime}$ is a surjective map. It follows that $I^{\prime}=(\varphi(a))$, the principal ideal in R^{\prime} generated by $\varphi(a)$.
4. Suppose that R is an integral domain with identity. Suppose that I and J are ideals in R and that $I=(b)$ where $b \in R$. Prove that $I+J=R$ is and only if $b+J$ is a unit in the ring R / J.

SOLUTION. First of all, assume that $I+J=R$. Then there exists $i \in I$ and $j \in J$ such that $i+j=1_{R}$. Furthermore, since $i \in(b)$, we have $i=r b$ for some $r \in R$. Therefore, we have $r b+j=1_{R}$. This implies that $1_{R} \in r b+J$. Therefore, we have

$$
1_{R}+J=r b+J=(r+J)(b+J)
$$

The multiplicative identity element in R / J is $1_{R}+J$. Note that since R is a commutative ring, so is R / J. It follows that

$$
(r+J)(b+J)=1_{R}+J \quad \text { and } \quad(b+J)(r+J)=1_{R}+J .
$$

It follows that $b+J$ is indeed a unit in the ring R / J. Its inverse in that ring is $r+J$.
Now assume that $b+J$ is a unit in the ring R / J. Thus, for some $r \in R$, we have

$$
(r+J)(b+J)=1_{R}+J .
$$

Thus, $r b+J=1_{R}+J$ and hence $1_{R} \in r b+J$. Thus, $1_{R}=r b+j$ for some $j \in J$. Let $i=r b$. Since $I=(b)$, it follows that $i \in I$. Thus,

$$
1_{R}=i+j \in I+J
$$

and therefore, for any $s \in R$, we have $s=s 1_{R} \in I+J$. It follows that $I+J=R$, as we wanted to prove.
5. Suppose that R is an integral domain and that $a, b \in R$. We say that a and b are "relatively prime" if $(a)+(b)=R$. Suppose that $c \in R$. Assume that a and b are relatively prime and that $a \mid b c$ in R. Prove that $a \mid c$ in R.

SOLUTION. We will give two arguments. First of all, since $(a)+(b)=R$, there exist elements $s, t \in R$ such that

$$
s a+t b=1_{R}
$$

Multiply this equation by c. We obtain $c=s a c+t b c$. Note that $s a c=(s c) a$ is a multiple of a in R and hence is in the ideal (a). Furthermore, $b c$ is a multiple of a in R (as stated in the problem) and hence $b c$ is in the ideal (a). Thus, $t(b c)$ is in (a) too. It follows that $s a c+t b c \in(a)$. That is, $c \in(a)$. Therefore, $a \mid c$ in R, as we wanted to prove.

Alternatively, we can use the result in problem 4. Let $I=(b)$ and $J=(a)$. We have $I+J=R$. Thus $b+J$ is a unit in the ring R / J. Since $a \mid b c$ in R, we have $b c \in J$. Therefore, we have

$$
(b+J)(c+J)=b c+J=0_{R}+J
$$

in the ring R / J. However, $b+J$ is a unit in the ring R / J. Multiplying by the inverse of $b+J$, we find that $c+J=0_{R}+J$. That is, we have $c \in J$. This means that c is a multiple of a in R. Therefore, $a \mid c$ in R, as we wanted to prove.
6. Suppose that R is a PID. Suppose that a, b are nonzero elements of R and that they are relatively prime. Prove that $(a) \cap(b)=(a b)$. Furthermore, consider the map

$$
\varphi: R /(a b) \longrightarrow R /(a) \times R /(b)
$$

defined by $\varphi(r+(a b))=(r+(a), r+(b))$ for all $r \in R$. Prove that φ is a well-defined map and that it is a ring isomorphism. (This result is often referred to as the Chinese Remainder Theorem.)

SOLUTION. First of all, recall the result from problem set 1 which states that the intersection of two ideals in a ring R is also an ideal in R. Thus, $(a) \cap(b)$ is an ideal in R. Since R is a PID, we must have $(a) \cap(b)=(k)$, where $k \in R$. Since $k \in(k)$ and $(k) \subseteq(b)$, it follows that $k \in(b)$ and hence $b \mid k$ in R. We can therefore write $k=b c$, where $c \in R$. Since $(k) \subseteq(a)$, it follows that $a \mid k$ in R. That is, $a \mid b c$ in R. Furthermore, it is assumed that a and b are relatively prime. We can use the result in problem 5 to conclude that $a \mid c$ in R. Thus, $c=a d$, where $d \in R$. It follows that $k=b c=b a d=d a b$, which is an element in the ideal $(a b)$. We have proved that $k \in(a b)$ and hence that $(k) \subseteq(a b)$.

On the other hand, it is clear that $a b \in(a)$ and that $a b \in(b)$. Hence we have $(a b) \subseteq(a)$ and $(a b) \subseteq(b)$. Therefore, we have

$$
(a b) \subseteq(a) \cap(b)=(k) \subseteq(a b)
$$

and this implies that $(a b)=(a) \cap(b)$, which is the first statement that we wanted to prove.
We now discuss the map φ. First of all, consider the map

$$
\psi: R \longrightarrow R /(a) \times R /(b)
$$

defined by $\psi(r)=(r+(a), r+(b))$ for all $r \in R$. We will show that ψ is a surjective ring homomorphism. To verify this, suppose that $r, s \in R$. Then

$$
\begin{aligned}
\psi(r+s)= & (r+s+(a), r+s+(b))=(r+(a)+s+(a), r+(b)+s+(b)) \\
& =(r+(a), r+(b))+(s+(a), s+(b))=\psi(r)+\psi(s)
\end{aligned}
$$

and

$$
\begin{gathered}
\psi(r s)=(r s+(a), r s+(b))=((r+(a))(s+(a)),(r+(b))(s+(b))) \\
=(r+(a), r+(b))(s+(a), s+(b))=\psi(r) \psi(s)
\end{gathered}
$$

Therefore, ψ is indeed a ring homomorphism. To prove surjectivity, we use the fact that $(a)+(b)=R$. This is true because a and b are assumed to be relatively prime.

It follows that there exist elements $u, v \in R$ such that $u a+v b=1_{R}$. Therefore,

$$
\psi(u a)=(u a+(a), u a+(b))=\left(0_{R}+(a), 1_{R}+(b)\right)
$$

The second equality is true because $u a \in(a)$ and $u a-1_{R}=-v b \in(b)$. We also have

$$
\psi(v b)=(v b+(a), v b+(b))=\left(1_{R}+(a), 0_{R}+(b)\right)
$$

The second equality is true because $v b-1_{R}=-u a \in(a)$ and $v b \in(b)$
To complete the proof that ψ is surjective, every element in $R /(a) \times R /(b)$ has the form $(s+(a), t+(b))$, where $s, t \in R$. Let $r=s v b+t u a$. Then, $r \in R$ and we have

$$
\begin{gathered}
\psi(r)=\psi(s) \psi(v b)+\psi(t) \psi(u a) \\
=(s+(a), s+(b))\left(1_{R}+(a), 0_{R}+(b)\right)+(t+(a), t+(b))\left(0_{R}+(a), 1_{R}+(b)\right) \\
=\left(s+(a), 0_{R}+(b)\right)+\left(0_{R}+(a), t+(b)\right)=(s+(a), t+(b))
\end{gathered}
$$

This proves the surjectivity of the ring homomorphism ψ.
We now determine the kernel of ψ. The additive identity element of $R /(a) \times R /(b)$ is $\left(0_{R}+(a), 0_{R}+(b)\right)$. An element $r \in R$ is in $\operatorname{Ker}(\psi)$ if and only if

$$
\psi(r)=(r+(a), r+(b))=\left(0_{R}+(a), 0_{R}+(b)\right) .
$$

Thus, $r \in \operatorname{Ker}(\psi)$ if and only if $r+(a)=0_{R}+(a)$ and $r+(b)=0_{R}+(b)$. That is,

$$
\operatorname{Ker}(\psi)=\{r \mid r \in(a) \quad \text { and } \quad r \in(b)\}=(a) \cap(b) .
$$

By the first isomorphism theorem, it follows that the map φ defined in the problem is indeed a ring isomorphism.
7. Suppose that $R=\mathbb{Z}[\sqrt{2}]$. Suppose that M_{1} and M_{2} are maximal ideals of R. True or False: If the rings R / M_{1} and R / M_{2} are isomorphic, then $M_{1}=M_{2}$. If true, give a proof. If false, give a counterexample.

SOLUTION. The statement is false. We will give a counterexample based on an example discussed in class. Let $F=\mathbb{Z} / 7 \mathbb{Z}$. Notice that $2+7 \mathbb{Z}$ is a square in $\mathbb{Z} / 7 \mathbb{Z}$, namely we have $2+7 \mathbb{Z}=(3+7 \mathbb{Z})^{2}$. As discussed in class, we can define a surjective ring homomorphism

$$
\varphi: \mathbb{Z}[\sqrt{2}] \longrightarrow F
$$

by

$$
\varphi(a+b \sqrt{2})=(a+7 \mathbb{Z})+(b+7 \mathbb{Z})(3+7 \mathbb{Z})
$$

Note that $-3+1 \sqrt{2} \in \operatorname{Ker}(\varphi)$. Furthermore, $\operatorname{Ker}(\varphi)$ is a maximal ideal in R because F is a field. We call this maximal ideal M_{1}. We have $R / M_{1} \cong F$.

However, we could have chosen a different element in F whose square is $2+7 \mathbb{Z}$, namely the element $4+7 \mathbb{Z}$. We can then define a surjective ring homomorphism

$$
\psi: \mathbb{Z}[\sqrt{2}] \longrightarrow F
$$

by

$$
\psi(a+b \sqrt{2})=(a+7 \mathbb{Z})+(b+7 \mathbb{Z})(4+7 \mathbb{Z})
$$

Then $\operatorname{Ker}(\varphi)$ is a maximal ideal in R. Call this maximal ideal M_{2}. We have $R / M_{2} \cong F$.
Finally, we will show that $M_{1} \neq M_{2}$. As mentioned above, $-3+1 \sqrt{2} \in M_{1}$. However, $\psi(-3+1 \sqrt{2})=1+7 \mathbb{Z}$ and so $\psi(-3+1 \sqrt{2}) \neq 0+7 \mathbb{Z}$. Hence, $-3+1 \sqrt{2} \notin M_{2}$. Therefore, $M_{1} \neq M_{2}$, as stated.
8. Give an explicit example of an injective ring homomorphism from $\mathbf{Z} / 5 \mathbf{Z}$ to $\mathbf{Z} / 20 \mathbf{Z}$. No justification of your answer is needed.

SOLUTION. We will justify the answer. One idempotent in the ring $\mathbb{Z} / 20 \mathbb{Z}$ is $16+20 \mathbb{Z}$. This element is an idempotent because

$$
(16+20 \mathbb{Z})(16+20 \mathbb{Z})=256+20 \mathbb{Z}=16+20 \mathbb{Z} .
$$

Notice also that $16+20 \mathbb{Z}$ has order 5 in the additive group of $\mathbb{Z} / 20 \mathbb{Z}$. We define a map $\varphi: \mathbb{Z} \rightarrow \mathbb{Z} / 20 \mathbb{Z}$ as follows:

$$
\varphi(n)=16 n+20 \mathbb{Z}
$$

for $n \in \mathbb{Z}$. As discussed in class, this map φ is a ring homomorphism from $\mathbb{Z} / 20 \mathbb{Z}$. Since $16+20 \mathbb{Z}$ has order 5 , we have $\operatorname{Ker}(\varphi)=5 \mathbb{Z}$. By the first isomorphism theorem, we obtain an injective ring homomorphism $\psi: \mathbb{Z} / 5 \mathbb{Z} \rightarrow \mathbb{Z} / 20 \mathbb{Z}$ defined by

$$
\psi(n+5 \mathbb{Z})=16 n+20 \mathbb{Z}
$$

9. Consider the ring $R=\mathbf{Q}[x] / I$, where $I=\left(x^{2}-x\right)$. Show that $\beta=x+I$ is an idempotent element in R, but that $\beta \neq 0_{R}$ and $\beta \neq 1_{R}$. Find an idempotent element in R which is not
equal to $0_{R}, 1_{R}$ or β. Prove that $R \cong \mathbb{Q} \times \mathbb{Q}$. (It may be helpful to review the exercises about idempotents.)

SOLUTION. We have $x^{2}-x \in I$. Hence $x^{2}+I=x+I$. Let $e=x+I$. Then

$$
e^{2}=(x+I)^{2}=x^{2}+I=x+I=e
$$

and so e is an idempotent in the ring R. Let $f=1_{R}-e=1-x+I$. Then f must also be an idempotent in the ring R. Furthermore, as proved in one of the problem sets, we have

$$
R \cong S \times T
$$

where $S=R e$ and $T=R f$. We will show that $S \cong \mathbb{Q}$ and $T \cong \mathbb{Q}$.
Every element of R has the form $a+b x+I$, where $a, b \in \mathbb{Q}$. Thus, an element of S has the form

$$
\begin{gathered}
(a+b x+I)(x+I)=a x+b x^{2}+I=(a+I)(x+I)+(b+I)\left(x^{2}+I\right) \\
=(a+I)(x+I)+(b+I)(x+I)=(c+I) e
\end{gathered}
$$

where $c=a+b \in \mathbb{Q}$. We define a map

$$
\varphi: \mathbb{Q} \longrightarrow S
$$

by $\varphi(c)=(c+I) e$ for all $c \in \mathbb{Q}$. Since all elements of S have the form $(c+I) e$, the map φ is surjective. One can then easily verify that φ is a ring isomorphism from \mathbb{Q} to S. Hence $S \cong \mathbb{Q}$.

Similarly, an element of T has the form
$(a x+b+I)(1-x+I)=a x(1-x)+b(1-x)+I=b(1-x)+I=(b+I)(1-x+I)=(b+I) f$
Just as in the previous paragraph, we find that $T \cong \mathbb{Q}$. We have proved that $R \cong \mathbb{Q} \times \mathbb{Q}$.
An alternative proof can be given by noticing that x and $x-1$ are relatively prime elements in the ring $\mathbb{Q}[x]$. One can use the chinese remainder theorem discussed in problem 6 to conclude that

$$
\mathbb{Q}[x] /\left(x^{2}-x\right) \cong \mathbb{Q}[x] /(x) \times \mathbb{Q}[x] /(x-1)
$$

Note that if $g(x) \in \mathbb{Q}[x]$ and $\operatorname{deg}(g(x))=1$, then every element in the ring $\mathbb{Q}[x] /(g(x))$ has the form $a+(g(x))$, where $a \in \mathbb{Q}$. One can then define an isomorphism

$$
\varphi: \mathbb{Q} \longrightarrow \mathbb{Q}[x] /(g(x))
$$

by $\varphi(a)=a+(g(x))$ for all $a \in \mathbb{Q}$. Applying this observation, we then obtain

$$
\mathbb{Q}[x] /(x) \cong \mathbb{Q}, \quad \text { and } \quad \mathbb{Q}[x] /(x-1) \cong \mathbb{Q}
$$

and hence we obtain an isomorphism $\mathbb{Q}[x] /\left(x^{2}-x\right) \cong \mathbb{Q} \times \mathbb{Q}$.
10. This question concerns ring homomorphisms φ from a ring R to a ring S. In each part of this question, give an example of R, S, and φ satisfying the stated requirements. No explanations are needed. You must specify R, S, and φ precisely.
(a) $\quad R$ is a field, S is not a field, and φ is injective.

SOLUTION. We defined an injective ring homomorphism from $R=\mathbb{Z} / 5 \mathbb{Z}$ to $S=\mathbb{Z} / 20 \mathbb{Z}$ in problem 8 . Note that R is a field and S is not an integral domain, hence S is certainly not a field.

Another example is the following. Let $R=\mathbb{Q}$ and let $S=\mathbb{Q}[x]$. Then R is a subring of S. Here R is a field, but S is not a field. The inclusion of R into S is an injective ring homomorphism.
(b) $\quad R$ and S are integral domains, φ is surjective, but not injective.

SOLUTION. Let $R=\mathbb{Z}$. Let $S=\mathbb{Z} / 5 \mathbb{Z}$. Then R is an integral domain and S is a field. Hence S is also an integral domain. Define $\varphi: R \rightarrow S$ by

$$
\varphi(k)=k+5 \mathbb{Z}
$$

for all $k \in \mathbb{Z}$. This map φ is a surjective ring homomorphism, but is not injective.
(c) R is a noncommutative ring, S is an integral domain, and φ is surjective.

SOLUTION. Let $R=\mathbb{H} \times \mathbb{Z}$, where \mathbb{H} is the ring of quaternions. Let $S=\mathbb{Z}$. Every element r in R has the form $r=(h, z)$, where $h \in \mathbb{H}$ and $z \in \mathbb{Z}$. Define a map $\varphi: R \rightarrow S$ by

$$
\varphi((h, z))=z
$$

for all $h \in \mathbb{H}$ and $z \in \mathbb{Z}$. Then one verifies easily that φ is a ring homomorphism from R to S and that φ is surjective. Note that R is a noncommutative ring because \mathbb{H} is noncommutative. Also, S is an integral domain.
11. Give a specific example of a prime ideal in the ring $\mathbf{Q}[x]$ which is not a maximal ideal.

SOLUTION. The zero ideal in $\mathbb{Q}[x]$ is a prime ideal because $\mathbb{Q}[x]$ is an integral domain. However, the zero ideal in $\mathbb{Q}[x]$ is not a maximal ideal because $\mathbb{Q}[x]$ is not a field.
12. This question concerns the ring $\mathbf{Z}[i]$. The integer 11213 is a prime number. Furthermore, it turns out that $11213=82^{2}+67^{2}$. You may use these facts in this question without verifying them.
(a) Find a maximal ideal I in the ring $\mathbf{Z}[i]$ which contains 11213 . Explain why your ideal I is actually a maximal ideal in $\mathbf{Z}[i]$.
SOLUTION. Let $\alpha=82+67 i$. Then $N(\alpha)=82^{2}+67^{2}=11213$, which is a prime number. Hence α is an irreducible element in the ring $\mathbb{Z}[i]$. Since $\mathbb{Z}[i]$ is a PID, it follows that the principal ideal $I=(\alpha)$ is a maximal ideal in the ring $\mathbb{Z}[i]$. Let $\beta=82-67 i$. Then I contains $\beta \alpha=11213$. Thus, I is a maximal ideal which contains 11213.
(b) Find all of the irreducible elements α in $\mathbf{Z}[i]$ which divide 11213 in that ring.

SOLUTION. Since $11213 \equiv 1(\bmod 4)$, we can use a result explained in class to find the irreducible elements in $\mathbb{Z}[i]$ which divide 11213 . We have $11213=(82+67 i)(82-67 i)=\alpha \beta$, where α and β are as in part (a). Both factors are irreducible in $\mathbb{Z}[i]$. There are eight irreducible elements of $\mathbb{Z}[i]$ which divide 11213 . They are of the form $\varepsilon \alpha$ or $\varepsilon \beta$, where $\varepsilon \in\{1,-1, i,-i\}$. Explicitly, the irreducible elements of $\mathbb{Z}[i]$ dividing 11213 are:

$$
\pm 82 \pm 67 i, \quad \pm 67 \pm 82 i
$$

(c) Prove that $\mathbf{Z}[i] / I$ is isomorphic to $\mathbf{Z} / 11213 \mathbf{Z}$.

SOLUTION. Let $p=11213$. Since p is a prime and $p \equiv 1(\bmod 4)$, we know that there exists an integer c such that $c^{2} \equiv-1(\bmod p)$. Let $F=\mathbb{Z} / p \mathbb{Z}$. We can define a map $\varphi: \mathbb{Z}[i] \rightarrow F$ as follows:

$$
\varphi(a+b i)=a+b c+p \mathbb{Z}
$$

We will show that φ is a surjective ring homomorphism. The surjectivity is clear. To verify that φ is a ring homomorphism, consider two elements $\kappa=a+b i$ and $\lambda=e+f i$ in $\mathbb{Z}[i]$. We have

$$
\begin{gathered}
\varphi(\kappa+\lambda)=\varphi((a+e)+(b+f) i)=(a+e)+(b+f) c+p \mathbb{Z} \\
(a+b c)+(e+f c)+p \mathbb{Z}=\varphi(\kappa)+\varphi(\lambda)
\end{gathered}
$$

Also,

$$
\varphi(\kappa \lambda)=\varphi((a e-b f)+(a f+b e) i)=(a e-b f)+(a f+b e) c+p \mathbb{Z}
$$

and

$$
\begin{gathered}
\varphi(\kappa) \varphi(\lambda)=(a+b c+p \mathbb{Z})(e+f c+p \mathbb{Z})=(a+b c)(e+f c)+p \mathbb{Z} \\
=a e+b f c^{2}+a f c+b e c+p \mathbb{Z}
\end{gathered}
$$

We have $c^{2} \equiv-1(\bmod p)$ and so $a e+b f c^{2}+a f c+b e c \equiv(a e-b f)+(a f+b e) c(\bmod p)$. Therefore,

$$
\varphi(\kappa) \varphi(\lambda)=(a e-b f)+(a f+b e) c+p \mathbb{Z}=\varphi(\kappa \lambda) .
$$

We have verified that φ is a surjective ring homomorphism. Let $K=\operatorname{ker}(\varphi)$. By the first isomorphism theorem, we have

$$
\mathbb{Z}[i] / K \cong F
$$

where $F=\mathbb{Z} / p \mathbb{Z}=\mathbb{Z} / 11213 \mathbb{Z}$. Also, K is a maximal ideal of $\mathbb{Z}[i]$. Hence $K=(\gamma)$, where γ is an irreducible element of $\mathbb{Z}[i]$. Note that $\varphi(p)=p+p \mathbb{Z}=0_{F}$. Hence p is in K. Therefore, γ divides p. By part (b), we know that either $K=(\alpha)=I$ or $K=(\beta)=J$.

If $K=I$, then we have $\mathbb{Z}[i] / I \cong F$, as we want. On the other hand, assume that $K=J$. We can just switch the notation and take J to be the answer to part (a) in place of I.

