Solutions for Some Ring Theory Problems

1. Suppose that I and J are ideals in a ring R. Assume that [ U J is an ideal of R. Prove
that I C J or J C I.

SOLUTION. Assume to the contrary that I is not a subset of J and that .J is not a subset
of I. It follows that there exists an element ¢ € I such that ¢« ¢ J. Also, there exists an
element j € J such that j € I. Note that ¢ € TUJ and 7 € [ U J. Since we are assuming
that I U J is an ideal of R, it follows that i +j € T U J.

Let k=i+j. If k € I, then k — ¢ € I too. That is, 7 € I. This is not true and hence
kel IfkeJ, then k—j € J too. That is, i € J. However, this is not true and hence

k & J. We have shown that £ ¢ [ and k ¢ J. That is, k ¢ TUJ. Thus, i+ 5 & I U J,
contradicting what was found in the previous paragraph.

This contradiction prove the stated assertion.
2. Find an example of an integral domain R with identity and two ideals I and J of R with

the following properties: Both I and J are principal ideals of R, but I + J is not a principal
ideal of R.

SOLUTION. Let R = Z[/—5]. We gave examples in class of non-principal maximal ideals
in R. One such example arose by considering the homomorphism

v: ZIV-=5] — Z/2Z
defined by ¢(a + bv/—5) = a+ b+ 2Z for all a,b € Z. This definition is based on the fact
that (14 2Z)* = -5+ 2Z.

Let K = Ker(p). Then K is a maximal ideal in R. Notice that K contains 2 and
14+ +v/=5. Let I = (2) and let J = (1 + +/=5). Then I and J are principal ideals in R.
Furthermore, I C K and J C K. Note that 2 ¢ J and 1 + /=5 & I. This is true because
N(2) =4 and N(1 ++/=5) = 6, and neither of these norms divides the other.

Since I C K and J C K, it follows that [ + J C K. Furthermore, suppose that x € K.
Then k = a + b\/—5, where a,b € Z. We have

oK) = a+b+2Z = 0+ 2Z

and so we have a +b € 2Z. We also clearly have a —b = a+b—2b € 2Z. That is, a —b = 2¢
for some ¢ € Z. It then follows that

k=a+bv=b = a+b(l++vV-5)—b = 2c+b(l+vV-5 € I+J .



We have proven that K C I 4+ J. Since, I + J C K is also true, it follows that K = I + J.

Finally, we will show that K is not a principal ideal. In fact, this was shown in class
one day. Suppose to the contrary that K = (k). Since 2 € K, it follows that x divides 2
in the ring R. Thus, 2 = kA, where A € R. Therefore, N(2) = N(k)N(X). Now N(2) = 4.
Furthermore, x is not a unit in R because K # R. Also, A is not a unit in R because K # I.
The fact that K # I is true is true because 1 4 /=5 is in K, but not in I. It follows that
N(k) # 1 and N(\) # 1. Thus, N(x) = 2. But the equation a* + 56> = 2 has no solutions
where a,b € Z. Therefore, it follows that K cannot be a principal ideal.

In summary, I and J are principal ideals in R, but K = I + J is not a principal ideal in

R.

3. Suppose that R is a commutative ring with identity and that K is an ideal of R. Let
R’ = R/K. The correspondence theorem gives a certain one-to-one correspondence between
the set of ideals of R containing K and the set of ideals of R'. If I is an ideal of R containing
K, we let I' denote the corresponding ideal of R’. Show that if I is principal, then so is I'.
Show by example that the converse is not true in general.

SOLUTION. Let ¢ : R — R’ be defined by ¢(r) = r + K. Then ¢ is a surjective ring
homomorphism from R to R'. Suppose that I is an ideal of R which contains K. The
corresponding ideal in R’ is (1) = { o(i) | i € I }.

Suppose that I is a principal ideal in R. Then I = (a) for some a € R. That is, we have
I={ra|reR} Then

I' = o(I) = {¢(ra) |[reR} = {pr)ela) |[reR} = {1'p(a) [ eR} .

The last equality is true because ¢ : R — R’ is a surjective map. It follows that I’ = (ap(a)),
the principal ideal in R’ generated by ¢(a).

4. Suppose that R is an integral domain with identity. Suppose that I and J are ideals in
R and that I = (b) where b € R. Prove that [ +J = R is and only if b + J is a unit in the
ring R/J.

SOLUTION. First of all, assume that I + J = R. Then there exists ¢ € [ and j € J such

that i + j = 1z. Furthermore, since i € (b), we have ¢ = rb for some r € R. Therefore, we
have rb + j = 1x. This implies that 1z € b+ J. Therefore, we have

gt J = rbtd = (r+J)b+J)



The multiplicative identity element in R/.J is 1z + J. Note that since R is a commutative
ring, so is R/J. It follows that

(r+J)b+J)=1g+J and b+ N)(r+J)=1g+J .

It follows that b+ J is indeed a unit in the ring R/J. Its inverse in that ring is r + J.

Now assume that b + J is a unit in the ring R/J. Thus, for some r € R, we have
(r+)b+J)=1g+J

Thus, rb+.J = 1+ J and hence 1z € b+ J. Thus, 1g = rb+ j for some j € J. Let i = rb.
Since I = (b), it follows that ¢ € I. Thus,

g =i+j € I+J

and therefore, for any s € R, we have s = slg € I + J. It follows that [ + J = R, as we
wanted to prove.

5. Suppose that R is an integral domain and that a,b0 € R. We say that a and b are
“relatively prime” if (a) + (b) = R. Suppose that ¢ € R. Assume that a and b are relatively
prime and that a|bc in R. Prove that alc in R.

SOLUTION. We will give two arguments. First of all, since (a) 4+ (b) = R, there exist
elements s,t € R such that
sa + tb = 1i .

Multiply this equation by ¢. We obtain ¢ = sac 4 tbc. Note that sac = (sc)a is a multiple
of a in R and hence is in the ideal (a). Furthermore, bc is a multiple of a in R (as stated
in the problem) and hence bc is in the ideal (a). Thus, t(bc) is in (a) too. It follows that
sac +tbe € (a). That is, ¢ € (a). Therefore, alc in R, as we wanted to prove.

Alternatively, we can use the result in problem 4. Let I = (b) and J = (a). We have
I+J = R. Thus b+ J is a unit in the ring R/J. Since albc in R, we have bc € J. Therefore,
we have

(b+J)c+J) = be+J = Op+J

in the ring R/J. However, b+ J is a unit in the ring R/J. Multiplying by the inverse of
b+ J, we find that ¢+ J = 0g + J. That is, we have ¢ € J. This means that ¢ is a multiple
of a in R. Therefore, a|c in R, as we wanted to prove.



6. Suppose that R is a PID. Suppose that a,b are nonzero elements of R and that they are
relatively prime. Prove that (a) N (b) = (ab). Furthermore, consider the map

v R/(ab) — R/(a) x R/(b)

defined by ¢(r+(ab) ) = (r+(a), r+(b) ) for allr € R. Prove that ¢ is a well-defined map
and that it is a ring isomorphism. (This result is often referred to as the Chinese Remainder
Theorem. )

SOLUTION. First of all, recall the result from problem set 1 which states that the inter-
section of two ideals in a ring R is also an ideal in R. Thus, (a) N () is an ideal in R. Since
R is a PID, we must have (a) N (b) = (k), where k € R. Since k € (k) and (k) C (b), it
follows that k& € (b) and hence bk in R. We can therefore write k = be, where ¢ € R. Since
(k) C (a), it follows that a|k in R. That is, a|bc in R. Furthermore, it is assumed that a and
b are relatively prime. We can use the result in problem 5 to conclude that a|c in R. Thus,
¢ = ad, where d € R. It follows that k = bc = bad = dab, which is an element in the ideal
(ab). We have proved that k € (ab) and hence that (k) C (ab).

On the other hand, it is clear that ab € (a) and that ab € (b). Hence we have (ab) C (a)
and (ab) C (b). Therefore, we have

(ab) € (a)N(b) = (k) S (ab)

and this implies that (ab) = (a) N (b), which is the first statement that we wanted to prove.

We now discuss the map ¢. First of all, consider the map
v:R — R/(a) x R/(D)

defined by (7 ) = (r+(a), r+ (b)) for all » € R. We will show that ¢ is a surjective
ring homomorphism. To verify this, suppose that r,s € R. Then

(r+s) = (7’+s+(a),7‘+s+(b)) = (T+(a) + s+ (a), r+(b) + S+(b))

= (r+(), r+®)) + (s+(a), s+ (b)) = ¥(r) + ¥(s)

and

Y(rs) = (rs+(a), rs+ (b)) = ((r—ir(a))(s—ir(a)), (r+(b))(s—|—(b)))
= (r+(a), 7+ ) )(s+(a), s+ (b)) = »(r)(s)



Therefore, ¥ is indeed a ring homomorphism. To prove surjectivity, we use the fact that
(a) 4+ (b) = R. This is true because a and b are assumed to be relatively prime.

It follows that there exist elements u,v € R such that ua + vb = 1. Therefore,
Y(ua) = (ua+(a), ua+ (b)) = (O0r+ (a), 1g+ (b))
The second equality is true because ua € (a) and ua — 1z = —vb € (b). We also have
Y(vb) = (vb+ (a), vb+ (b)) = (1g+ (a), Og + (b))

The second equality is true because vb — 1g = —ua € (a) and vb € (b)

To complete the proof that ¢ is surjective, every element in R/(a) x R/(b) has the form
( s+ (a), t+ (b)), where s,t € R. Let r = svb + tua. Then, r € R and we have

U(r) = P(s)p(vd) + ¥ (t)Y(ua)
= (s+(a), s+ () )(Ar+(a), 0p+ (b)) + (t+(a), t+(b))(0r+ (a), 1+ (b))
= (s+(a), 0+ ) ) + (0r+(a), t+ (b)) = (s+(a), t+ (b))
This proves the surjectivity of the ring homomorphism 1.

We now determine the kernel of ¢. The additive identity element of R/(a) x R/(b) is
(Og+ (a), Og + (b) ). An element r € R is in Ker(¢) if and only if

v(r) = (r+(a), r+®)) = (O0r+(a), Or + (b))
Thus, r € Ker(y) if and only if r + (a) = 0g + (a) and r + (b) = Og + (b). That is,
Ker() = {r|re€(a) and re(b)} = (a)N(b).

By the first isomorphism theorem, it follows that the map ¢ defined in the problem is indeed
a ring isomorphism.

7. Suppose that R = Z[v/2]. Suppose that M, and M, are maximal ideals of R. True or
False: If the rings R/M; and R/Ms are isomorphic, then M; = M. If true, give a proof. If
false, give a counterexample.

SOLUTION. The statement is false. We will give a counterexample based on an example
discussed in class. Let F' = Z/7Z. Notice that 2 + 7Z is a square in Z/7Z, namely we have
2+ 77 = (3+ TZ)*. As discussed in class, we can define a surjective ring homomorphism

p:ZV2] — F



by
ola+bV2) = (a+7Z) + (b+T72)(3+7Z) .

Note that —3 + 1v/2 € Ker(y). Furthermore, Ker(y) is a maximal ideal in R because F is
a field. We call this maximal ideal M;. We have R/M; = F.

However, we could have chosen a different element in F' whose square is 2 + 7Z, namely
the element 4 + 7Z. We can then define a surjective ring homomorphism

V:ZNV2] — F
by
Wia+bV2) = (a+7TZ) + (b+TZ)(A+TZ) .
Then Ker(y) is a maximal ideal in R. Call this maximal ideal M,. We have R/M, = F.

Finally, we will show that M; # M,. As mentioned above, —3 + 1v/2 € M;. However,
(=34 1v/2) = 14 7Z and so (=3 + 1v/2) # 0 + 7Z. Hence, —3 + 1/2 ¢ M,. Therefore,
My # M, as stated.

8. Give an explicit example of an injective ring homomorphism from Z/5Z to Z/20Z. No
justification of your answer is needed.

SOLUTION. We will justify the answer. One idempotent in the ring Z/207Z is 16 + 20Z.
This element is an idempotent because

(16 + 20Z)(16 + 20Z) = 256 +20Z = 16+ 207Z .

Notice also that 16 + 20Z has order 5 in the additive group of Z/20Z. We define a map
o Z — ZJ20Z as follows:
o(n) = 16n + 20Z

for n € Z. As discussed in class, this map ¢ is a ring homomorphism from Z/20Z. Since
16 + 20Z has order 5, we have Ker(y) = 5Z. By the first isomorphism theorem, we obtain
an injective ring homomorphism v : Z /57 — 7 /207 defined by

w(n+5Z) = 16n + 20Z .

9. Consider the ring R = Q[z]/I, where I = (z*> —x). Show that 8 = x + I is an idempotent
element in R, but that § # 0r and 8 # 1. Find an idempotent element in R which is not



equal to Og, 1g or 8. Prove that R =2 Q x Q. (It may be helpful to review the exercises
about idempotents.)

SOLUTION. We have 2> —xz € I. Hence 2> + [ =x + I. Let e = x + I. Then

e = (x+1)? =22+ = o+1 = ¢

and so e is an idempotent in the ring R. Let f =1 —e=1—2+4 I. Then f must also be
an idempotent in the ring R. Furthermore, as proved in one of the problem sets, we have

R =2 SxT

where S = Re and T'= Rf. We will show that S =2 Q and T"= Q.

Every element of R has the form a + bx + I, where a,b € Q. Thus, an element of S has
the form

(a+br+D(x+1) = ar+b2*+1 = (a+D(x+1)+ b+ I1)(2*+1)
= (a+ e+ +O+I)(x+1) = (c+1)e
where ¢ = a + b € Q. We define a map
w:Q — 8

by ¢(c) = (¢+ I)e for all ¢ € Q. Since all elements of S have the form (¢ + I)e, the map ¢
is surjective. One can then easily verify that ¢ is a ring isomorphism from @Q to S. Hence

S=Q.

Similarly, an element of 7" has the form
(ax+b+1)(1—2z+I) = ax(l—z)+b(1—2x)+1 = b(l—z)+I = (b+I1)(1—z+1) = (b+I)f
Just as in the previous paragraph, we find that T = Q. We have proved that R = Q x Q.

An alternative proof can be given by noticing that x and = — 1 are relatively prime
elements in the ring Q[z]. One can use the chinese remainder theorem discussed in problem
6 to conclude that

Qlz]/(z* —2) = Qlz]/(x) x Qlz]/(z—1) .

Note that if g(z) € Q[z] and deg(g(x)) = 1, then every element in the ring Q[z]/(g(x)) has
the form a + (g(x)), where a € Q. One can then define an isomorphism

p: Q — Q[z]/(g(x))



by p(a) =a+ (g(x)) for all @ € Q. Applying this observation, we then obtain
Qlzl/(x) = Q, and Qz]/(x—1) = Q

and hence we obtain an isomorphism Q[z]/(z? —z) 2 Q x Q.

10. This question concerns ring homomorphisms ¢ from a ring R to a ring S. In each part
of this question, give an example of R, S, and ¢ satisfying the stated requirements. No
explanations are needed. You must specify R, S, and ¢ precisely.

(a) R is afield, S is not a field, and ¢ is injective.

SOLUTION. We defined an injective ring homomorphism from R = Z/5Z to S = Z/20Z
in problem 8. Note that R is a field and S is not an integral domain, hence S is certainly
not a field.

Another example is the following. Let R = Q and let S = Q[z]. Then R is a subring
of S. Here R is a field, but S is not a field. The inclusion of R into S is an injective ring
homomorphism.

(b) R and S are integral domains, ¢ is surjective, but not injective.

SOLUTION. Let R = Z. Let S = Z/5Z. Then R is an integral domain and S is a field.
Hence S is also an integral domain. Define ¢ : R — S by

o(k) = k+5Z
for all k£ € Z. This map ¢ is a surjective ring homomorphism, but is not injective.

(¢) R is a noncommutative ring, S is an integral domain, and ¢ is surjective.

SOLUTION. Let R = H x Z, where H is the ring of quaternions. Let S = Z. Every
element r in R has the form r = (h, z), where h € H and z € Z. Define amap ¢ : R — S
by

o((h, 2)) = =z
for all h € H and z € Z. Then one verifies easily that ¢ is a ring homomorphism from R to S
and that ¢ is surjective. Note that R is a noncommutative ring because H is noncommutative.
Also, S is an integral domain.

11. Give a specific example of a prime ideal in the ring Q[z] which is not a maximal ideal.



SOLUTION. The zero ideal in Q[z] is a prime ideal because Q[z] is an integral domain.
However, the zero ideal in Q[z] is not a maximal ideal because Q[z] is not a field.

12. This question concerns the ring Z[i]. The integer 11213 is a prime number. Furthermore,
it turns out that 11213 = 8224+672. You may use these facts in this question without verifying
them.

(a) Find a maximal ideal [ in the ring Z[i] which contains 11213. Explain why your ideal
I is actually a maximal ideal in Z[i].

SOLUTION. Let a = 82+ 67i. Then N(a) = 822 + 67> = 11213, which is a prime
number. Hence « is an irreducible element in the ring Z[i]. Since Z[i] is a PID, it follows
that the principal ideal I = () is a maximal ideal in the ring Z[i]. Let 5 = 82 — 67:. Then
I contains fa = 11213. Thus, [ is a maximal ideal which contains 11213.

(b) Find all of the irreducible elements « in Z[i| which divide 11213 in that ring.

SOLUTION. Since 11213 = 1 (mod 4), we can use a result explained in class to find the
irreducible elements in Z[i] which divide 11213. We have 11213 = (82+67:)(82 — 67i) = af3,
where « and (3 are as in part (a). Both factors are irreducible in Z[i]. There are eight
irreducible elements of Z[i] which divide 11213. They are of the form ea or €8, where
e € {1,—1,4,—i}. Explicitly, the irreducible elements of Z[i] dividing 11213 are:

+£82 £ 674, +67 =827 .

(c) Prove that Z[i]/I is isomorphic to Z/11213Z.

SOLUTION. Let p = 11213. Since p is a prime and p = 1 (mod 4), we know that there
exists an integer ¢ such that ¢ = —1 (mod p). Let FF = Z/pZ. We can define a map
¢ : Z[i]| = F as follows:

pla+bi) = a+bc + pZ .

We will show that ¢ is a surjective ring homomorphism. The surjectivity is clear. To verify
that ¢ is a ring homomorphism, consider two elements K = a + bi and A\ = e + fi in Z[i].
We have

ok+A) = @o((a+e)+ b+ f)i) = (a+e) + (b+ f)e + pZ

(a+0bc)+ (e+ fo) + pZ = (k) + p(N)



(kX)) = ¢( (ae —bf) + (af +be)i ) = (ae —bf) + (af +be)c + pZ

e(k)e(N) = (a+bc+pZ)(e+ fc+pZ) = (a+bc)(e+ fe) + pZ
= ae+bfc* +afc+bec + pZ

We have ¢ = —1 (mod p) and so ae + bfc* + afc + bec = (ae — bf) + (af + be)c (mod p).
Therefore,
o(R)p(X) = (ae —bf)+ (af +be)c + pZ = p(k\) .

We have verified that ¢ is a surjective ring homomorphism. Let K = ker(p). By the first
isomorphism theorem, we have
Zli|/K = F

where F' = Z/pZ = Z/11213Z. Also, K is a maximal ideal of Z[i]. Hence K = (), where
is an irreducible element of Z[i]. Note that ¢(p) = p+pZ = Op. Hence p is in K. Therefore,
7 divides p. By part (b), we know that either K = (o) =1 or K = (f) = J.

If K = I, then we have Z[i]/I = F, as we want. On the other hand, assume that K = J.
We can just switch the notation and take .J to be the answer to part (a) in place of I.



