
Solutions for Some Ring Theory Problems

1. Suppose that I and J are ideals in a ring R. Assume that I ∪ J is an ideal of R. Prove
that I ⊆ J or J ⊆ I.

SOLUTION. Assume to the contrary that I is not a subset of J and that J is not a subset
of I. It follows that there exists an element i ∈ I such that i 6∈ J . Also, there exists an
element j ∈ J such that j 6∈ I. Note that i ∈ I ∪ J and j ∈ I ∪ J . Since we are assuming
that I ∪ J is an ideal of R, it follows that i+ j ∈ I ∪ J .

Let k = i + j. If k ∈ I, then k − i ∈ I too. That is, j ∈ I. This is not true and hence
k 6∈ I. If k ∈ J , then k − j ∈ J too. That is, i ∈ J . However, this is not true and hence
k 6∈ J . We have shown that k 6∈ I and k 6∈ J . That is, k 6∈ I ∪ J . Thus, i + j 6∈ I ∪ J ,
contradicting what was found in the previous paragraph.

This contradiction prove the stated assertion.

2. Find an example of an integral domain R with identity and two ideals I and J of R with
the following properties: Both I and J are principal ideals of R, but I + J is not a principal
ideal of R.

SOLUTION. Let R = Z[
√
−5]. We gave examples in class of non-principal maximal ideals

in R. One such example arose by considering the homomorphism

ϕ : Z[
√
−5] −→ Z/2Z

defined by ϕ(a+ b
√
−5) = a+ b+ 2Z for all a, b ∈ Z. This definition is based on the fact

that (1 + 2Z)2 = −5 + 2Z.

Let K = Ker(ϕ). Then K is a maximal ideal in R. Notice that K contains 2 and
1 +

√
−5. Let I = (2) and let J = (1 +

√
−5). Then I and J are principal ideals in R.

Furthermore, I ⊆ K and J ⊆ K. Note that 2 6∈ J and 1 +
√
−5 6∈ I. This is true because

N(2) = 4 and N(1 +
√
−5) = 6, and neither of these norms divides the other.

Since I ⊆ K and J ⊆ K, it follows that I + J ⊆ K. Furthermore, suppose that κ ∈ K.
Then κ = a+ b

√
−5, where a, b ∈ Z. We have

ϕ(κ) = a+ b+ 2Z = 0 + 2Z

and so we have a+ b ∈ 2Z. We also clearly have a− b = a+ b− 2b ∈ 2Z. That is, a− b = 2c
for some c ∈ Z. It then follows that

κ = a+ b
√
−5 = a+ b(1 +

√
−5)− b = 2c+ b(1 +

√
−5 ∈ I + J .



We have proven that K ⊆ I + J . Since, I + J ⊆ K is also true, it follows that K = I + J .

Finally, we will show that K is not a principal ideal. In fact, this was shown in class
one day. Suppose to the contrary that K = (κ). Since 2 ∈ K, it follows that κ divides 2
in the ring R. Thus, 2 = κλ, where λ ∈ R. Therefore, N(2) = N(κ)N(λ). Now N(2) = 4.
Furthermore, κ is not a unit in R because K 6= R. Also, λ is not a unit in R because K 6= I.
The fact that K 6= I is true is true because 1 +

√
−5 is in K, but not in I. It follows that

N(κ) 6= 1 and N(λ) 6= 1. Thus, N(κ) = 2. But the equation a2 + 5b2 = 2 has no solutions
where a, b ∈ Z. Therefore, it follows that K cannot be a principal ideal.

In summary, I and J are principal ideals in R, but K = I + J is not a principal ideal in
R.

3. Suppose that R is a commutative ring with identity and that K is an ideal of R. Let
R′ = R/K. The correspondence theorem gives a certain one-to-one correspondence between
the set of ideals of R containing K and the set of ideals of R′. If I is an ideal of R containing
K, we let I ′ denote the corresponding ideal of R′. Show that if I is principal, then so is I ′.
Show by example that the converse is not true in general.

SOLUTION. Let ϕ : R −→ R′ be defined by ϕ(r) = r + K. Then ϕ is a surjective ring
homomorphism from R to R′. Suppose that I is an ideal of R which contains K. The
corresponding ideal in R′ is ϕ(I) = { ϕ(i)

∣

∣ i ∈ I }.
Suppose that I is a principal ideal in R. Then I = (a) for some a ∈ R. That is, we have

I = { ra
∣

∣ r ∈ R }. Then

I ′ = ϕ(I) = { ϕ(ra)
∣

∣ r ∈ R } = { ϕ(r)ϕ(a)
∣

∣ r ∈ R } = { r′ϕ(a)
∣

∣ r′ ∈ R′ } .

The last equality is true because ϕ : R → R′ is a surjective map. It follows that I ′ =
(

ϕ(a)
)

,
the principal ideal in R′ generated by ϕ(a).

4. Suppose that R is an integral domain with identity. Suppose that I and J are ideals in
R and that I = (b) where b ∈ R. Prove that I + J = R is and only if b + J is a unit in the
ring R/J .

SOLUTION. First of all, assume that I + J = R. Then there exists i ∈ I and j ∈ J such
that i + j = 1R. Furthermore, since i ∈ (b), we have i = rb for some r ∈ R. Therefore, we
have rb+ j = 1R. This implies that 1R ∈ rb+ J . Therefore, we have

1R + J = rb+ J = (r + J)(b+ J)



The multiplicative identity element in R/J is 1R + J . Note that since R is a commutative
ring, so is R/J . It follows that

(r + J)(b+ J) = 1R + J and (b+ J)(r + J) = 1R + J .

It follows that b+ J is indeed a unit in the ring R/J . Its inverse in that ring is r + J .

Now assume that b+ J is a unit in the ring R/J . Thus, for some r ∈ R, we have

(r + J)(b+ J) = 1R + J .

Thus, rb+J = 1R+J and hence 1R ∈ rb+J . Thus, 1R = rb+ j for some j ∈ J . Let i = rb.
Since I = (b), it follows that i ∈ I. Thus,

1R = i+ j ∈ I + J

and therefore, for any s ∈ R, we have s = s1R ∈ I + J . It follows that I + J = R, as we
wanted to prove.

5. Suppose that R is an integral domain and that a, b ∈ R. We say that a and b are
“relatively prime” if (a) + (b) = R. Suppose that c ∈ R. Assume that a and b are relatively
prime and that a|bc in R. Prove that a|c in R.

SOLUTION. We will give two arguments. First of all, since (a) + (b) = R, there exist
elements s, t ∈ R such that

sa + tb = 1R .

Multiply this equation by c. We obtain c = sac + tbc. Note that sac = (sc)a is a multiple
of a in R and hence is in the ideal (a). Furthermore, bc is a multiple of a in R (as stated
in the problem) and hence bc is in the ideal (a). Thus, t(bc) is in (a) too. It follows that
sac+ tbc ∈ (a). That is, c ∈ (a). Therefore, a|c in R, as we wanted to prove.

Alternatively, we can use the result in problem 4. Let I = (b) and J = (a). We have
I +J = R. Thus b+J is a unit in the ring R/J . Since a|bc in R, we have bc ∈ J . Therefore,
we have

(b+ J)(c+ J) = bc+ J = 0R + J

in the ring R/J . However, b + J is a unit in the ring R/J . Multiplying by the inverse of
b+ J , we find that c+ J = 0R + J . That is, we have c ∈ J . This means that c is a multiple
of a in R. Therefore, a|c in R, as we wanted to prove.



6. Suppose that R is a PID. Suppose that a, b are nonzero elements of R and that they are
relatively prime. Prove that (a) ∩ (b) = (ab). Furthermore, consider the map

ϕ : R/(ab) −→ R/(a) × R/(b)

defined by ϕ( r+(ab) ) =
(

r+(a), r+(b)
)

for all r ∈ R. Prove that ϕ is a well-defined map
and that it is a ring isomorphism. (This result is often referred to as the Chinese Remainder

Theorem. )

SOLUTION. First of all, recall the result from problem set 1 which states that the inter-
section of two ideals in a ring R is also an ideal in R. Thus, (a)∩ (b) is an ideal in R. Since
R is a PID, we must have (a) ∩ (b) = (k), where k ∈ R. Since k ∈ (k) and (k) ⊆ (b), it
follows that k ∈ (b) and hence b|k in R. We can therefore write k = bc, where c ∈ R. Since
(k) ⊆ (a), it follows that a|k in R. That is, a|bc in R. Furthermore, it is assumed that a and
b are relatively prime. We can use the result in problem 5 to conclude that a|c in R. Thus,
c = ad, where d ∈ R. It follows that k = bc = bad = dab, which is an element in the ideal
(ab). We have proved that k ∈ (ab) and hence that (k) ⊆ (ab).

On the other hand, it is clear that ab ∈ (a) and that ab ∈ (b). Hence we have (ab) ⊆ (a)
and (ab) ⊆ (b). Therefore, we have

(ab) ⊆ (a) ∩ (b) = (k) ⊆ (ab)

and this implies that (ab) = (a)∩ (b), which is the first statement that we wanted to prove.

We now discuss the map ϕ. First of all, consider the map

ψ : R −→ R/(a) × R/(b)

defined by ψ( r ) =
(

r + (a), r + (b)
)

for all r ∈ R. We will show that ψ is a surjective
ring homomorphism. To verify this, suppose that r, s ∈ R. Then

ψ(r + s) =
(

r + s+ (a), r + s+ (b)
)

=
(

r + (a) + s+ (a), r + (b) + s+ (b)
)

=
(

r + (a), r + (b)
)

+
(

s+ (a), s+ (b)
)

= ψ(r) + ψ(s)

and

ψ(rs) =
(

rs+ (a), rs+ (b)
)

=
(

(

r + (a)
)(

s+ (a)
)

,
(

r + (b)
)(

s+ (b)
)

)

=
(

r + (a), r + (b)
)(

s+ (a), s+ (b)
)

= ψ(r)ψ(s)



Therefore, ψ is indeed a ring homomorphism. To prove surjectivity, we use the fact that
(a) + (b) = R. This is true because a and b are assumed to be relatively prime.

It follows that there exist elements u, v ∈ R such that ua+ vb = 1R. Therefore,

ψ(ua) =
(

ua+ (a), ua+ (b)
)

=
(

0R + (a), 1R + (b)
)

The second equality is true because ua ∈ (a) and ua− 1R = −vb ∈ (b). We also have

ψ(vb) =
(

vb+ (a), vb+ (b)
)

=
(

1R + (a), 0R + (b)
)

The second equality is true because vb− 1R = −ua ∈ (a) and vb ∈ (b)

To complete the proof that ψ is surjective, every element in R/(a) × R/(b) has the form
(

s+ (a), t+ (b)
)

, where s, t ∈ R. Let r = svb+ tua. Then, r ∈ R and we have

ψ(r) = ψ(s)ψ(vb) + ψ(t)ψ(ua)

=
(

s+ (a), s+ (b)
)(

1R + (a), 0R + (b)
)

+
(

t+ (a), t+ (b)
)(

0R + (a), 1R + (b)
)

=
(

s+ (a), 0R + (b)
)

+
(

0R + (a), t+ (b)
)

=
(

s+ (a), t+ (b)
)

This proves the surjectivity of the ring homomorphism ψ.

We now determine the kernel of ψ. The additive identity element of R/(a) × R/(b) is
(

0R + (a), 0R + (b)
)

. An element r ∈ R is in Ker(ψ) if and only if

ψ(r) =
(

r + (a), r + (b)
)

=
(

0R + (a), 0R + (b)
)

.

Thus, r ∈ Ker(ψ) if and only if r + (a) = 0R + (a) and r + (b) = 0R + (b). That is,

Ker(ψ) = { r
∣

∣ r ∈ (a) and r ∈ (b) } = (a) ∩ (b) .

By the first isomorphism theorem, it follows that the map ϕ defined in the problem is indeed
a ring isomorphism.

7. Suppose that R = Z[
√
2]. Suppose that M1 and M2 are maximal ideals of R. True or

False: If the rings R/M1 and R/M2 are isomorphic, then M1 =M2. If true, give a proof. If
false, give a counterexample.

SOLUTION. The statement is false. We will give a counterexample based on an example
discussed in class. Let F = Z/7Z. Notice that 2 + 7Z is a square in Z/7Z, namely we have
2 + 7Z = (3 + 7Z)2. As discussed in class, we can define a surjective ring homomorphism

ϕ : Z[
√
2] −→ F



by
ϕ(a+ b

√
2) = (a+ 7Z) + (b+ 7Z)(3 + 7Z) .

Note that −3 + 1
√
2 ∈ Ker(ϕ). Furthermore, Ker(ϕ) is a maximal ideal in R because F is

a field. We call this maximal ideal M1. We have R/M1
∼= F .

However, we could have chosen a different element in F whose square is 2 + 7Z, namely
the element 4 + 7Z. We can then define a surjective ring homomorphism

ψ : Z[
√
2] −→ F

by
ψ(a+ b

√
2) = (a+ 7Z) + (b+ 7Z)(4 + 7Z) .

Then Ker(ϕ) is a maximal ideal in R. Call this maximal ideal M2. We have R/M2
∼= F .

Finally, we will show that M1 6= M2. As mentioned above, −3 + 1
√
2 ∈ M1. However,

ψ(−3 + 1
√
2) = 1 + 7Z and so ψ(−3 + 1

√
2) 6= 0 + 7Z. Hence, −3 + 1

√
2 6∈ M2. Therefore,

M1 6=M2, as stated.

8. Give an explicit example of an injective ring homomorphism from Z/5Z to Z/20Z. No
justification of your answer is needed.

SOLUTION. We will justify the answer. One idempotent in the ring Z/20Z is 16 + 20Z.
This element is an idempotent because

(16 + 20Z)(16 + 20Z) = 256 + 20Z = 16 + 20Z .

Notice also that 16 + 20Z has order 5 in the additive group of Z/20Z. We define a map
ϕ : Z → Z/20Z as follows:

ϕ(n) = 16n+ 20Z

for n ∈ Z. As discussed in class, this map ϕ is a ring homomorphism from Z/20Z. Since
16 + 20Z has order 5, we have Ker(ϕ) = 5Z. By the first isomorphism theorem, we obtain
an injective ring homomorphism ψ : Z/5Z → Z/20Z defined by

ψ(n+ 5Z) = 16n+ 20Z .

9. Consider the ring R = Q[x]/I, where I = (x2−x). Show that β = x+ I is an idempotent
element in R, but that β 6= 0R and β 6= 1R. Find an idempotent element in R which is not



equal to 0R, 1R or β. Prove that R ∼= Q × Q. (It may be helpful to review the exercises
about idempotents.)

SOLUTION. We have x2 − x ∈ I. Hence x2 + I = x+ I. Let e = x+ I. Then

e2 = (x+ I)2 = x2 + I = x+ I = e

and so e is an idempotent in the ring R. Let f = 1R − e = 1− x+ I. Then f must also be
an idempotent in the ring R. Furthermore, as proved in one of the problem sets, we have

R ∼= S × T

where S = Re and T = Rf . We will show that S ∼= Q and T ∼= Q.

Every element of R has the form a+ bx+ I, where a, b ∈ Q. Thus, an element of S has
the form

(a+ bx+ I)(x+ I) = ax+ bx2 + I = (a+ I)(x+ I) + (b+ I)(x2 + I)

= (a+ I)(x+ I) + (b+ I)(x+ I) = (c+ I)e

where c = a+ b ∈ Q. We define a map

ϕ : Q −→ S

by ϕ(c) = (c + I)e for all c ∈ Q. Since all elements of S have the form (c + I)e, the map ϕ
is surjective. One can then easily verify that ϕ is a ring isomorphism from Q to S. Hence
S ∼= Q.

Similarly, an element of T has the form

(ax+b+I)(1−x+I) = ax(1−x)+b(1−x)+I = b(1−x)+I = (b+I)(1−x+I) = (b+I)f

Just as in the previous paragraph, we find that T ∼= Q. We have proved that R ∼= Q×Q.

An alternative proof can be given by noticing that x and x − 1 are relatively prime
elements in the ring Q[x]. One can use the chinese remainder theorem discussed in problem
6 to conclude that

Q[x]/(x2 − x) ∼= Q[x]/(x) × Q[x]/(x− 1) .

Note that if g(x) ∈ Q[x] and deg
(

g(x)
)

= 1, then every element in the ring Q[x]/
(

g(x)
)

has
the form a+

(

g(x)
)

, where a ∈ Q. One can then define an isomorphism

ϕ : Q −→ Q[x]/
(

g(x)
)



by ϕ(a) = a+
(

g(x)
)

for all a ∈ Q. Applying this observation, we then obtain

Q[x]/(x) ∼= Q, and Q[x]/(x− 1) ∼= Q

and hence we obtain an isomorphism Q[x]/(x2 − x) ∼= Q×Q.

10. This question concerns ring homomorphisms ϕ from a ring R to a ring S. In each part
of this question, give an example of R, S, and ϕ satisfying the stated requirements. No
explanations are needed. You must specify R, S, and ϕ precisely.

(a) R is a field, S is not a field, and ϕ is injective.

SOLUTION. We defined an injective ring homomorphism from R = Z/5Z to S = Z/20Z
in problem 8. Note that R is a field and S is not an integral domain, hence S is certainly
not a field.

Another example is the following. Let R = Q and let S = Q[x]. Then R is a subring
of S. Here R is a field, but S is not a field. The inclusion of R into S is an injective ring
homomorphism.

(b) R and S are integral domains, ϕ is surjective, but not injective.

SOLUTION. Let R = Z. Let S = Z/5Z. Then R is an integral domain and S is a field.
Hence S is also an integral domain. Define ϕ : R → S by

ϕ(k) = k + 5Z

for all k ∈ Z. This map ϕ is a surjective ring homomorphism, but is not injective.

(c) R is a noncommutative ring, S is an integral domain, and ϕ is surjective.

SOLUTION. Let R = H × Z, where H is the ring of quaternions. Let S = Z. Every
element r in R has the form r = (h, z), where h ∈ H and z ∈ Z. Define a map ϕ : R → S
by

ϕ
(

(h, z)
)

= z

for all h ∈ H and z ∈ Z. Then one verifies easily that ϕ is a ring homomorphism from R to S
and that ϕ is surjective. Note that R is a noncommutative ring becauseH is noncommutative.
Also, S is an integral domain.

11. Give a specific example of a prime ideal in the ring Q[x] which is not a maximal ideal.



SOLUTION. The zero ideal in Q[x] is a prime ideal because Q[x] is an integral domain.
However, the zero ideal in Q[x] is not a maximal ideal because Q[x] is not a field.

12. This question concerns the ring Z[i]. The integer 11213 is a prime number. Furthermore,
it turns out that 11213 = 822+672. You may use these facts in this question without verifying
them.

(a) Find a maximal ideal I in the ring Z[i] which contains 11213. Explain why your ideal
I is actually a maximal ideal in Z[i].

SOLUTION. Let α = 82 + 67i. Then N(α) = 822 + 672 = 11213, which is a prime
number. Hence α is an irreducible element in the ring Z[i]. Since Z[i] is a PID, it follows
that the principal ideal I = (α) is a maximal ideal in the ring Z[i]. Let β = 82− 67i. Then
I contains βα = 11213. Thus, I is a maximal ideal which contains 11213.

(b) Find all of the irreducible elements α in Z[i] which divide 11213 in that ring.

SOLUTION. Since 11213 ≡ 1 (mod 4), we can use a result explained in class to find the
irreducible elements in Z[i] which divide 11213. We have 11213 = (82+67i)(82−67i) = αβ,
where α and β are as in part (a). Both factors are irreducible in Z[i]. There are eight
irreducible elements of Z[i] which divide 11213. They are of the form εα or εβ, where
ε ∈ {1,−1, i,−i}. Explicitly, the irreducible elements of Z[i] dividing 11213 are:

±82± 67i, ±67± 82i .

(c) Prove that Z[i]/I is isomorphic to Z/11213Z.

SOLUTION. Let p = 11213. Since p is a prime and p ≡ 1 (mod 4), we know that there
exists an integer c such that c2 ≡ −1 (mod p). Let F = Z/pZ. We can define a map
ϕ : Z[i] → F as follows:

ϕ(a+ bi) = a+ bc + pZ .

We will show that ϕ is a surjective ring homomorphism. The surjectivity is clear. To verify
that ϕ is a ring homomorphism, consider two elements κ = a + bi and λ = e + fi in Z[i].
We have

ϕ(κ+ λ) = ϕ( (a+ e) + (b+ f)i ) = (a+ e) + (b+ f)c + pZ

(a+ bc) + (e+ fc) + pZ = ϕ(κ) + ϕ(λ)



Also,
ϕ(κλ) = ϕ

(

(ae− bf) + (af + be)i
)

= (ae− bf) + (af + be)c + pZ

and
ϕ(κ)ϕ(λ) =

(

a+ bc+ pZ
)(

e+ fc+ pZ) = (a+ bc)(e+ fc) + pZ

= ae+ bfc2 + afc+ bec + pZ

We have c2 ≡ −1 (mod p) and so ae + bfc2 + afc + bec ≡ (ae− bf) + (af + be)c (mod p).
Therefore,

ϕ(κ)ϕ(λ) = (ae− bf) + (af + be)c + pZ = ϕ(κλ) .

We have verified that ϕ is a surjective ring homomorphism. Let K = ker(ϕ). By the first
isomorphism theorem, we have

Z[i]/K ∼= F

where F = Z/pZ = Z/11213Z. Also, K is a maximal ideal of Z[i]. Hence K = (γ), where γ
is an irreducible element of Z[i]. Note that ϕ(p) = p+ pZ = 0F . Hence p is in K. Therefore,
γ divides p. By part (b), we know that either K = (α) = I or K = (β) = J .

If K = I, then we have Z[i]/I ∼= F , as we want. On the other hand, assume that K = J .
We can just switch the notation and take J to be the answer to part (a) in place of I.


