MATH 402A - Solutions for Homework Assignment 3

Problem 7, page 55: We wish to find $C(a)$ for each $a \in S_3$. It is clear that $C(i) = S_3$. For any group G and any $a \in G$, it is clear that every power of a commutes with a and therefore

$$(a) \subseteq C(a)$$

For $G = S_3$, there are six subgroups: $\{i\}$, one subgroup of order 3 generated by $f = (123)$, three subgroups of order 2, generated by $g = (13)$, $g' = (23)$, or $g'' = (13)$, and one subgroup of order 6, namely S_3 itself. Also note that every element $a \in S_3$ has order 2 or 3, except $a = i$.

Observe that if H is a subgroup of S_3 of order 2 or order 3, then the only subgroups of S_3 containing H are H itself and S_3. (Such subgroups are called “maximal” subgroups.) This is clear from the above list of subgroups of S_3. (One could also see this by using Lagrange’s theorem concerning the orders of subgroups of a finite group.)

Suppose $a \in S_3$ has order 2 or 3. Let $H = (a)$, which has the same order as the element a. As pointed out above, we have $H \subseteq C(a)$. According to the observation in the previous paragraph, either $C(a) = H$ or $C(a) = S_3$. However, $C(a) = S_3$ implies that a is in the center of S_3. This is not possible if a has order 2 or 3 because $Z(S_3) = \{i\}$, as we pointed out one day in class. Therefore, $C(a) = (a)$ for every element $a \in S_3$ except $a = i$. That is, if $a = (123)$ or $a = (132)$, then $C(a) = (a) = \{i, (123), (132)\}$. If $a = (12), (13)$ or (23), then $C(a) = \{i, a\}$ in each case.

Problem 10, page 55: We assume G is an abelian group and n is a positive integer. Let

$$A_n = \{a^n \mid a \in G\}$$

To see that A_n is a subgroup of G, we verify the three requirements for a subgroup. First of all, let e denote the identity element of G. Then $e = e^n$ and so $e \in A_n$. Now if $b \in A_n$, then $b = a^n$ for some $a \in G$. By the law of exponents, $b^{-1} = (a^{-1})^n$ and so $b^{-1} \in A_n$.

It remains to verify that A_n is close under the group operation for G. Suppose that $c, d \in G$. We can write $c = a^n, d = b^n$, where $a, b \in G$. We have

$$(1) \quad a^n b^m = (ab)^n$$

for any positive integer n. This is because G is assumed to be abelian. To prove (1), we use mathematical induction. For $n = 1$, (1) is obvious. Suppose (1) is true for some positive integer n. Then

$$(ab)^{n+1} = (ab)(ab)^n = (a^n b^n)(ab) = a^n(b^na)b = a^n(ab^n)b = (a^n a)(b^n b) = a^{n+1}b^{n+1}$$
which proves the identity for exponent \(n + 1 \). Hence, by the principle of mathematical induction, (1) holds for all \(n \geq 1 \).

Using (1), we obtain \(cd = a^n b^n = (ab)^n \). Since \(ab \in G \), it follows that \(cd \in A_n \). Hence \(A_n \) is closed under the group operation for \(G \).

Problem 16, page 55: Suppose that \(G \) is a group with no proper subgroups. Let \(e \) be the identity element of \(G \). One such group is \(G = \{ e \} \), which does not have prime order. Apart from this example, we will prove that \(G \) is finite and has prime order. Assume now that \(G \) has an element \(a \neq e \). We will fix such an element \(a \) in the rest of the argument.

First of all, \(G \) must be cyclic. To see this, consider \(H = (a) \), a subgroup of \(G \) containing \(a \). Hence \(H \neq \{ e \} \). Therefore, our assumption about \(G \) implies that \(H = G \). Thus, \(G = (a) \), the cyclic group generated by \(a \).

Now suppose that \(a \) has infinite order. This means that \(a^i \neq a^j \) for all pairs \(i, j \in \mathbb{Z} \) such that \(i \neq j \). Consider \(K = (a^2) \). This subgroup is \(\{a^{2j} \mid j \in \mathbb{Z} \} \). Since \(2j \neq 1 \) for all \(j \in \mathbb{Z} \), we have \(a^{2j} \neq a^1 = a \). Thus, \(a \notin K \). Therefore, \(K \neq G \). Also, \(a^2 \neq e \) since \(a \) has infinite order. Thus, \(K \neq \{ e \} \). Therefore, \(K \) is a proper subgroup of \(G \). This contradicts our assumption about \(G \). Therefore, \(a \) must have finite order.

Suppose now that the order of \(a \) is \(m \). Then \(G = (a) \) has order \(m \). Since \(a \neq e \), we have \(m > 1 \). We will prove that \(m \) is a prime. Assume to the contrary that \(m = cd \), where \(c, d \in \mathbb{Z} \) with \(1 < c, d < m \). Let \(b = a^d \). Let \(K = (b) \). Since \(0 < d < m \), we have \(b = a^d \neq e \) and hence \(K \neq \{ e \} \). Therefore, by the assumption about \(G \), we have \(K = G \). Thus \(K \) has order \(m \). This means that \(b = a^d \) has order \(m \). However, \(b^c = a^{dc} = a^m = e \) and \(0 < c < m \). Hence \(b \) cannot have order \(m \). This is a contradiction. Therefore, \(m \) is prime and hence, indeed, \(G \) has prime order.

Problem 17, page 55: Suppose \(G \) is a group and \(x, a \in G \). Let \(e \) be the identity element of \(G \). We want to prove that \(C(x^{-1}ax) = x^{-1}C(a)x \).

Two lemmas will be helpful.

Lemma 1: If \(u, v \in G \), then \(x^{-1}(uv)x = (x^{-1}ux)(x^{-1}vx) \).

The proof of this lemma is as follows:

\[
(x^{-1}ux)(x^{-1}vx) = (x^{-1}u)(xx^{-1})(vx) = (x^{-1}u)e(vx) = x^{-1}(uv)x
\]

Lemma 2: If \(u, v \in G \) and \(x^{-1}ux = x^{-1}vx \), then \(u = v \).
The proof of this lemma is as follows:

\[x^{-1}ux = x^{-1}vx \quad \Rightarrow \quad x(x^{-1}ux)x^{-1} = x(x^{-1}vx)x^{-1} \quad \Rightarrow \quad eue = eve \quad \Rightarrow \quad u = v \]

1. We first prove the inclusion \(x^{-1}C(a)x \subseteq C(x^{-1}ax) \). Suppose that \(b \in x^{-1}C(a)x \). Then \(b = x^{-1}cx \) where \(c \in C(a) \). By definition, we have \(ca = ac \). Then, by lemma 1,

\[b(x^{-1}ax) = (x^{-1}cx)(x^{-1}ax) = x^{-1}(ca)x = x^{-1}(ac)x = (x^{-1}ax)(x^{-1}cx) = (x^{-1}ax)b \]

and therefore \(b \in C(x^{-1}ax) \). Hence \(x^{-1}C(a)x \subseteq C(x^{-1}ax) \).

2. Now we prove the inclusion \(C(x^{-1}ax) \subseteq x^{-1}C(a)x \). Suppose that \(d \in C(x^{-1}ax) \). We can write \(d = x^{-1}cx \) for some \(c \in G \). To do this, simply take \(c = xd^{-1} \). Then

\[x^{-1}cx = x^{-1}(xdx^{-1})x = (x^{-1}x)d(x^{-1}x) = ede = d \]

Now we use lemma 1 to obtain the following equations.

\[d(x^{-1}ax) = (x^{-1}cx)(x^{-1}ax) = x^{-1}(ca)x, \quad (x^{-1}ax)d = (x^{-1}ax)(x^{-1}cx) = x^{-1}(ac)x. \]

Since \(d \in C(x^{-1}ax) \), we have \(d(x^{-1}ax) = (x^{-1}ax)d \). The above equations give

\[x^{-1}(ca)x = x^{-1}(ac)x \]

Finally, by lemma 2, we have \(ca = ac \). Thus, \(c \in C(a) \). Therefore,

\[d = x^{-1}cx \in x^{-1}C(a)x \]

proving the inclusion \(C(x^{-1}ax) \subseteq x^{-1}C(a)x \).

Problem 19, page 55. Suppose \(A \) and \(B \) are subgroups of an abelian group \(G \). Let \(H = AB = \{ab \mid a \in A, b \in B\} \). To see that \(H \) is a subgroup of \(G \), we verify the three requirements:

1. The identity element \(e \) of \(G \) is in \(A \) and \(B \). Since \(e = ee \), \(H \) contains \(e \) also.

2. \(H \) is closed under the group operation because if \(h_1 = ab \), \(h_2 = a_2b_2 \), where \(a_1, a_2 \in A \) and \(b_1, b_2 \in B \), then, using the assumption that \(G \) is abelian, we obtain

\[h_1h_2 = (a_1b_1)(a_2b_2) = a_1(b_1a_2)b_2 = a_1(a_2b_1)b_2 = (a_1a_2)(b_1b_2). \]
Also, \(a_1a_2 \in A, \ b_1b_2 \in B \) since \(A \) and \(B \) are subgroups. Thus, \(h_1h_2 \in H \). This proves that \(H \) is closed under the group operation for \(G \).

3. Suppose \(h = ab \), where \(a \in A, \ b \in B \). Then

\[
h^{-1} = b^{-1}a^{-1} = a^{-1}b^{-1}
\]

and this is in \(H \) because \(a^{-1} \in A \) and \(b^{-1} \in B \).

We have proved that \(H \) is a subgroup of \(G \).

Problem 20, page 55. Let \(G = S_3 \). Let \(A = \{ i, (12) \} \) and \(B = \{ i, (23) \} \). Both \(A \) and \(B \) are subgroups of \(G \). Then

\[
AB = \{ i, (12), (23), (12)(23) \} = \{ i, (12), (23), (123) \}
\]

and this set is certainly not a subgroup of \(G \). The set contains (123), but not (123)

Thus, \(\sim \) is an equivalence relation on \(S \).

Problem 1a, Page 63: The set \(S \) is \(R \). For \(a, b \in R \), we write \(a \sim b \) if \(a - b \in Q \). Assume that \(a, b, c \in R \). We will verify (i) reflexivity, (ii) symmetry, and (iii) transitivity.

(i) \(a \sim a \) because \(a - a = 0 \in Q \), (ii) \(a \sim b \Rightarrow a - b \in Q \Rightarrow b - a \in Q \Rightarrow b \sim a \)

(iii) \(a \sim b, b \sim c \Rightarrow a - b, b - c \in Q \Rightarrow (a - b) + (b - c) \in Q \Rightarrow a - c \in Q \Rightarrow a \sim c \)

Thus, \(\sim \) is an equivalence relation on \(S \).

Problem 1b, Page 63: The set \(S \) is \(C \). For \(a, b \in C \), we write \(a \sim b \) if \(|a| = |b| \). Suppose that \(a, b, c \in C \).

(i) \(a \sim a \) because \(|a| = |a| \), (ii) \(a \sim b \Rightarrow |a| = |b| \Rightarrow |b| = |a| \Rightarrow b \sim a \),

(iii) \(a \sim b, b \sim c \Rightarrow |a| = |b|, |b| = |c| \Rightarrow |a| = |c| \Rightarrow a \sim c \)

Thus, \(\sim \) is an equivalence relation on \(S \).

Problem 16, Page 64: \(G = \{ a_1, ..., a_n \} \) is assumed to be an abelian group of order \(n \). Define \(f : G \to G \) by \(f(a) = a^{-1} \) for all \(a \in G \). Then \(f \) is a function that satisfies \(f \circ f = i \), the identity function from \(G \) to \(G \). This follows from the fact that \((a^{-1})^{-1} = a \) for all \(a \in G \). Thus, \(f \) is an invertible function and must be a bijection from \(G \) to \(G \). Therefore,

\[
x = \prod_{i=1}^{n} a_i = \prod_{i=1}^{n} f(a_i) = \prod_{i=1}^{n} (a_i)^{-1} = (\prod_{i=1}^{n} a_i)^{-1} = (\prod_{i=1}^{n} a_i)^{-1} = x^{-1}
\]
We have repeatedly used the assumption that G is abelian by rearranging the factors in some of the above products. In any case, we now have $x = x^{-1}$ and this implies that $x^2 = e$, the identity of G.

Problem 17, Page 64: We have $x^2 = e$. If $x \neq e$, then x has order 2, by definition. We have proved that in any finite group G, the order of an element must divide the order of the group. Therefore, if $x \neq e$, then $|G|$ is divisible by 2. It follows that if $|G|$ is odd, then $x = e$.

A: Suppose G is a group and $a \in G$ is an element of finite order. Let m be the order of a. If d is a positive divisor of m, determine the order of a^d. If $j \in \mathbb{Z}$, determine the order of a^j.

Solution: Suppose that d is a positive divisor of m. Thus, $m = cd$, where c is a positive integer. We will prove that a^d has order equal to c. First of all, since m is the order of a, we have $a^m = e$ and $a^t \neq e$ when $0 < t < m$. Here e is the identity element of G. Now note that, by the law of exponents, we have $(a^d)^c = a^m = e$. Also, if $0 < i < c$, then $(a^d)^i = a^{di}$. But $0 < di < dc = m$ and hence $a^{di} \neq e$. Thus,

$$(a^d)^c = e, \quad (a^d)^i \neq e \quad \text{for } 0 < i < c$$

and therefore a^d has order equal to $c = m/d$, as we stated.

Now consider a^j where j is any integer. Let $d = \gcd(j, m)$. We will prove that a^j has the same order as a^d, namely m/d. The order of a^j is equal to the order of the cyclic subgroup $H = (a^j)$ generated by a^j. The order of a^d is equal to the order of the subgroup $K = (a^d)$ generated by a^d. Hence it suffices to prove that these subgroups are the same, which we will now prove. Since $H = (a^j)$, we have $a^j \in H$. Also, $a^m = e$. A basic theorem in elementary number theory implies that there exist $u, v \in \mathbb{Z}$ such that $uj + vm = d$. Therefore,

$$a^d = a^{uj + vm} = (a^j)^u(a^m)^v = (a^j)^u e^v = (a^j)^u \in H$$

It follows that every power of a^d is in H and so the subgroup $K = (a^d)$ must be contained in H. That is, $K \subseteq H$. However, since $d|j$, it is clear that a^j is a power of a^d and so $a^j \in K$. Hence $H \subseteq K$. Therefore, we have proved $H = K$. The stated result about the order of a^j follows from this.

B: Let $G = A(T)$, where $T = \{1, 2, 3, 4\}$. Let $H = \{f \mid f \in G, f(4) = 4\}$.

First we show that H is a subgroup of G. Clearly, $i \in H$ because $i(j) = j$ for all $j \in T$ and hence $i(4) = 4$. Also, if $f_1, f_2 \in H$, then $f_1(4) = 4, f_2(4) = 4$. Hence

$$f_1 \circ f_2(4) = f_1(f_2(4)) = f_1(4) = 4$$
This implies that \(f_1 f_2 = f_1 \circ f_2 \in H \). Thus, \(H \) is closed under the group operation for \(G \). Finally, suppose that \(f \in H \). Then \(f(4) = 4 \). Thus, the inverse function \(f^{-1} \) satisfies \(f^{-1}(4) = 4 \) and therefore \(f^{-1} \in H \). These remarks imply that \(H \) is a subgroup of \(G \).

Now suppose that \(g \in G \). We will consider the left coset \(gH \). Let \(j = g(4) \). Thus, \(j \in T \). Consider any element \(h \in H \). Then \(h(4) = 4 \) and

\[
g h(4) = g \circ h(4) = g(h(4)) = g(4) = j.
\]

Therefore, we have \(gH = \{gh \mid h \in H\} \subseteq \{f \mid f \in G, \ f(4) = j\} \).

To prove the reverse inclusion, suppose that \(f \in G \) satisfies \(f(4) = j \). Thus, \(f(4) = g(4) \). We can write \(f = gu \) by letting \(u = g^{-1}f \in G \). We want to prove that \(u \in H \). We have

\[
u(4) = g^{-1} f(4) = g^{-1} \circ f(4) = g^{-1}(f(4)) = g^{-1}(j) = 4,
\]

the final equality following from the fact that \(g(4) = j \) and \(g^{-1} \) is the inverse function for \(g \). Therefore, \(u(4) = 4 \), \(u \in H \), and \(f = gu \in gH \). This proves the inclusion

\[
\{f \mid f \in G, \ f(4) = j\} \subseteq gH.
\]

Combining the two inclusions, we see that \(\{f \mid f \in G, \ f(4) = j\} = gH \). Therefore, each left coset of \(H \) in \(G \) is indeed of the form stated in the problem.

The right cosets have the following description. If \(g \in G \) and \(g^{-1}(4) = j \), where \(j \in T \), then

\[
Hg = \{f \mid f \in G, \ f(j) = 4\}
\]

The proof is similar to the one for the left cosets. We have \(g(j) = 4 \). If \(h \in H \), then \(h(4) = 4 \) and so

\[
h g(j) = h(g(j)) = h(4) = 4
\]

and so \(h g \in \{f \mid f \in G, \ f(j) = 4\} \). Hence, \(Hg \subseteq \{f \mid f \in G, \ f(j) = 4\} \). Conversely, suppose \(f(j) = 4 \), then write \(f = u g \) where \(u \in G \). We have \(4 = f(j) = u(g(j)) = u(4) \) and hence \(u \in H \). Thus, \(f \in Hg \). This proves the inclusion \(\{f \mid f \in G, \ f(j) = 4\} \subseteq Hg \). Therefore, the equality (2) is proved.