Solutions for Homework Assignment 5

Page 154, Problem 2. Every element of \(\mathbb{C}^* \) can be written uniquely in the form \(a + bi \), where \(a, b \in \mathbb{R} \), not both equal to 0. The fact that \(a \) and \(b \) are not both 0 is equivalent to the inequality \(a^2 + b^2 > 0 \). Let

\[
H = \left\{ \begin{pmatrix} a & b \\ -b & a \end{pmatrix} \middle| a, b \in \mathbb{R}, \text{ and } a^2 + b^2 > 0 \right\}.
\]

For \(a, b \in \mathbb{R} \), the condition \(a^2 + b^2 > 0 \) means that \(a^2 + b^2 \neq 0 \), which in turn means that the determinant of any matrix in \(H \) is nonzero. Hence \(H \) is a subset of \(GL_2(\mathbb{R}) \). We will see that it is a subgroup as a consequence of the proof below.

Define a map \(\varphi : \mathbb{C}^* \to H \) as follows:

\[
\varphi(a + bi) \rightarrow \begin{pmatrix} a & b \\ -b & a \end{pmatrix}.
\]

for all \(a + bi \in \mathbb{C}^* \). The above remarks make it clear that \(\varphi \) is one-to-one and onto. Thus, \(\varphi \) is a bijective map from \(\mathbb{C}^* \) to \(H \). We now show that \(\varphi \) is a homomorphism. Since \(\varphi \) is bijective, it follows that \(\varphi \) is indeed an isomorphism.

Suppose that \(a + bi \) and \(c + di \) are elements of \(\mathbb{C}^* \). Then

\[
\varphi((a + bi)(c + di)) = \varphi((ac - bd) + (ad + bc)i) = \begin{pmatrix} ac - bd & ad + bc \\ -ad - bc & ac - bd \end{pmatrix}.
\]

On the other hand, we have

\[
\varphi(a + bi)\varphi(c + di) = \begin{pmatrix} a & b \\ -b & a \end{pmatrix} \begin{pmatrix} c & d \\ -d & c \end{pmatrix} = \begin{pmatrix} ac - bd & ad + bc \\ -ad - bc & ac - bd \end{pmatrix},
\]

where the second equality is simply matrix multiplication in \(GL_2(\mathbb{R}) \). It is the operation defining the group \(GL_2(\mathbb{R}) \).

Thus, we see that if \(a + bi \) and \(c + di \) are elements of \(\mathbb{C}^* \), then

\[
\varphi((a + bi)(c + di)) = \varphi(a + bi)\varphi(c + di)
\]

and hence \(\varphi \) is indeed a homomorphism from \(\mathbb{C}^* \) to \(H \). We have proved that \(\mathbb{C}^* \) and \(H \) are isomorphic.
Page 154, Problem 3. The groups $U(8)$ and \mathbb{Z}_4 are not isomorphic. The reason is that \mathbb{Z}_4 is a cyclic group of order 4 and hence has an element of order 4. In contrast, every element of $U(8)$ has order 1 or 2. The identity element is $1 + 8\mathbb{Z}$ and has order 1. The other three elements of $U(8)$ are $3 + 8\mathbb{Z}$, $5 + 8\mathbb{Z}$, and $7 + 8\mathbb{Z}$, and satisfy

$$(3 + 8\mathbb{Z})^2 = 1 + 8\mathbb{Z}, \quad (5 + 8\mathbb{Z})^2 = 1 + 8\mathbb{Z}, \quad (7 + 8\mathbb{Z})^2 = 1 + 8\mathbb{Z}$$

and hence have order 2 (since their orders aren’t equal to 1). Therefore, $U(8)$ has no element of order 4. Therefore, since an isomorphism preserves the order of elements, it follows that $U(8)$ is not isomorphic to \mathbb{Z}_4.

Page 154, Problem 9. Let $G = \{ r \in \mathbb{R} \mid r \neq -1 \}$. We define an operation on G by

$$a \ast b = a + b + ab$$

for all $a, b \in G$. Note that G is a group. This was proved in problem set 1. Define a map $\varphi : G \to \mathbb{R}^*$ by

$$\varphi(a) = 1 + a$$

Since $a \neq -1$ means that $1 + a \neq 0$, it is clear that φ is a bijective map from G to \mathbb{R}^*. Furthermore, we have

$$\varphi(a \ast b) = \varphi(a + b + ab) = 1 + a + b + ab = (1 + a)(1 + b) = \varphi(a)\varphi(b).$$

Hence φ is a homomorphism. Therefore, φ is indeed an isomorphism from G to \mathbb{R}^* and so those two groups are indeed isomorphic.

Page 156, Problem 24. No such group exists. To see this, suppose that G is an abelian group and that $|G| = 51$. We proved in class (using Problem C below) that if G is a finite abelian group and p is a prime dividing $|G|$, then G has at least one element of order p. Applying this to the case where $|G| = 51$, it follows that G has at least one element a of order 3 and at least one element b of order 17. Let $c = ab$, an element of G.

We will prove that c has order 51. It follows that $\langle c \rangle$ is a subgroup of G of order 51 and hence we must have $G = \langle c \rangle$. This implies that G is cyclic. Since a has order 3 and $3|51$, it follows that $a^{51} = e$, where e denotes the identity element of G. Since b has order 17 and $17|51$, it follows that $b^{51} = e$. To see that c has order 51, we use the fact that G is abelian. We have

$$c^{51} = (ab)^{51} = a^{51}b^{51} = ee = e$$
and therefore $|c|$ divides 51. Thus $|c| \in \{1, 3, 17, 51\}$. On the other hand,

$$c^3 = a^3b^3 = eb^3 = b^3 \neq e, \quad c^{17} = a^{17}b^{17} = a^{17}e = a^{17} \neq e.$$

We have used the facts that $|b| = 17$ does not divide 3, and $|a| = 3$ does not divide 17, respectively. It follows that $|c|$ does not divide 3 and $|c|$ does not divide 17. Therefore, the only possibility is that $|c| = 51$.

As pointed out above, the fact that $|c| = 51$ implies that G is a cyclic group.

Page 156, Problem 25. A non-cyclic abelian group G of order 52 does indeed exist. Let A be the Klein 4-group. Thus, $|A| = 4$ and every element of A has order 1 or 2. Thus, $a^2 = e$ for all $a \in A$, where e is the identity element in A. Let B be a cyclic group of order 13. Let f be the identity element in B. Then $b^{13} = f$ for all $b \in B$.

Let $G = A \times B$. Then $|G| = |A||B| = 4 \cdot 13 = 52$. The identity element in the group G is (e, f). Consider an element $g \in G$. Then $g = (a, b)$, where $a \in A$ and $b \in B$. We will verify that $g^{26} = (e, f)$. To see this, note that since $a^2 = e$, we have $a^{26} = e$ and since $b^{13} = f$, we also have $b^{26} = f$. Therefore,

$$g^{26} = (a, b)^{26} = (a^{26}, b^{26}) = (e, f),$$

as stated. It follows that $|g|$ divides 26. Therefore, no element of G has order 52. Hence G is not a cyclic group.

Page 157, Problem 48. By definition,

$$G \times H = \{ (g, h) \mid g \in G, \ h \in H \}, \quad H \times G = \{ (h, g) \mid h \in H, \ g \in G \}.$$

The group operations on these sets were defined in class one day. We can define a map φ from $G \times H$ to $H \times G$ by $\varphi\left((g, h) \right) = (h, g)$. Thus, any element (h, g) in $H \times G$ is the image under the map φ of the element (g, h) in $G \times H$, and of no other element in $G \times H$. That is, the map φ is a bijective map.

It remains to verify that φ is a homomorphism. To see this, suppose that (g_1, h_1) and (g_2, h_2) are elements of $G \times H$. Then, by definition, $(g_1, h_1)(g_2, h_2) = (g_1g_2, h_1h_2)$. Hence

$$\varphi\left((g_1, h_1)(g_2, h_2) \right) = \varphi\left((g_1g_2, h_1h_2) \right) = (h_1h_2, g_1g_2) = (h_1, g_1)(h_2, g_2).$$

On the other hand, we have

$$\varphi\left((g_1, h_1) \right)\varphi\left((g_2, h_2) \right) = (h_1, g_1)(h_2, g_2).$$
Hence we have \(\varphi \big((g_1, h_1)(g_2, h_2) \big) = \varphi \big((g_1, h_1) \big) \varphi \big((g_2, h_2) \big) \). This means that \(\varphi \) is indeed a homomorphism from \(G \times H \) to \(H \times G \). Since \(\varphi \) is also bijective, \(\varphi \) is an isomorphism. Therefore, \(G \times H \) is isomorphic to \(H \times G \), as stated.

Page 166, Problem 4. This question concerns various subgroups of \(GL_2(\mathbb{R}) \), namely

\[
T = \left\{ \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \ \bigg| \ a, b, c \in \mathbb{R}, ac \neq 0 \right\}, \quad U = \left\{ \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} \ \bigg| \ x \in \mathbb{R} \right\}.
\]

This notation is used because the elements of \(T \) are triangular matrices (more precisely, upper triangular) and the elements of \(U \) are unipotent matrices (referring to the fact that the eigenvalues are equal to 1).

The identity matrix \(I_2 \) is in both \(U \) and \(T \). To see that \(U \) and \(T \) are subgroups of \(GL_2(\mathbb{R}) \), we have (by matrix algebra)

\[
\begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \begin{pmatrix} d & e \\ 0 & f \end{pmatrix} = \begin{pmatrix} ad & ae + bf \\ 0 & cf \end{pmatrix}, \quad \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & y \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & x + y \\ 0 & 1 \end{pmatrix}.
\]

Note also that \(ac \neq 0 \) and \(df \neq 0 \) implies that \((ad)(cf) \neq 0 \). Thus, both \(T \) and \(U \) are closed under matrix multiplication, which is the group operation in \(GL_2(\mathbb{R}) \). Furthermore, concerning inverses, we have

\[
\begin{pmatrix} a & b \\ 0 & c \end{pmatrix}^{-1} = \begin{pmatrix} c^{-1} & -b(ac)^{-1} \\ 0 & a^{-1} \end{pmatrix}, \quad \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}^{-1} = \begin{pmatrix} 1 & -x \\ 0 & 1 \end{pmatrix},
\]

where we have used a standard formula for computing the inverse of a \(2 \times 2 \) matrix with nonzero determinant. It follows that if \(\tau \in T \), then \(\tau^{-1} \in T \) and that if \(\eta \in U \), then \(\eta^{-1} \in U \).

The above discussion shows that \(T \) and \(U \) are subgroups of \(GL_2(\mathbb{R}) \). Also, \(U \subset T \) and hence \(U \) is a subgroup of \(T \). The fact that \(U \) is abelian follows from observing that

\[
\begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & y \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & x + y \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & y + x \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & y \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}
\]

for all \(x, y \in \mathbb{R} \).

For the rest of this question, it will be useful to note that if \(ac \neq 0 \), then \(a \neq 0 \) and we have

\[
\begin{pmatrix} a & b \\ 0 & c \end{pmatrix} = \begin{pmatrix} a & 0 \\ 0 & c \end{pmatrix} \begin{pmatrix} 1 & ba^{-1} \\ 0 & 1 \end{pmatrix}.
\]
Thus, every element $\tau \in T$ can be expressed as $\tau = \delta \eta$, where $\eta \in U$ and δ is a diagonal matrix. Let

$$D = \left\{ \begin{pmatrix} a & 0 \\ 0 & c \end{pmatrix} \middle| a, c \in \mathbb{R}, ac \neq 0 \right\},$$

which is another subgroup of $GL_2(\mathbb{R})$. (The verification that D is a subgroup is similar to the verification for T.) Thus, if $\tau \in T$, then we can express τ as $\tau = \delta \eta$, where $\delta \in D$, $\eta \in U$.

To verify that U is a normal subgroup of T, suppose that $\tau \in T$ and $u \in U$. We must verify that $\tau u \tau^{-1} \in U$. We can write τ as $\tau = \delta \eta$ as in the previous paragraph. Then

$$\tau u \tau^{-1} = (\delta \eta) u (\delta \eta)^{-1} = (\delta \eta) u (\eta^{-1} \delta^{-1} = \delta (\eta u \eta^{-1}) \delta^{-1} = \delta \nu \delta^{-1}$$

where $\nu = \eta u \eta^{-1}$. Note that $\nu \in U$ because $u \in U$, $\eta \in U$ and $\eta^{-1} \in U$. Thus, it is sufficient to verify that $\delta \nu \delta^{-1} \in U$ for all $\nu \in U$ and all $\delta \in D$. This fact becomes clear from the following matrix identity (valid for $ac \neq 0$ and any $x \in \mathbb{R}$):

$$\begin{pmatrix} a & 0 \\ 0 & c \end{pmatrix} \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a^{-1} & 0 \\ 0 & c^{-1} \end{pmatrix} = \begin{pmatrix} 1 & ac^{-1}x \\ 0 & 1 \end{pmatrix}.$$

And so we have shown that U is indeed a normal subgroup of T.

Now we will prove that T/U is abelian. Suppose that τ_1 and τ_2 are in T. As above, we can write $\tau_1 = \delta_1 \eta_1$ and $\tau_2 = \delta_2 \eta_2$, where $\delta_1, \delta_2 \in D$ and $\eta_1, \eta_2 \in U$. This will be very helpful because we then have

$$\tau_1 U = \delta_1 \eta_1 U = \delta_1 (\eta_1 U) = \delta_1 U, \quad \tau_2 U = \delta_2 \eta_2 U = \delta_2 (\eta_2 U) = \delta_2 U.$$

We have used the fact that $\eta U = U$ for all $\eta \in U$.

Note that D is an abelian group. This is clear from the facts that

$$\begin{pmatrix} a & 0 \\ 0 & c \end{pmatrix} \begin{pmatrix} d & 0 \\ 0 & f \end{pmatrix} = \begin{pmatrix} ad & 0 \\ 0 & cf \end{pmatrix} = \begin{pmatrix} da & 0 \\ 0 & fc \end{pmatrix} = \begin{pmatrix} d & 0 \\ 0 & f \end{pmatrix} \begin{pmatrix} a & 0 \\ 0 & c \end{pmatrix}.$$

Thus, $\delta_1 \delta_2 = \delta_2 \delta_1$ for all $\delta_1, \delta_2 \in D$. It follows that

$$(\tau_1 U)(\tau_2 U) = (\delta_1 U)(\delta_2 U) = \delta_1 \delta_2 U = \delta_2 \delta_1 U = (\delta_2 U)(\delta_1 U) = (\tau_2 U)(\tau_1 U)$$

and this shows that T/U is indeed an abelian group.

Finally, we will show that T is not a normal subgroup of $GL_2(\mathbb{R})$. Consider the following matrices:

$$\tau = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \quad \gamma = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}. $$
Then we have $\tau \in T$ and $\gamma \in GL_2(\mathbb{R})$, but

$$\gamma \tau \gamma^{-1} = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ -1 & 2 \end{pmatrix}$$

and hence $\gamma \tau \gamma^{-1} \notin T$. Hence, $\gamma T \gamma^{-1} \not\subseteq T$. Thus, T is not a normal subgroup of $GL_2(\mathbb{R})$.

Page 167, Problem 5. Suppose that H and K are normal subgroups of a group G. We have proved previously that $H \cap K$ is a subgroup of G. We now prove that $H \cap K$ is a normal subgroup. Suppose that $g \in G$ and $a \in H \cap K$. Consider gag^{-1}.

First of all, we have $a \in H$. Since H is a normal subgroup of G, we also have $gag^{-1} \in H$. Furthermore, $a \in K$. Since K is a normal subgroup of G, we have $gag^{-1} \in H$. Therefore, $gag^{-1} \in H$ and $gag^{-1} \in K$. It follows that $gag^{-1} \in H \cap K$ for all $g \in G$ and all $a \in H \cap K$. This implies that the subgroup $H \cap K$ is indeed a normal subgroup of G.

Page 167, Problem 7. The statement is not true. Consider $G = Q_8$. Let $H = \langle j \rangle$. Then H is a subgroup of G. Furthermore, $|H| = 4$ and $[G : H] = |G|/|H| = 8/4 = 2$. Thus, H is a subgroup of G which has index 2. As proved in class, this implies that H is a normal subgroup of G.

Now G/H is a group of order 2 and must be cyclic, and hence abelian. Also, H is a group of order 4. Recall that groups of order 4 must be abelian. Thus, both H and G/H are abelian. However, G itself is a nonabelian group.

Page 167, Problem 9. This statement is not true. Let G be the Klein 4-group. Recall that every element of G has order 1 or 2. But $|G| = 4$. Hence G is not a cyclic group. However, if $a \in G$ and a is not the identity element of G, then let $H = \langle a \rangle$. Then H is a cyclic group of order 2. Also, H is a normal subgroup of G because G is abelian. Now G/H has order equal to $|G|/|H| = 4/2 = 2$. Hence G/H is a group of order 2 and must be cyclic.

In summary, G is not cyclic, but H is cyclic and G/H is also cyclic.

The example given in problem 7 would also be an example disproving the statement in this problem.

Page 176, Problems 2a, c. First we consider part (a). If $a, b \in \mathbb{R}^*$, then

$$\phi(ab) = \begin{pmatrix} 1 & 0 \\ 0 & ab \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & b \end{pmatrix} = \phi(a)\phi(b)$$
and therefore ϕ is a homomorphism from \mathbb{R}^* to $GL_2(\mathbb{R})$.

The identity element in $GL_2(\mathbb{R})$ is $I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$. If $a \in \mathbb{R}^*$ and $\phi(a) = I_2$, then $a = 1$, which is the identity element in \mathbb{R}^*. Therefore, the kernel of ϕ is $\{1\}$, the trivial subgroup of \mathbb{R}^*.

Now consider part (c). The map ϕ is not a homomorphism. The easiest way to see this is to notice that $\phi(I_2) = 1 + 1 = 2$. The identity element in $GL_2(\mathbb{R})$ is I_2. The identity element in \mathbb{R} is 0. But $\phi(I_2) \neq 0$. If ϕ were a homomorphism, then this could not happen.

Page 176, Problem 4. Suppose that $n, m \in \mathbb{Z}$. Then
\[
\phi(n + m) = 7(n + m) = 7n + 7m = \phi(n) + \phi(m)
\]
and hence ϕ is indeed a homomorphism from \mathbb{Z} to \mathbb{Z}. To find the kernel, note that 0 is the identity element in \mathbb{Z}. We have
\[
\phi(n) = 0 \iff 7n = 0 \iff n = 0
\]
and therefore the kernel of ϕ is the subgroup $\{0\}$ of \mathbb{Z}. The image of ϕ is obviously the subgroup $7\mathbb{Z}$ of \mathbb{Z}.

Page 177, Problem 9. We are given that G is abelian. It turns out that $\phi(G)$ is a subgroup of H. To prove that $\phi(G)$ is abelian, suppose that $a, b \in \phi(G)$. This means that $a = \phi(u)$ and $b = \phi(v)$, where $u, v \in G$. We have $uv = vu$ because G is abelian. Therefore,
\[
ab = \phi(u)\phi(v) = \phi(uv) = \phi(vu) = \phi(v)\phi(u) = ba .
\]
Thus, $ab = ba$ for all $a, b \in \phi(G)$. This proves that $\phi(G)$ is indeed abelian.

Page 177, Problem 14. Recall the following fact. Suppose that G and G' are groups and that $\phi : G \to G'$ is an isomorphism. Suppose that $g \in G$. Then $\phi(g)$ has the same order as g. We proved this in class one day. It will be useful in this problem. Note for example that if G has an element g of order 2, then G' will also have an element of order 2, namely $\phi(g)$.

Let $G = \mathbb{Q}/\mathbb{Z}$. Then G has an element of order 2, namely the element
\[
g = \frac{1}{2} + \mathbb{Z} .
\]
This is a left coset of \mathbb{Z} in \mathbb{Q}. Furthermore, $\frac{1}{2} \notin \mathbb{Z}$ and hence g is not the identity element of \mathbb{Q}/\mathbb{Z} (which is the left coset $0 + \mathbb{Z} = \mathbb{Z}$). However,

$$2g = g + g = \left(\frac{1}{2} + \mathbb{Z} \right) + \left(\frac{1}{2} + \mathbb{Z} \right) = 1 + \mathbb{Z} = \mathbb{Z}$$

and so g has order 2. However, the identity element in \mathbb{Q} is 0. If $r \in \mathbb{Q}$ and $2r = 0$, then $r = 0$. Hence no element of \mathbb{Q} can have order 2.

In summary, \mathbb{Q}/\mathbb{Z} has an element of order 2, but \mathbb{Q} has no elements of order 2. Hence those two groups cannot be isomorphic.

Problem A. We must show that if $\sigma \in S_n$, then σ and σ^{-1} are conjugate in S_n. We know that two elements of S_n are conjugate if and only if they have the same cycle decomposition type. And so one must show that σ and σ^{-1} have the same cycle decomposition type.

Suppose first that σ is a k-cycle. Thus $\sigma = (i_1 i_2 \ldots i_k)$, where i_1, i_2, \ldots, i_k are distinct elements in the set $\{1, \ldots, n\}$. But σ^{-1} is also a k-cycle. In fact, $\sigma^{-1} = (i_k i_{k-1} \ldots i_1)$, which is indeed a k-cycle. Now if σ is a product of t disjoint cycles of lengths k_1, \ldots, k_t, then σ^{-1} will be a product of the inverses of those cycles, and so σ^{-1} will also be a product of t disjoint cycles of lengths k_1, \ldots, k_t. Thus, σ and σ^{-1} indeed have the same cycle decomposition type.

Problem B. This problem is identical to problem 5 on page 167.

Problem C. Suppose that G is a finite group, that N is a normal subgroup of G, and that G/N has an element of order m, where m is a positive integer.

The elements of G/N are of the form aN, where $a \in G$. Suppose that a is chosen so that aN is an element of G/N which has order m. The rest of this proof will concern the element a.

Since $a \in G$ and G is finite, it follows that the subgroup $\langle a \rangle$ of G is a finite group. Thus a has finite order. Let n be the order of a. In particular, $a^n = e$, where e is the identity element of G.

In the group G/N, we have $(aN)(bN) = abN$ for all $a, b \in G$. In particular, we have $(aN)^2 = a^2N$. A straightforward mathematical induction proof shows that $(aN)^k = a^kN$ for all positive integers k.

8
Since $a^n = e$, it follows that $(aN)^n = a^n N = eN = N$. Now we chose a at the beginning of this proof so that aN is an element in the group G/N of order m. Therefore, the fact that $(aN)^n = e$ implies that m divides n.

The subgroup $\langle a \rangle$ of G which is generated by a has order n. It is a cyclic group of order n. We proved in class that if d is a positive integer which divides n, then a cyclic group of order n must contain an element of order d. In particular, since m divides n, it follows that $\langle a \rangle$ contains an element of order m. Therefore, it follows that G contains an element of order m. This is what we wanted to prove.