A: This problem concerns the group S_4. Let $H = \{ f \mid f \in S_4, \ f(4) = 4 \}$. As shown in the previous homework assignment, H is a subgroup of S_4 and has order 6. The same argument shows that, for any $j \in \{1, 2, 3, 4\}$, the set $H_j = \{ f \mid f \in S_4, \ f(j) = j \}$ is a subgroup of S_4 and has order 6. The subgroup H defined before is just the special case where $j = 4$. (This subgroup H_j is sometimes called the “stabilizer” of j in S_4.) In this problem, I want you to prove that the subgroups H_j are all conjugate to H. More precisely, suppose that $y \in G$ and that $y(4) = j$. Prove that

$$yHy^{-1} = H_j$$

Also, prove that the four subgroup H_1, H_2, H_3 and H_4 of S_4 are different. Determine $H_1 \cap H_4$.

MATH 402A - Homework Assignment 4 (due Wednesday, November 15th)

Pages 74-75: 6, 8, 14, 26.

Page 83: 7, 8

Page 87: 2, 3, 4