BASIC THEOREMS ABOUT LIMITS

Theorem 1. Suppose that f(x) and g(x) are defined on an interval (α, β) and that $x_0 \in (\alpha, \beta)$. Suppose that $\lim_{x \to x_0} f(x) = A$ and $\lim_{x \to x_0} g(x) = B$, where $A, B \in \mathbb{R}$. Then

 $\lim_{x \to x_0} \left(f(x) + g(x) \right) = A + B \qquad and \qquad \lim_{x \to x_0} \left(f(x)g(x) \right) = AB \quad .$

Furthermore, if $B \neq 0$, then $\lim_{x \to x_0} (f(x)/g(x)) = A/B$.

Theorem 2. Suppose that f(x), g(x), and h(x) are defined on an interval (α, β) and that $x_0 \in (\alpha, \beta)$. Suppose that

$$f(x) \le g(x) \le h(x)$$

for all $x \in (\alpha, \beta)$. Suppose that $\lim_{x \to x_0} f(x) = A$ and $\lim_{x \to x_0} h(x) = A$, where $A \in \mathbb{R}$. Then $\lim_{x \to x_0} g(x) = A$.

Theorem 3. Suppose that f(x) and g(x) are defined on an interval (α, β) and that $x_0 \in (\alpha, \beta)$. Suppose that $f(x) \leq g(x)$ for all $x \in (\alpha, \beta)$. Suppose that $\lim_{x \to x_0} f(x) = A$ and $\lim_{x \to x_0} g(x) = B$, where $A, B \in \mathbb{R}$. Then $A \leq B$.

Theorem 4. Suppose that f(x) and g(x) are defined on an interval (α, β) and that $x_0 \in (\alpha, \beta)$. Suppose that $f(x) \leq g(x)$ for all $x \in (\alpha, \beta)$. Suppose that $\lim_{x \to x_0} f(x) = +\infty$. Then $\lim_{x \to x_0} g(x) = +\infty$.

A variation on theorems 1,2, 3, and 4. Suppose that the functions in the above theorems are defined on an interval $(\alpha, +\infty)$ and that $\lim_{x \to x_0}$ is replaced by $\lim_{x \to +\infty}$. Then the stated conclusions are valid.

Theorem 5. Suppose that f(x) is defined on an interval (α, β) and that $x_0 \in (\alpha, \beta)$. Suppose that $\lim_{x \to x_0} f(x) = A$. Suppose that $F : \mathbb{R} \to \mathbb{R}$ is a continuous function. Then

$$\lim_{x \to x_0} F(f(x)) = F(A)$$

Theorem 6. Suppose that $\{s_n\}$ and $\{t_n\}$ are sequences of real numbers. Suppose that $\lim_{n \to \infty} s_n = A$ and $\lim_{n \to \infty} t_n = B$, where $A, B \in \mathbb{R}$. Then

$$\lim_{n \to \infty} (s_n + t_n) = A + B \qquad and \qquad \lim_{n \to \infty} (s_n t_n) = AB$$

Furthermore, if $B \neq 0$, then $\lim_{n \to \infty} (s_n/t_n) = A/B$.

Theorem 7. Suppose that $\{r_n\}$, $\{s_n\}$, and $\{t_n\}$ are sequences of real numbers. Suppose that $r_n \leq s_n \leq t_n$

for all $n \ge 1$. Suppose that $\lim_{n \to \infty} r_n = A$ and $\lim_{n \to \infty} t_n = A$, where $A \in \mathbb{R}$. Then $\lim_{n \to \infty} s_n = A$.

Theorem 8. Suppose that $\{s_n\}$ and $\{t_n\}$ are sequences of real numbers. Suppose that $s_n \leq t_n$ for all $n \geq 1$. Suppose that $\lim_{n \to \infty} s_n = A$ and $\lim_{n \to \infty} t_n = B$, where $A, B \in \mathbb{R}$. Then $A \leq B$.

Theorem 9. Suppose that $\{s_n\}$ and $\{t_n\}$ are sequences of real numbers. Suppose that $s_n \leq t_n$ for all $n \geq 1$. Suppose that $\lim_{n \to \infty} s_n = +\infty$. Then $\lim_{n \to \infty} t_n = +\infty$.

Theorem 10. Suppose that $\{s_n\}$ is a sequence of real numbers with the following property:

$$s_n \leq s_{n+1}$$
 for all $n \geq 1$.

Suppose also that there exists a real number M such that $s_n \leq M$ for all $n \geq 1$. Then $\{s_n\}$ is a convergent sequence.