MIDTERM SOLUTIONS – MATH310A – AUTUMN, 2006

QUESTION 1. Here is the truth table for \(P \implies Q \).

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>P \implies Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>

QUESTION 2. It is assumed in the following proposition that \(a \) and \(b \) are integers.

Proposition: If \(ab \) is even, then \(a \) is even or \(b \) is even.

We will prove the contrapositive of the proposition. This will suffice because the contrapositive is logically equivalent to the proposition.

Contrapositive of the proposition. If \(a \) and \(b \) are odd, then \(ab \) is odd.

To prove this, assume that \(a \) and \(b \) are odd integers. Then we can write \(a \) and \(b \) in the form \(a = 2p + 1 \), \(b = 2q + 1 \), where \(p, q \in \mathbb{Z} \). It then follows that

\[
(1) \quad ab = (2p + 1)(2q + 1) = 4pq + 2p + 2q + 1 = 2(2pq + p + q) + 1
\]

Since \(p, q \in \mathbb{Z} \), it follows that \(2pq + p + q \in \mathbb{Z} \). Therefore, by (1), it follows that \(ab \) is indeed odd.

We’ve proved the contrapositive and hence the stated proposition.

QUESTION 3. Here is the statement of Euclid’s Lemma:

Euclid’s Lemma. Suppose that \(a, b \in \mathbb{Z} \) and that \(p \) is a prime. If \(p \) divides \(ab \), then \(p \) divides \(a \) or \(p \) divides \(b \).

QUESTION 4. Suppose that \(f : \mathbb{R} \to \mathbb{R} \) is a function. We say that \(f \) is “bounded above” if the following statement is true:

S: There exists an \(M \in \mathbb{R} \) such that \(f(x) < M \) for all \(x \in \mathbb{R} \).

Here is the negation of \(S \).

For all \(M \in \mathbb{R} \), there exists at least one \(x \in \mathbb{R} \) such that \(f(x) \geq M \).
QUESTION 5. The *Strong Mathematical Induction Principle* can be stated as follows:
Suppose that $P(n)$ is a statement involving a general positive integer n. Suppose that

(i) $P(1)$ is true

and

(ii) For all positive integers k,

\[P(j) \text{ is true for all positive integers } j \leq k \implies P(k + 1) \text{ is true.} \]

Then $P(n)$ is true for all positive integers n.

QUESTION 6.

(a) Consider the function $f : \mathbb{R} \to \mathbb{R}^+$ defined by

\[
f(x) = \begin{cases}
e^x & \text{if } x \geq 0 \\ -x & \text{if } x < 0 \end{cases}
\]

This function f is surjective, but not injective. The fact that f is not injective can be justified by pointing out that $1, -e \in \mathbb{R}$, $1 \neq -e$, but, according to the definition of f, we have

\[f(1) = e^1 = e, \quad f(-e) = -(-e) = e \quad \text{and hence } f(1) = f(-e). \]

The fact that f is surjective is verified by noting that for $y \in \mathbb{R}^+$, $x = -y \in \mathbb{R}$ and satisfies $x < 0$. Thus, for $x = -y$, we have $f(x) = -(-y) = y$. Therefore, f is indeed surjective.

(b) Let $S = \mathbb{R}$. Then S is a subset of \mathbb{R} and, according to Cantor’s theorem stated in class, the set S is not countable.

(c) The two sets are not equal. We have \(\{x \in \mathbb{R} \mid x > 3\} \neq \{x \in \mathbb{R} \mid x^2 > x + 6\} \) because $x = -10$ is a real number and clearly satisfies the inequality $x^2 > x + 6$, but fails to satisfy the inequality $x > 3$. Therefore, -10 is in the second set, but not in the first.