MATH 310 - Homework Assignment 4 (due Friday, February 16th)

From the text: Page 118, problems 16, 17.

A: Suppose that X,Y, and Z are sets. Suppose that $f : X \rightarrow Y$ and $g : Y \rightarrow Z$ are functions. Let $h = g \circ f : X \rightarrow Z$. Prove the following statements.

(i) If f and g are injective, then h is injective.
(ii) If f and g are surjective, then h is surjective.
(iii) If f and g are bijective, then h is bijective.
(iv) If h is surjective, then g is surjective.
(v) If h is injective, then f is injective.

Disprove the following statements by giving a counterexample. For a counterexample, you must specify sets X,Y and Z as well as f and g.

(vi) If h is bijective, then g is injective.
(vii) If h is bijective, then f is surjective.

B: Define a function $f : \mathbb{Z}^+ \rightarrow \mathbb{Z}^+$ as follows. For $k \in \mathbb{Z}^+$, let

$$f(k) = \begin{cases}
3k + 1 & \text{if } k \text{ is odd} \\
\frac{1}{2}k & \text{if } k \text{ is even}
\end{cases}$$

There is a famous conjecture about this function. We let $f^{(n)} : \mathbb{Z}^+ \rightarrow \mathbb{Z}^+$ denote the n-th iterate of f.

Conjecture: For all $k \in \mathbb{Z}^+$, there exists an $n \in \mathbb{Z}^+$ such that $f^{(n)}(k) = 1$.

(a) Verify the statement in the conjecture for $1 \leq k \leq 10$. (Try to find an efficient way to do this.)

(b) Consider the following two statements:

S_1: For each $n \in \mathbb{Z}^+$, there exists a $k \in \mathbb{Z}^+$ such that $f^{(n)}(k) = 1$.

S_2: There exists an $n \in \mathbb{Z}^+$ such that, for all $k \in \mathbb{Z}^+$, $f^{(n)}(k) = 1$.

Prove or disprove each of these statements.

C: Is it possible to find two nonconstant functions $f : \mathbb{Z} \rightarrow \mathbb{Z}$ and $g : \mathbb{Z} \rightarrow \mathbb{Z}$ such that $(f \circ g)(n) = 1$ for all $n \in \mathbb{Z}$ and $(g \circ f)(n) = -1$ for all $n \in \mathbb{Z}$.