Propositions about Isomorphisms

Definition. Suppose that A and B are groups. A map $\varphi: A \rightarrow B$ is called an isomorphism if φ is a bijection and has the property that $\varphi\left(a_{1} a_{2}\right)=\varphi\left(a_{1}\right) \varphi\left(a_{2}\right)$ for all $a_{1}, a_{2} \in A$. If such an isomorphism exists, we say that A is isomorphic to B.

In the following propositions, we will always assume that φ is an isomorphism from a group A to a group B. Let e_{A} and e_{B} denote the identity element of A and B, respectively.

1. We have $\varphi\left(e_{A}\right)=e_{B}$. Furthermore, if $a \in A$, then $\varphi\left(a^{-1}\right)=\varphi(a)^{-1}$.
2. If $a \in A$ and $k \in \mathbb{Z}$, then $\varphi\left(a^{k}\right)=\varphi(a)^{k}$.
3. If C is a subgroup of A, then $D=\varphi(C)$ is a subgroup of B. Furthermore, the groups C and D are isomorphic.
4. Suppose $a \in A$. Then $\varphi(\langle a\rangle)=\langle\varphi(a)\rangle$. Furthermore, $\varphi(a)$ has the same order as a.
5. Assume that A and B are cyclic groups, that $|A|=|B|$, that a is a generator of A, and that b is a generator of B. Then there exists an isomorphism $\varphi: A \rightarrow B$ such that $\varphi(a)=b$. For any $k \in \mathbb{Z}$, we have $\varphi\left(a^{k}\right)=b^{k}$.

Automorphisms

Definition. Suppose that A is a group. An isomorphism $\varphi: A \rightarrow A$ is called an automorphism of A.
6. Assume that A is a finite cyclic group. Let $n=|A|$. Suppose that $r \in \mathbb{Z}$ and that $\operatorname{gcd}(r, n)=1$. Define a map $\varphi: A \rightarrow A$ by $\varphi(x)=x^{r}$ for all $x \in A$. The map φ is an automorphism of A.
7. Assume that A is any group. Let a be a fixed element of A. Define a map $\varphi: A \rightarrow A$ by

$$
\varphi(x)=a x a^{-1}
$$

for all $x \in A$. The map φ is an automorphism of A. (This type of automorphism of a group A is called an inner automorphism of A.)

Propositions about Conjugacy

Definition. Suppose that G is a group. Suppose that $x, y \in G$. We say that x and y are conjugate in G if there exists an element $a \in G$ such that $y=a x a^{-1}$. We will write $x \sim_{G} y$ if x and y are conjugate in G.

1. The relation \sim_{G} is an equivalence relation on the set G. Each equivalence class under this equivalence relation is called a conjugacy class in G.
2. If x and y are conjugate in G, then $|x|=|y|$.
3. A group G is abelian if and only if each conjugacy class consists of exactly one element.
4. An element $z \in G$ is in the center $Z(G)$ of G if and only if the set $\{z\}$ is a conjugacy class in G.
