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Selmer Groups and Congruences
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Abstract

We first introduce Selmer groups for elliptic curves, and then Selmer groups for
Galois representations. The main topic of the article concerns the behavior of
Selmer groups for Galois representations with the same residual representation.
We describe a variety of situations where this behavior can be studied fruitfully.
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1. Selmer Groups

Suppose that E is an elliptic curve defined over a number field F . Let E(F )
denote the set of points on E defined over F . Under a certain simply-defined
operation, E(F ) becomes an abelian group. The classical Mordell-Weil theorem
asserts that E(F ) is finitely-generated. One crucial step in proving this theorem
is to show that E(F )/nE(F ) is a finite group for some integer n ≥ 2. In essence,
one proves this finiteness for any n by defining a map from E(F )/nE(F ) to the
Selmer group for E over F and showing that the kernel and the image of that
map are finite.

We will regard F as a subfield of Q, a fixed algebraic closure of Q. The
torsion subgroup Etors of E(Q) is isomorphic to (Q/Z)2 as a group. One has
a natural action of GF = Gal(Q/F ) on Etors. The Selmer group is a certain
subgroup of the Galois cohomology group H1(GF , Etors). Its definition involves
Kummer theory for E and is based on the fact that the group of points on E
defined over any algebraically closed field is a divisible group.

As is customary, we will write H1(F,Etors) instead of H1(GF , Etors). A
similar abbreviation will be used for other Galois cohomology groups. Suppose
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that P ∈ E(F ) and that n ≥ 1. Then there exists a point Q ∈ E(Q) such that
nQ = P . In fact, there are n2 such points Q, all differing by points in Etors of
order dividing n. If g ∈ GF and Q′ = g(Q), then nQ′ = P . Therefore, we have
g(Q) − Q ∈ Etors. The map ϕ : GF → Etors defined by ϕ(g) = g(Q) − Q is a
1-cocycle and defines a class [ϕ] in H1(F,Etors). In this way, we can define the
“Kummer map”

κ : E(F )⊗Z (Q/Z) −→ H1(F,Etors).

The image of P⊗
(
1
n+Z

)
is defined to be the class [ϕ]. The map κ is an injective

homomorphism.
If v is any prime of F , we can similarly define the v-adic Kummer map

κv : E(Fv)⊗Z (Q/Z) −→ H1(Fv, Etors),

where Fv is the completion of F at v. One can identify GFv
with a subgroup

of GF by choosing an embedding of Q into an algebraic closure of Fv which
extends the embedding of F into Fv, and thereby define a restriction map from
H1(F,Etors) to H1(Fv, Etors). One has such a map for each prime v of F , even
for the archimedean primes. One then defines the Selmer group SelE(F ) to be
the kernel of the map

σ : H1(F,Etors) −→
⊕

v

H1(Fv, Etors)
/
im(κv),

where v runs over all the primes of F . One shows that the image of σ is actually
contained in the direct sum and that this definition of SelE(F ) does not depend
on the choice of embeddings. The image of the Kummer map κ is clearly a
subgroup of SelE(F ). The corresponding quotient group SelE(F )

/
im(κ) is the

Tate-Shafarevich group for E over F .

The elliptic curve E is determined up to isomorphism over F by the action
of GF on Etors. This result was originally conjectured by Tate and proved by
Faltings [10]. If p is a prime and n ≥ 1, then the pn-torsion on E will be denoted
by E[pn]. The p-primary subgroup of Etors is the union of the groups E[pn]
and will be denoted by E[p∞]. The inverse limit of the E[pn]’s is the p-adic
Tate module Tp(E). It is a free Zp-module of rank 2, where Zp denotes the
ring of p-adic integers. All of these objects have a continuous action of GF . We
let Vp(E) = Tp(E) ⊗Zp

Qp, a 2-dimensional representation space for GF over
Qp, the field of p-adic numbers. Faltings proves the following version of Tate’s
conjecture: The elliptic curve E is determined up to isogeny over F by the
isomorphism class of the representation space Vp(E) for GF . The Tate module
Tp(E) determines E up to an isogeny of degree prime to p.

The above theorem of Faltings suggests that arithmetic properties of E
which depend only on the isomorphism class of E over F should somehow be
determined by the Galois module Etors. In particular, the structure of E(F )
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should be so determined. It is clear how to determine the torsion subgroup
of E(F ) in terms of Etors. It is just H0(F,Etors). Now it is conjectured that
the Tate-Shafarevich group for an elliptic curve over a number field is always
finite. If this is so, then the image of the Kummer map should be precisely the
maximal divisible subgroup SelE(F )div of SelE(F ). If r is the rank of E(F ),
then that image is isomorphic to (Q/Z)r. Thus, at least conjecturally, one can
determine r from the structure of SelE(F ). And, as we will now explain, one
can describe SelE(F ) entirely in terms of the Galois module Etors. This is not
immediately apparent from the definition given earlier.

Let p be any prime. The p-primary subgroup SelE(F )p of SelE(F ) is a
subgroup of H1(F,E[p∞]). It can be defined as the kernel of the map

σp : H1(F,E[p∞]) −→
⊕

v

H1(Fv, E[p∞])
/
im(κv,p) ,

where κv,p is the restriction of κv to the p-primary subgroup of E(Fv)⊗Z(Q/Z).
Thus, if we can describe the image of κv,p for all primes v of F just in terms of
the Galois module E[p∞], then we will have such a description of SelE(F )p.

First of all, suppose that v is a nonarchimedean prime and that the residue
field for v has characteristic `, where ` 6= p. It is known that E(Fv) is an `-
adic Lie group. More precisely, E(Fv) contains a subgroup of finite index which

is isomorphic to Z
[Fv :Q`]
` . Since that group is divisible by p, one sees easily

that E(Fv)⊗Z (Qp/Zp), the p-primary subgroup of E(Fv)⊗Z (Q/Z), actually
vanishes. Hence im(κv,p) = 0 if v - p. A similar argument shows that the same
statement is true if v is archimedean.

Now assume that the residue field for v has characteristic p. We also assume
that E has good ordinary reduction at v. Good reduction means that one can
find an equation for E over the ring of integers of F such that its reduction
modulo v defines an elliptic curve Ev over the residue field Fv. The reduction is
ordinary if the integer av = 1+|Fv|−|Ev(Fv)| is not divisible by p. Equivalently,
ordinary reduction means that Ev[p

∞] is isomorphic to Qp/Zp as a group.
Reduction modulo v then defines a surjective homomorphism from E[p∞] to
Ev[p

∞]. Its kernel turns out to be the group of p-power torsion points on a
formal group. We denote that kernel by Cv. It is invariant under the action of
GFv

and is isomorphic to Qp/Zp as a group. We have E[p∞]/Cv
∼= Ev[p

∞].
Remarkably, one has the following description of the image of κv,p:

im(κv,p) = im
(
H1(Fv, Cv)div −→ H1(Fv, E[p∞])

)
.

One can characterize Cv as follows: It is a GFv
-invariant subgroup of E[p∞]

and E[p∞]/Cv is the maximal quotient of E[p∞] which is unramified for the
action of GFv

. Thus, the above description of im(κv,p) just involves the Galois
module E[p∞], as we wanted.

The above description of im(κv,p) was given in [4]. The argument is not
very difficult. If E does not have good ordinary reduction at v, there is still a
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description of im(κv,p) in terms of E[p∞]. This was given by Bloch and Kato in
[2]. It involves Fontaine’s ring Bcrys. One defines the subspace H1

f

(
Fv, Vp(E)

)

of H1
(
Fv, Vp(E)

)
to be the kernel of the the natural map from H1

(
Fv, Vp(E)

)

to H1
(
Fv, Vp(E) ⊗Qp

Bcrys

)
. One has Vp(E)/Tp(E) ∼= E[p∞]. Then im(κv,p)

turns out to be the image of H1
f

(
Fv, Vp(E)

)
under the natural map from

H1
(
Fv, Vp(E)

)
to H1(Fv, E[p∞]).

The fact that SelE(F )p can be defined solely in terms of the Galois module
E[p∞] was a valuable insight in the 1980’s. It suggested a way to give a reason-
able definition of Selmer groups in a far more general context. This idea was
pursued in [11] for the purpose of generalizing conjectures of Iwasawa and of
Mazur concerning the algebraic interpretation of zeros of p-adic L-functions. It
was also pursued by Bloch and Kato in [2] for the purpose of generalizing the
Birch and Swinnerton-Dyer conjecture.

Since SelE(F )p is determined by the Galois module E[p∞], one can ask
whether SelE(F )[p] is determined by the Galois module E[p]. This turns out
not to be so. Suppose that E1 and E2 are elliptic curves defined over F and
that E1[p] ∼= E2[p] as GF -modules. It is quite possible for SelE1

(F )[p] and
SelE2

(F )[p] to have different Fp-dimensions. In the next section of this article,
we will consider this question in the setting of Iwasawa theory. Thus, we will
consider the Selmer group for an elliptic curve E over a certain infinite extension
F∞ of F , the so-called “cyclotomic Zp-extension” of F .

Let µp∞ denote the group of p-power roots of unity in Q. Then F∞ is the
unique subfield of F (µp∞) such that Gal(F∞/F ) ∼= Zp. We denote that Galois
group by Γ. For each n ≥ 0, Γ has a unique subgroup Γn of index pn. Thus,
Fn = FΓn

∞ is a cyclic extension of F of degree pn. One can define the Selmer
group for E over F∞ to be the direct limit of the Selmer groups SelE(Fn) as
n → ∞. We will concentrate on its p-primary subgroup SelE(F∞)p. Now Γ acts
naturally on SelE(F∞)p. Regarding SelE(F∞)p as a discrete Zp-module, the
action of Γ is continuous and Zp-linear. We can then regard SelE(F∞)p as a
discrete Λ-module, where Λ = Zp[[Γ]] is the completed Zp-group algebra for the
pro-p group Γ. That is, Λ is the inverse limit of the Zp-group algebras Zp[Γn]
defined by the obvious surjective Zp-algebra homomorphisms Zp[Γm] → Zp[Γn]
for m ≥ n ≥ 0. One often refers to Λ as the “Iwasawa algebra” for Γ (over Zp).
A very useful fact in Iwasawa theory is that Λ is isomorphic (non-canonically)
to the formal power series ring Zp[[T ]] in one variable. Thus, Λ is a complete
Noetherian local ring of Krull dimension 2.

Assuming that E has good ordinary reduction at the primes of F lying over
p, one has a description of SelE(F∞)p just as above. If v is a prime of F not
dividing p, and η is a prime of F∞ lying over v, then the image of the Kummer
map over F∞,η is again trivial. If v|p, then the direct limits of the local Galois
cohomology groups H1(Fn,η, Cη)div and H1(Fn,η, Cη) as n → ∞ turn out to be
the same, both equal to H1(F∞,η, Cη). Thus, the image of the Kummer map
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over F∞,η coincides with the image of the map

ε∞,η : H1(F∞,η, Cη) −→ H1(F∞,η, E[p∞]) .

A very broad generalization of this fact is proven in [4].

The following conjecture of Mazur will play a fundamental role in most of
the results we will describe. It was first stated and discussed in [21]. We let
XE(F∞) denote the Pontryagin dual of SelE(F∞)p. We can regard XE(F∞) as
a compact Λ-module. It turns out to always be finitely-generated as a Λ-module.
As in [21], we will say that SelE(F∞)p is a cotorsion Λ-module if XE(F∞) is a
torsion Λ-module.

Conjecture. Suppose that E has good ordinary reduction at the primes of F
lying over p. Then SelE(F∞)p is a cotorsion Λ-module.

The above conjecture is proved in [21] under the assumption that SelE(F )p
is finite. We will later cite a much more recent theorem (due to Kato and
Rohrlich) which asserts that SelE(F∞)p is indeed Λ-cotorsion if E is an elliptic
curve defined over Q with good ordinary reduction at p and F is any abelian
extension of Q. Such a theorem had already been proven by Rubin [31] in the
case where E has complex multiplication.

The above conjecture should be valid under somewhat weaker assumptions
about the reduction of E at the primes above p. It should suffice to just assume
that E does not have potentially supersingular reduction at any of those primes.
That assumption is necessary. If E has potentially supersingular reduction at a
prime above p, then one can show that SelE(F∞)p is not Λ-cotorsion. We refer
the reader to [34] for a discussion of this issue and a precise conjecture about
the rank of XE(F∞) as a Λ-module.

2. Behavior Under Congruences

The results that we describe here are mostly from [14]. We will now take F = Q,
partly just to simplify the discussion and partly because the deep theorem of
Kato and Rohrlich mentioned above is then available. We will also assume that
p is an odd prime. We concentrate entirely on the p-primary subgroup of Selmer
groups. Let Q∞ denote the cyclotomic Zp-extension of Q. Suppose that E is
defined over Q and has good ordinary reduction at p.

Let π denote the unique prime of Q∞ lying over p. We will write E for Ep.
It will be useful to note that the image of ε∞,π coincides with the kernel of the
map H1(Q∞,π, E[p∞]) → H1(Q∞,π, E[p∞]). That map turns out to be sur-
jective and so H1(Q∞,π, E[p∞])

/
im
(
ε∞,π

)
is isomorphic to H1(Q∞,π, E[p∞]),

which we will denote by Hp(Q∞, E[p∞]). We will denote H1(Q∞,π, E[p]) by
Hp(Q∞, E[p]).
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If ` is a non-archimedean prime, and ` 6= p, we define

H`(Q∞, E[p∞]) =
⊕

η|`

H1(Q∞,η, E[p∞]),

a finite direct sum because ` is finitely decomposed in Q∞/Q. We similarly
define H`(Q∞, E[p]), just replacing the Galois module E[p∞] by E[p]. We will
ignore the local Galois cohomology groups for archimedean primes. They are
trivial since we are assuming that p is odd.

Although the Galois module E[p] still does not determine SelE(F∞)[p], a
somewhat weaker statement turns out to be true. To formulate it, we intro-
duce “non-primitive” Selmer groups. Suppose that Σ0 is a finite set of non-
archimedean primes of Q. We assume that p 6∈ Σ0. The corresponding non-
primitive Selmer group will be denoted by SelΣ0

E (Q∞)p and differs from the
actual Selmer group in that we omit the local conditions for the primes of Q∞

lying above primes in Σ0. To be precise, SelΣ0

E (Q∞)p is defined to be the kernel
of the following map:

H1(Q∞, E[p∞]) −→
⊕

` 6∈Σ0

H`(Q∞, E[p∞]). (1)

If we take Σ0 to be empty, then SelΣ0

E (Q∞)p = SelE(Q∞)p.
Suppose that E[p] is irreducible and that Σ0 contains the primes where E

has bad reduction. The map H1(Q∞, E[p]) → H1(Q∞, E[p∞])[p] is an isomor-
phism. The role of the assumption about Σ0 is that it implies that the preimage
of SelΣ0

E (Q∞)[p] under that isomorphism is precisely the kernel of the map

H1(Q∞, E[p]) −→
⊕

` 6∈Σ0

H`(Q∞, E[p]). (2)

Note that the groups and maps here indeed depend only on the Galois module
E[p]. This is clear for ` 6= p. For ` = p, it follows because one can characterize
E[p] as the maximal unramified quotient of E[p] for the action of GQp

. This is so
because p is assumed to be odd and therefore the action of the inertia subgroup
of GQp

on the kernel of the reduction map E[p] → E[p] is nontrivial. Thus,

under the above assumption about Σ0, we have a description of SelΣ0

E (Q∞)[p]
in terms of the Galois module E[p].

The local Galois cohomology groupsH`(Q∞, E[p∞]) can be studied by using
standard results, essentially just local class field theory. One finds that

H`(Q∞, E[p∞]) ∼= (Qp/Zp)
δ(E,`)

for any prime ` 6= p, where δ(E, `) is an easily determined non-negative integer.
A theorem of Kato [18], combined with a theorem of Rohrlich [29], implies

that SelE(Q∞)p,div ∼= (Qp/Zp)
λ(E) for some integer λ(E) ≥ 0. This means

that the Pontryagin dual of SelE(Q∞)p is a torsion module over the Iwasawa
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algebra Λ = Zp[[Γ]]. This was conjectured to be so in [21], as we mentioned in
section 1. The integer λ(E) is the Zp-corank of SelE(Q∞)p. Under the assump-
tion that E[p] is irreducible as a Galois module, it is reasonable to make the
conjecture that the Pontryagin dual of SelE(Q∞)[p] is a torsion module over
Λ/pΛ. Equivalently, this would mean that SelE(Q∞)[p] is finite, and hence that
the so-called µ-invariant for SelE(Q∞)p vanishes. If so, then one can prove that
SelE(Q∞)p is a divisible group and so one would have an isomorphism

SelE(Q∞)p ∼= (Qp/Zp)
λ(E).

The fact that SelE(Q∞)p is a cotorsion Λ-module allows one to prove that
the map

SelΣ0

E (Q∞)p −→
⊕

`∈Σ0

H`(Q∞, E[p∞])

is surjective. The kernel of that map is SelE(Q∞)p, and so we have an isomor-
phism

SelΣ0

E (Q∞)p
/
SelE(Q∞)p ∼=

⊕

`∈Σ0

H`(Q∞, E[p∞]) ∼= (Qp/Zp)
δ(E,Σ0) ,

where δ(E,Σ0) =
∑

`∈Σ0
δ(E, `). Let λ(E,Σ0) denote the Zp-corank of

SelΣ0

E (Q∞)p. We then obtain the formula λ(E,Σ0) = λ(E) + δ(E,Σ0).

If SelE(Q∞)p is divisible, then it is a direct summand in SelΣ0

E (Q∞)p, and
so we will have

SelΣ0

E (Q∞) ∼= SelE(Q∞) ⊕

(
⊕

`∈Σ0

H`(Q∞, E[p∞])

)
.

Thus, SelΣ0

E (Q∞)p will also be divisible, and so its Zp-corank λ(E,Σ0) will be

equal to the Fp-dimension of SelΣ0

E (Q∞)[p]. A similar statement is true for all
of the summands in the above direct sum.

Suppose that E1 and E2 are elliptic curves defined over Q, that both have
good ordinary reduction at p, and that E1[p] ∼= E2[p] as GQ-modules. We think
of such an isomorphism as a congruence modulo p between the p-adic Tate
modules for E1 and E2. We will also assume that GQ acts irreducibly on E1[p],
and hence on E2[p]. Suppose that Σ0 is chosen to include all the primes where
E1 or E2 have bad reduction. Under these assumptions, the above discussion
shows that

SelΣ0

E1
(Q∞)[p] ∼= SelΣ0

E2
(Q∞)[p].

Consequently, if SelE1
(Q∞)[p] is finite, then so is SelE2

(Q∞)[p]. Their Fp-
dimensions will be equal and one then obtains the formula

λ(E1) + δ(E1,Σ0) = λ(E2) + δ(E2,Σ0) .
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Since the quantities δ(E1,Σ0) and δ(E2,Σ0) can be evaluated, one can then
determine λ(E2) if one knows λ(E1).

As an example, consider the two elliptic curves

E1 : y2 = x3 + x− 10, E2 : y2 = x3 − 584x+ 5444

which have conductors 52 and 364 = 7 · 52, respectively. We take p = 5 and
Σ0 = {2, 7, 13}. One has a congruence modulo 5 between the q-expansions of
the modular forms corresponding to E1 and E2, ignoring the terms for powers
qn where 7|n. It follows that E1[5] ∼= E2[5] as GQ-modules. It turns out that
SelE1

(Q∞)p = 0. Hence, one has λ(E1) = 0. One finds that δ(E1,Σ0) = 5 and
δ(E2,Σ0) = 0. Consequently, we have λ(E2) = 5.

Such isomorphisms E1[p] ∼= E2[p] are not hard to find for p = 3 and p = 5.
In fact, it is shown in [33] that for p ≤ 5, and for a fixed elliptic curve E1 defined
over Q, one can explicitly describe equations defining an infinite family of non-
isomorphic elliptic curves E2 over Q with E2[p] ∼= E1[p]. Such isomorphisms
are not common for p ≥ 7. However, if one considers cusp forms of weight 2,
then “raising the level” theorems show that such isomorphisms occur for every
odd prime p. They can be formulated in terms of the Jacobian variety attached
to Hecke eigenforms of weight 2. An isomorphism amounts to a congruence
between the q-expansions of two such eigenforms. The results described above
extend without any real difficulty to this case.

A somewhat different approach is taken in [9]. That paper considers Selmer
groups over Q∞ associated to Hecke eigenforms of arbitrary weight which are
ordinary in a certain sense. If one fixes the residual representation and bounds
the prime-to-p part of the conductor, then such eigenforms occur in Hida fam-
ilies which are parametrized by the set of prime ideals of height 1 in a certain
ring R. Such families were constructed by Hida in [17]. If a is a minimal prime
ideal of R, then the height 1 prime ideals of R/a parametrize one “branch” in
such a family. For each eigenform h, one can associate a Galois representation
Vh of dimension 2 over a field F , a finite extension of Qp. Let O be the ring of
integers in F and let π be a uniformizing parameter. Let f = O/(π). One can
choose a Galois-invariant O-lattice Th in Vh and then define a discrete Galois
module Ah = Vh/Th. The representation is ordinary in the sense that Vh has
a 1-dimensional quotient which is unramified for the action of GQp

. Hence Ah

has an unramified quotient which has O-corank 1.
One can define a Selmer group SelAh

(Q∞)p for the Galois module Ah in
essentially the same way as for E[p∞] = Vp(E)/Tp(E). It is a subgroup of
H1(Q∞,Ah) and is defined as the kernel of a map just like (1) (taking Σ0

to be empty). It suffices to define H`(Q∞,Ah) for all primes `. The residual
representation is given by the Galois action on Ah[π]. If we assume that this is
irreducible, as before, then H0(Q∞,Ah) = 0 and one has an isomorphism

H1(Q∞,Ah[π]) −→ H1(Q∞,Ah)[π]. (3)

The preimage of SelAh
(Q∞)[π] under this isomorphism defines an f-subspace Sh

of H1(Q∞,Ah[π]). It can be characterized by local conditions. That is, one can
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define Sh as the kernel of a map like (2) (again taking Σ0 to be empty). However,
those conditions will not generally be determined by the Galois module Ah[π].

For a prime ` not dividing p in some finite set Σ0, which would usually be
nonempty, and for a prime η of Q∞ lying over `, the map

H1(Q∞,η,Ah[π]) −→ H1(Q∞,η,Ah)[π]

may have a nontrivial kernel. Let δη(h) denote the f-dimension of the kernel.
An element of Sh will have a trivial image in H1(Q∞,η,Ah)[π] (and hence
satisfy the local condition for the prime η which occurs in the definition of
SelAh

(Q∞)p), but may have a nontrivial image in H1(Q∞,η,Ah[π]). Thus, for
` ∈ Σ0, one should define H`(Q∞,Ah[π]) to be a certain quotient of the direct
product of the H1(Q∞,η,Ah[π])’s for η|` so that the inclusion A[π] → Ah

induces an isomorphism from H`(Q∞,Ah[π]) to H`(Q∞,Ah)[π]. If one assumes
that SelAh

(Q∞)[π] is finite, then it turns out that SelAh
(Q∞) is a divisible O-

module. Let λ(h) denote its O-corank. Thus, we have λ(h) = dimf(Sh). As
shown in [9], the variation in dimf(Sh) is controlled completely by the δη(h)’s.
They turn out to be constant in each branch of the Hida family, and so λ(h)
will also be constant in each branch. One also obtains a rather simple formula
for the change in the λ-invariant from one branch to another.

What we have described above is the algebraic side of Iwasawa theory. A
substantial part of both [14] and [9] is devoted to the analytic side of Iwa-
sawa theory, the existence and properties of p-adic L-functions. One can also
associate a λ-invariant to p-adic L-functions. A natural domain of definition

for those functions is Homcont(Γ,Q
×

p ). The λ-invariant is the number of ze-
ros, counting multiplicity. In [14], a non-primitive p-adic L-function plays an
important role. In both [14] and [9], the results on the algebraic and on the
analytic sides are quite parallel, although the nature of the arguments is quite
different. The “main conjecture” of Iwasawa theory for elliptic curves (due to
Mazur [21]), or for modular forms (as in [11]), relates the algebraic and analytic
sides in a precise way. It gives an algebraic interpretation of the zeros of the
p-adic L-functions.

If E has complex multiplication, then the main conjecture has been settled
by Rubin [32] in a somewhat more general situation than we are considering
here. The results in [14] and in [9] together with a theorem of Kato [18] imply
that if the main conjecture is valid for one elliptic curve E1, or for one modular
form h1 in a Hida family, then, under the assumption that a certain µ-invariant
vanishes, the main conjecture will also be valid for any other elliptic curve E2

such that E2[p] ∼= E1[p], or for any other modular form h2 in the Hida family.
Thus, roughly speaking, and under suitable assumptions, the validity of the
main conjecture is preserved by congruences. We also want to mention much
more recent work of Skinner and Urban which may go a long way to settling
this conjecture completely.

There are also results for elliptic curves with good supersingular reduction
at p, and more generally for modular forms of weight 2 which are supersingular
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in a certain sense. This topic will be discussed in detail in [13]. The results in
that paper are intended to be the analogues of those in [14], despite the fact that
the corresponding Selmer groups will not be Λ-cotorsion and the corresponding
p-adic L-functions will have infinitely many zeros. The higher weight case is
not yet understood. One finds a discussion of that case on the analytic side in
[27].

3. Artin Twists

The discussion in section 2 mostly concerns the invariant λ(E) associated to
SelE(Q∞)p, and the non-primitive analogues λ(E,Σ0) and SelΣ0

E (Q∞)p corre-
sponding to a suitable set Σ0. We will now include another variable, an Artin
representation σ. We let the base field F be an arbitrary algebraic number field
and denote the cyclotomic Zp-extension of F by F∞. Suppose that K is a finite
Galois extension of F and that K ∩ F∞ = F . The Artin representations to be
considered will factor through ∆ = Gal(K/F ). However, if K is allowed to vary
over the finite extensions of F contained in some infinite Galois extension K of
F satisfying K ∩ F∞ = F , then σ can vary over all Artin representations over
F which factor through Gal(K/F ). One interesting case is where Gal(K/F ) is
a p-adic Lie group.

If v is a non-archimedean prime of F , let ev(K/F ) denote the ramification
index for v in K/F . Let

ΦK/F = {v | v - p, v - ∞, and ev(K/F ) is divisible by p }.

This finite set of primes of F will play an important role in this section. We
always will assume that E has good ordinary reduction at the primes of F lying
over p.

Assume that X is a free Zp-module of finite rank λ(X) and that there is
a Zp-linear action of ∆ on X. Thus, X is a Zp[∆]-module. Suppose that σ is
defined over F , a finite extension of Qp, and that σ is absolutely irreducible. We
define λ(X,σ) to be the multiplicity of σ in VF = X⊗Zp

F , an F-representation
space for ∆ of dimension λ(X). The definition of λ(X,σ) makes sense if we just
assume that X/Xtors is a free Zp-module of finite rank. We let IrrF (∆) denote
the set of irreducible representations of ∆ over F , always assuming that F is
large enough so that irreducible F-representations are absolutely irreducible.
We extend the definition of λ(X, ·) to arbitrary finite-dimension representations
ρ of ∆ by making the map λ(X, ·) a homomorphism from the Grothendieck
group RF (∆) to Z.

Since K ∩ F∞ = F , we can identify ∆ with Gal(K∞/F∞), where K∞ is
KF∞, the cyclotomic Zp-extension of K. Hence there is a natural action of
∆ on SelE(K∞)p. Assume that the Pontryagin dual of SelE(K∞)p is a torsion
Λ-module. If we take X to be that module, then we will denote λ(X,σ) by
λ(E, σ). Let Σ0 be a finite set of primes of F not lying above p or ∞. Then
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there is also a natural action of ∆ on SelΣ0

E (K∞)p. If we take X to be the

Pontryagin dual of SelΣ0

E (K∞)p (which will also be a torsion Λ-module), then
we will denote λ(X,σ) by λ(E,Σ0, σ). Although we will not discuss it here,
one can also describe the difference λ(E,Σ0, σ)−λ(E, σ) in purely local terms.
And so one can reduce the study of the λ(E, σ)’s to studying the λ(E,Σ0, σ)’s
for a suitable choice of Σ0. Proposition 3.1 below concerns these non-primitive
λ-invariants and is one of the main results of [12].

If v is a prime of F lying above p, we let Ev denote the reduction of E at v,
an elliptic curve over the residue field of v. We let kv denote the residue field
for any prime of K lying above v.

Proposition 3.1. Suppose that E has good ordinary reduction at the primes

of F lying above p, that E(K)[p] = 0, that Ev(kv)[p] = 0 for all primes v
of F lying over p, and that SelE(K∞)[p] is finite. Let Σ0 be a finite set of

primes containing ΦK/F , but not containing primes lying over p or ∞. Then

the Pontryagin dual of SelΣ0

E (K∞)p is a projective Zp[∆]-module.

The assumption that SelE(K∞)[p] is finite implies that SelE(K∞)p is Λ-
cotorsion.

A corollary of the above result is that the invariants λ(E,Σ0, ρ) behave
in the following way. Here we let ρ be an arbitrary representation of ∆ over
F . Let O be the integers in F . We can choose a ∆-invariant O-lattice in the
underlying representation space for ρ. Reducing modulo the maximal ideal m of
O, we obtain a representation ρ̃. Its semisimplification ρ̃ss is well-defined. It is
a representation over the residue field f = O/m. Then, under the assumptions
in the above proposition, we have the following result:

Corollary 3.2. Suppose that the assumptions in proposition 3.1 are satisfied.

Assume that ρ1 and ρ2 are representations of ∆ such that ρ̃ss1
∼= ρ̃ss2 . Then

λ(E,Σ0, ρ1) = λ(E,Σ0, ρ2). That is, we have a linear relation

∑

σ

m1(σ)λ(E,Σ0, σ) =
∑

σ

m2(σ)λ(E,Σ0, σ)

where σ varies over the irreducible representations of ∆ over F and mi(σ)
denotes the multiplicity of σ in ρi for i = 1, 2.

If ρ1 6∼= ρ2, but ρ̃ss1
∼= ρ̃ss2 , then the corresponding linear relation is nontrivial.

Such nontrivial relations occur whenever |∆| is divisible by p. We also remark
that the conclusion in the corollary means that the map λ(E,Σ0, ·) fromRF (∆)
to Z factors through the reduction map RF (∆) → Rf(∆).

The assumptions in the corollary can be weakened. As shown in [12], one can
omit the assumptions about E(K)[p] and Ev(kv)[p] for v|p. It suffices to assume
that SelE(K∞)[p] is finite and that Σ0 is chosen as in proposition 3.1. The
Pontryagin dual of SelΣ0

E (K∞)p may fail to be a projective Zp[∆]-module, but
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it still turns out to have a weaker property which we call “quasi-projectivity”.
The linear relation in corollary 3.2 still follows. We call such a linear relation
a “congruence relation” because it arises from an isomorphism ρ̃ss1

∼= ρ̃ss2 . We
think of such an isomorphism as a congruence between the two representations
ρ1 and ρ2. Note that the semisimplifications of E[p]⊗ ρ̃1 and E[p]⊗ ρ̃2 will also
be isomorphic.

Assume now that Π is a normal subgroup of ∆ and that Π is a p-group. Let
∆0 = ∆/Π. Of course, ∆0 = Gal(K0/F ) for some subfield K0 of K. Since f has
characteristic p, one sees easily that every irreducible representation of ∆ over
f factors through ∆0. A result in modular representation theory implies that
if ρ1 is a representation of ∆ over F , then there exists a representation ρ2 of
∆ which factors through ∆0 such that ρ̃ss1

∼= ρ̃ss2 . Furthermore, one can show
that SelE(K∞)[p] is finite if and only if SelE(K0,∞)[p] is finite, where K0,∞ is
the cyclotomic Zp-extension of K0. Thus, it suffices to assume the finiteness of
SelE(K0,∞)[p]. The corresponding congruence relation from corollary 3.2 then
shows that λ(E,Σ0, ρ1) can be expressed just in terms of the λ(E,Σ0, σ)’s for
σ ∈ IrrF (∆0). Thus, the function λ(E,Σ0, ·) on IrrF (∆) is completely deter-
mined by its restriction to IrrF (∆0).

In the special case where ∆ is itself a p-group, one obtains the simple formula
λ(E,Σ0, σ) = deg(σ)λ(E,Σ0, σ0), where σ0 is the trivial representation of ∆.
In this case, that formula was proven in [16]. It is stated there in a somewhat
different form. One needs to assume that SelE(F∞)[p] is finite.

There are results of a similar nature in [3]. They concern irreducible Artin
representations σ which factor through G = Gal(K/F ), where K is generated
over F by all the p-power roots of some α ∈ F× (subject to some mild
restrictions on α). This is called a “false Tate extension” of F . Note that
G = Gal(K/F ) is a non-commutative p-adic Lie group of dimension 2. Since K
contains µp∞ , the cyclotomic Zp-extension F∞ of F is contained in K. There-
fore, the earlier assumption that K∩F∞ = F is not satisfied here. So we instead
let ∆ = Gal(K/F∞) and let ∆0 = Gal(F (µp∞)/F∞). Note that ∆0 is cyclic
and has order dividing p − 1, and that the kernel Π of the map ∆ → ∆0 is a
pro-p group. These facts simplify the representation theory significantly, both
in characteristic 0 and in characteristic p.

If σ′ is an irreducible representation of ∆, one can define λ(E, σ′) essentially
as before. One can then define λ(E, ρ′) for any representation ρ′ of ∆. We
define λ(E, σ) to be λ(E, σ|∆) for all irreducible Artin representations σ of
G. The irreducible representations of ∆0 are 1-dimensional. They are powers
of ω, the p-power cyclotomic character which has order dividing p − 1. Those
characters are restrictions of characters of Gal(F (µp)/F ) to ∆. The results in
section 4 of [3] give formulas for λ(E, σ) in terms of the λ(E,ωi)’s under a
certain hypothesis which we state below. Such formulas are also derived in [12],
but under a somewhat different hypothesis.

We want to briefly discuss these hypotheses. Let X denote the Pontryagin
dual of SelE(K)p. One can view X as a module over the completed group ring
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Zp[[G]], the Iwasawa algebra for the 2-dimensional p-adic Lie group G. The
module X is finitely-generated over that ring. The key hypothesis in [3] is the
following:

1: X/Xtors is finitely-generated as a Zp[[∆]]-module.

Now it is known that Zp[[G]] is Noetherian. It follows that Xtors is killed by a
fixed power of p. Note also that X/Xtors is the Pontryagin dual of SelE(K)p,div.
Under the above hypothesis, the results in [3] are proved by a K-theoretic
approach. It may be possible to prove the results in [12] by such an approach.
The proofs there work under the following hypothesis.

2: SelE′

(
F (µp∞)

)
[p] is finite for at least one elliptic curve E′ in the F -isogeny

class of E.

One can deduce hypothesis 1 from hypothesis 2. However, the precise relation-
ship between these hypotheses is not clear at present.

The results described in this section can be reformulated in another way.
The analogy with the results mentioned in section 2 then becomes clearer. One
can give an alternative definition of λ(E, σ) as the O-corank of a Selmer group
over F∞ associated to the F-representation space Vp(E) ⊗ σ for GF∞

One
chooses a Galois invariant O-lattice. We denote the corresponding quotient by
E[p∞]⊗ σ, which is a discrete, divisible O-module whose O-rank is 2dimF (σ).
We then define a Selmer group essentially as for E[p∞] itself. It is a subgroup of
the Galois cohomology group H1(F∞, E[p∞]⊗ σ). For primes of F∞ not lying
over p, cocycle classes are required to be locally trivial. For primes π lying over
p, cocycle classes are required to have a trivial image in H1(F∞,π, Eπ[p

∞]⊗σ).
The proof that λ(E, σ) coincides with the O-corank of SelE[p∞]⊗σ(F∞) is

a straightforward argument using the restriction maps for the global and local
H1’s. Note that if ρ1 and ρ2 are representations of ∆ and ρ̃ss1

∼= ρ̃ss2 , then

E[p]⊗ ρ̃ss1
∼= E[p]⊗ ρ̃ss2 .

Thus, the residual representations for Vp(E)⊗ ρ1 and Vp(E)⊗ ρ2 will at least
have isomorphic semisimplifications. Chapter 4 in [12] gives a proof of corollary
3.2 from this point of view, although only under more stringent hypotheses.

4. Parity

Continuing with the situation in section 3, the Birch and Swinnerton-Dyer
conjecture for E over the field K asserts that the rank of E(K) and the order
of vanishing of the Hasse-Weil L-function L(E,K, s) at s = 1 should be the
same. One can factor L(E,K, s) as a product of L-functions L(E, σ, s), where
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σ varies over the irreducible representations of ∆ = Gal(K/F ) over C, each
with multiplicity deg(σ). A refined form of the Birch and Swinnerton-Dyer
conjecture asserts that, for every such σ, the multiplicity r(E, σ) of σ in the C-
representation space E(K)⊗Z C for ∆ and the order of vanishing of L(E, σ, s)
at s = 1 should be the same. This refined conjecture is stated in [28] where it
is derived from the Birch and Swinnerton-Dyer conjecture and a conjecture of
Deligne and Gross.

The functional equation for L(E, σ, s) relates that function to L(E, σ̌, 2−s),
where σ̌ is the contragredient of σ. If σ is self-dual (i.e., σ ∼= σ̌), then that
functional equation will have a root number W (E, σ) ∈ {±1} which would de-
termine the parity of the order of vanishing at s = 1. The analytic continuation
and functional equation for the L-functions mentioned above are conjectural in
general, but there is a precise definition of W (E, σ) due to Deligne [5]. General
formulas for W (E, σ) are derived in [30]. If one just considers the parity of
the multiplicity and the order of vanishing, then one is led to conjecture that
W (E, σ) = (−1)r(E,σ) for any self-dual representation σ of ∆.

It has proved easier to study a Selmer group version of the above conjec-
ture. Fix embeddings of Q into C and into Qp. We can then realize σ as an

irreducible representation of ∆ over Q, and then over Qp. Let XE(K) denote
the Pontryagin dual of SelE(K)p. Let s(E, σ) denote the multiplicity of σ in
the Qp-representation space XE(K)⊗Zp

Qp. If the p-primary subgroup of the
Tate-Shafarevich group for E over K is finite, then one has s(E, σ) = r(E, σ).
The parity conjecture that we will discuss here is the equality:

W (E, σ) = (−1)s(E,σ) (4)

for any self-dual irreducible representation of ∆. We will assume that p is odd.
There has been significant progress on this conjecture in certain cases. The

first results go back to [1], and later [20], [15], and [24]. More recently, Nekovar
([25], [26]) proved the conjecture when E is defined over Q and has good ordi-
nary reduction at p, and σ is trivial. This is now known for arbitrary elliptic
curves over Q. (See [7] and [19].) Subsequently, various results for more general
self-dual Artin representations σ have been proved in [7], [8], which are part
of a long series of papers, and in [22], [23]. Results in [3] and [12] also have a
bearing on this question, as we will explain.

Under the assumption that SelE(K∞)p is Λ-cotorsion, one can define λ(E, σ)
as before. Also, recall that self-dual irreducible representations σ of a finite
group are of two types: orthogonal or symplectic. The following result is proved
in [12].

Proposition 4.1. Assume that σ is an irreducible orthogonal representation of

∆. Then we have λ(E, σ) ≡ s(E, σ) (mod 2).

One can use this result together with the congruence relations in section 3 to
show that W (E, σ) behaves well under congruences. To be precise, the following
result is proven in [12]:
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Proposition 4.2. Assume that E has semistable reduction at the primes of F
lying above 2 and 3 and that SelE(K∞)[p] is finite. Let σ1 and σ2 be irreducible

orthogonal representations of ∆. Assume that σ̃ss
1

∼= σ̃ss
2 . Then (4) holds for

σ = σ1 if and only if (4) holds for σ = σ2.

There is also a version for arbitrary orthogonal representations ρ of ∆. This kind
of result is proven in [12] with a significantly weaker assumption concerning the
primes above 2 or 3. It should be possible to eliminate that assumption entirely.
As for symplectic irreducible representations σ, one has W (E, σ) = 1, and so
one expects s(E, σ) to be even. There seem to be no results known in that
direction. However, it is not hard to show that r(E, σ) is even if σ is symplectic.
Thus, if the p-primary subgroup of the Tate-Shafarevich group for E over K is
finite, then s(E, σ) is indeed even.

In the rest of this article, we will consider the situation mentioned in section
3 where ∆ = Gal(K/F ) has a normal p-subgroup Π, K0 is the fixed field for
Π, and ∆0 = Gal(K0/F ). We assume that K ∩ F∞ = F and let K0,∞ be
K0F∞, the cyclotomic Zp-extension of K0. One can show that SelE(K∞)[p]
is finite if and only if SelE(K0,∞)[p] is finite. Let us assumes the finiteness of
SelE(K0,∞)[p] and the semistability assumption for primes above 2 and 3 in
proposition 4.2. One can then derive the following consequence: If (4) is valid

for all irreducible orthogonal representations factoring through ∆0, then (4) is

valid for all irreducible orthogonal representations factoring through ∆.

As an illustration, one can consider subfields of F (A[p∞]), where A is
an elliptic curve defined over F . We will assume that the homomorphism
GF → AutZp

(
Tp(A)

)
giving the action of GF on Tp(A) is surjective. Thus,

Gal
(
F (A[p∞])/F

)
∼= GL2(Zp) and so F (A[p∞]) will contain a tower of sub-

fields Kn such that ∆n = Gal(Kn/F ) is isomorphic to PGL2(Z/p
n+1Z) for all

n ≥ 0. Let K = ∪nKn. We will consider Artin representations over F which
factor through Gal(K/F ), and hence through ∆n for some n ≥ 0.

To apply the results in [12] to K = Kn for any n ≥ 0, one may just
assume that SelE(K0,∞)[p] is finite. It turns out that all irreducible representa-
tions of PGL2(Z/p

n+1Z) are self-dual and orthogonal. Thus, under the assump-
tions about E in proposition 4.2 (or various alternative hypotheses), it follows
that (4) holds for all the irreducible Artin representations factoring through
Gal(K/Q) if it holds for all irreducible Artin representations factoring through
∆0 = Gal(K0/F ). Two of those Artin representations factoring through ∆0 are
1-dimensional, two are p-dimensional, and all the other irreducible Artin rep-
resentations of Gal(K/Q) are even dimensional. If one just assumes that (4) is
valid for the four odd-dimensional irreducible representations σ just mentioned,
then one finds that (4) is valid for a certain infinite family of irreducible Artin
representations σ.

Assume that F = Q, that A = E, and that the surjectivity hypothesis in
the previous paragraph is satisfied. Then (4) is valid for the two 1-dimensional
representations of ∆0. This follows from the results of Nekovar, Kim, and of T.
and V. Dokchitser cited above. Under mild hypotheses on the reduction type,
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one then obtains (4) for the two p-dimensional Artin representations factoring
through ∆0. This follows from a result proven in [3], and also in [6] under certain
stronger hypotheses, establishing (4) when σ is trivial and E is an elliptic curve
without complex multiplication which has an isogeny of degree p over the base
field. One applies this result to certain subfields of K0.

The results in [3] about the parity conjecture (4) have a similar form.
They concern irreducible orthogonal Artin representations which factor through
the Galois group G = Gal(K/F ), where K is a p-adic Lie extension of F .
A key assumption in [3] is hypothesis 1 discussed in section 3. One takes
∆ = Gal(K/F∞). The cases considered in that paper have the following prop-
erty: ∆ has a normal pro-p subgroup Π such that ∆0 = ∆/Π is abelian and
of order prime to p. One can identify ∆0 with a quotient of G. In addition
to the case where K is the false Tate extension mentioned in section 3, they
consider the case where K = F (E[p∞]), E is an elliptic curve without complex
multiplication, and E has an isogeny of degree p over F . The result cited in
the previous paragraph concerning such an elliptic curve establishes (4) for the
self-dual irreducible representations of ∆0, i.e., the characters of ∆0 of order 1
or 2. Under some mild additional hypotheses, they can then prove (4) for all
the other irreducible orthogonal Artin representations which factor through G.

Mazur and Rubin [22] study the case where ∆ = Gal(K/F ) is a dihedral
group of order 2pn for n ≥ 1. One can then take ∆0 to be the quotient group
of ∆ of order 2. Let K0 be the corresponding quadratic extension of F . All the
irreducible representations of ∆ are orthogonal. There are two of degree 1, which
we call ε0 and ε1. They factor through ∆0. If σ is an irreducible representation
of ∆ which does not factor through ∆0, then σ has degree 2. Furthermore,
we have σ̃ss ∼= ε̃0 ⊕ ε̃1. Note also that the Zp-corank of SelE(K0)p is equal to
s(E, ε0) + s(E, ε1). The results in [22] are stated under an assumption about
the parity of the Zp-corank of SelE(K0)p. In essence, and under various rather
mild sets of hypotheses, the results in [22] establish (4) for the σ’s of degree 2
under the assumption that

W (E, ε0)W (E, ε1) = (−1)s(E,ε0)+s(E,ε1) .

This assumption is somewhat weaker than the assumption that (4) is valid for
the irreducible representations factoring through ∆0, namely ε0 and ε1. Mazur
and Rubin use such a result to show that the Zp-corank of SelE(K)p is large
for certain Galois extensions K/F . Such an assertion follows under hypotheses
which imply that W (E, σ) = −1 for many self-dual irreducible representations
σ of Gal(K/F ). If s(E, σ) is odd, then s(E, σ) is positive. This idea is exploited
in [23]. It is also pursued in [3] and [12], although much more conditionally.

One can define W (E, ρ) for any self-dual Artin representation ρ over a
number field F . One can also extend the definition of s(E, ·) to all Artin rep-
resentations ρ over F . Then (4) can be restated as

W (E, ρ) = (−1)s(E,ρ) (5)
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for all self-dual Artin representations ρ over F . Following the theme of this
article, one would like to prove that the validity of (5) is preserved by congru-
ences. That is, if (5) is valid for ρ1 and if ρ̃ss1

∼= ρ̃ss2 , then (5) should also be
valid for ρ2. We believe that such a result is approachable. The results in [22]
discussed above go a long way in the case where ∆ is a dihedral group of order
2pn. There are also remarkable results concerning (5) in [7] which go a long way
in the case where ∆0 is abelian and also in the case where ρ is a permutation
representation.
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