The Derivative Formula for Kubota-Leopoldt *p*-adic *L*-functions at Trivial Zeros

Ralph Greenberg

University of Washington Seattle, Washington, USA

June 21st, 2012

Introduction

Suppose that ψ is an even Dirichlet character and that p is an odd prime. The Kubota-Leopoldt p-adic L-function $L_p(s, \psi)$ is an analytic function of a p-adic variable characterized by the interpolation property

$$L_{p}(1-n,\psi) = (1-\psi_{n}(p)p^{n-1})L(1-n,\psi_{n})$$

for all integers $n \ge 1$. Here $\psi_n = \psi \omega^{-n}$, where ω is the Dirichlet character of conductor p satisfying $\omega(a) \equiv a \pmod{p\mathbf{Z}_p}$ for all integers a.

In particular, we have $L_p(0,\psi) = (1-\psi_1(p))L(0,\psi_1)$. Thus, $L_p(s,\psi)$ vanishes at s = 0 when $\psi_1(p) = 1$. This talk will mostly be about the derivative $L'_p(0,\psi)$ in that case.

$L_p(s, \psi)$ as a function on a family of Galois representations

In terms of Galois representations, one can think of $L(1 - n, \psi_n)$ in the above interpolation property as $L(0, V_{n-1})$, where V_{n-1} is the 1-dimensional vector space over \mathbf{Q}_p on which $G_{\mathbf{Q}} = \operatorname{Gal}(\overline{\mathbf{Q}}/\mathbf{Q})$ acts by

$$\psi_n \chi^{n-1} = \psi \omega^{-n} \chi^{n-1} = \psi \omega^{-1} \omega^{1-n} \chi^{n-1} = \psi_1 (\chi \omega^{-1})^{n-1} = \psi_1 \kappa^{n-1} ,$$

where $\chi : G_{\mathbf{Q}} \to \mathbf{Z}_{p}^{\times}$ is defined by the action of $G_{\mathbf{Q}}$ on the group $\mu_{p^{\infty}}$ of *p*-power roots of unity and $\kappa = \chi \omega^{-1}$. One defines $L(z, V_{n-1})$ by an Euler product as usual.

Notice that κ is a homomorphism from $G_{\mathbf{Q}}$ to $1 + p\mathbf{Z}_{p}$. Thus, it makes sense to write V_{-s} for $s \in \mathbf{Z}_{p}$, the 1-dimensional space on which G_{Q} acts by $\psi_{1}\kappa^{-s}$. One can then regard $L_{p}(s,\psi)$ as a function of the family of Galois representations V_{-s} . They all have the same residual representation as ψ_{1} . Furthermore, notice that $G_{\mathbf{Q}}$ acts on V_{0} by ψ_{1} .

The homomorphism κ factors through $\operatorname{Gal}(\mathbf{Q}_{\infty}/\mathbf{Q})$, where \mathbf{Q}_{∞} denotes the cyclotomic \mathbf{Z}_{p} -extension of \mathbf{Q} , a subfield of $\mathbf{Q}(\mu_{p^{\infty}})$. Let $\Gamma = \operatorname{Gal}(\mathbf{Q}_{\infty}/\mathbf{Q})$. Thus, $\Gamma \cong 1 + p\mathbf{Z}_{p} \cong \mathbf{Z}_{p}$.

If K is a finite extension of \mathbf{Q} and $p \nmid [K : \mathbf{Q}]$, then $K_{\infty} = K\mathbf{Q}_{\infty}$ is a Galois extension of K and $\operatorname{Gal}(K_{\infty}/K)$ is canonically isomorphic to Γ . We will regard κ as the corresponding homomorphism

$$G_K \longrightarrow \operatorname{Gal}(K_\infty/K) \longrightarrow \Gamma = \operatorname{Gal}(\mathbf{Q}_\infty/\mathbf{Q}) \longrightarrow 1 + p\mathbf{Z}_p$$
.

Then $\{ \kappa^{s} \mid s \in \mathbf{Z}_{p} \}$ is a subset of $\operatorname{Hom}_{cont}(G_{K}, \overline{\mathbf{Q}}_{p}^{\times})$

A *p*-adic analogue of a theorem of Lerch

Let *d* be the conductor of ψ_1 . Assume that $p \nmid d$. Bruce Ferrero and I proved the following formula in 1977:

$$L'_p(0,\psi) = \sum_{c=1}^d \psi_1(c) \log_p(\Gamma_p(c/d)) + L_p(0,\psi) \log_p(d)$$

Here $\Gamma_p(x)$ is Morita's *p*-adic Gamma function and log_p is the *p*-adic log function (defined on $1 + p\mathbf{Z}_p$ and extended to \mathbf{Z}_p^{\times}). The interpolation property for $\Gamma_p(x)$ is

$$\Gamma_{p}(n) = (-1)^{n} \prod_{\substack{a=1 \ p \nmid a}}^{n-1} a$$

This extends to a continuous function for $x \in \mathbf{Z}_p$.

At precisely the same time that Ferrero and I proved the above formula, Gross and Koblitz proved a formula relating certain products of the $\Gamma_p(c/d)$'s to Gaussian sums for \mathbf{F}_{p^f} , where f is the order of $p + d\mathbf{Z}$ in $(\mathbf{Z}/d\mathbf{Z})^{\times}$. If $\psi_1(p) = 1$, then those products show up in the above formula for $L'_p(0, \psi_1)$, which is then a linear combination of p-adic logs of algebraic numbers. As a consequence, one can prove that $L'_p(0, \psi_1) \neq 0$ by using a theorem from transcendental number theory (the Baker-Brumer theorem).

In the above, one extends log_p to a homomorphism $log_p : \mathbf{Q}_p^{\times} \to \mathbf{Z}_p$ by taking $log_p(p) = 0$. The kernel of log_p is $\mu_{p-1}p^{\mathbf{Z}}$.

A special case

Suppose ψ_1 has order 2. Let F be the corresponding imaginary quadratic field. Since $\psi_1(p) = 1$, we have $p^h = \pi \overline{\pi}$ where $\pi \in \mathcal{O}_F$ and $h = h_F$, the class number of F. Then the formula becomes

$$L_p'(0,\psi_1) = \frac{4}{|\mathcal{O}_F^{\times}|} \cdot log_p(\overline{\pi}) = \mathcal{L}(\psi_1) \cdot \mathcal{L}(0,\psi_1)$$

where the " \mathcal{L} -invariant" $\mathcal{L}(\psi_1)$ is defined by

$$\mathcal{L}(\psi_1) = rac{\log_p(rac{\pi}{\overline{\pi}})}{\operatorname{ord}_p(rac{\pi}{\overline{\pi}})}$$

The nonvanishing of $L'_p(0, \psi_1)$ becomes clear in this case.

New proofs.

Another quite different proof of the above derivative formula has been given in a recent paper by Dasgupta, Darmon, and Pollack. The proof works even for the *p*-adic *L*-functions over totally real number fields constructed by Deligne and Ribet.

In the rest of this talk, we describe a new proof of the formula for $L'_p(0,\psi_1)$ when $\psi_1(p) = 1$ (due to Benjamin Lundell, Shaowei Zhang, and myself). In place of the Gross-Koblitz formula, it uses properties of a certain *p*-adic *L*-function of two-variables, including the so-called Main Conjecture for that function (proved by Karl Rubin).

We begin by briefly outlining a proof of a derivative formula for another p-adic L-function using a two-variable approach.

- For an elliptic curve E/\mathbf{Q} with good, ordinary or multiplicative reduction at p, a p-adic L-function $L_p(s, E)$ can be defined.
- Mazur & Swinnerton-Dyer (1974),
- Mazur, Tate, & Teitelbaum (1985).
- Just as for the Kubota-Leopoldt *p*-adic *L*-function, the interpolation property for $L_p(s, E)$ sometimes forces that function to have a zero. This happens when *E* has split, multiplicative reduction at *p*. In that case, one always has $L_p(1, E) = 0$.

The formula for $L'_p(1, E)$, when E has split multiplicative reduction at p

The formula proposed by Mazur, Tate, and Teitelbaum is

$$L'_p(1,E) = \mathcal{L}(E) \cdot \frac{L(1,E)}{\Omega_E}$$
,

where

$$\mathcal{L}(E) = rac{\log_p(q_E)}{ord_p(q_E)}$$

and $q_E \in \mathbf{Q}_p^{\times}$ is defined by

$$j_E = rac{1}{q_E} + 744 + 196884 q_E +$$

It is the "Tate period" for E.

It was proved by K. Barré-Sirieix, G. Diaz, F. Gramain, and G. Philibert that q_E is transcendental.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Therefore, $\mathcal{L}(E) \neq 0$.

We briefly outline the proof by Glenn Stevens and myself for the formula.

The paper of Mazur, Tate, and Teitelbaum constructs *p*-adic *L*-functions $L_p(s, f)$ for modular forms *f* of arbitrary weight. The function $L_p(s, E)$ is $L_p(s, f_E)$, where f_E is the modular form of weight 2 corresponding to *E*.

By Hida Theory, there is a Hida family of modular forms f_k , where $k \ge 2$, such that f_k is of weight k and $f_2 = f_E$.

The main ingredient in our proof: There is a two-variable *p*-adic *L*-function $L_p(s, k)$ (constructed by Kitagawa-Mazur) such that, when *k* is an integer ≥ 2 , we have

$$L_p(s,k) = c_k L_p(s,f_k)$$

for some constants c_k with $c_2 = 1$.

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

1. Assuming that L(z, E) has an even order zero at z = 1, $L_p(s, E)$ has an odd order zero at s = 1 and so does $L_p(s, f_k)$ at $s = \frac{k}{2}$ when $k \ge 2$. Thus, $L_p(\frac{k}{2}, k) = 0$ for all $k \in \mathbb{Z}_p$.

2.
$$L_p(s, 2) = L_p(s, E)$$

3. $L_p(1, k) = (1 - \alpha_p(k)^{-1})L_p^*(k)$ for $k \in \mathbb{Z}_p$, where $\alpha_p(k)$ and $L_p^*(k)$ are analytic functions for $k \in \mathbb{Z}_p$. Furthermore,

$$\alpha_p(2) = 1,$$
 and $L_p^*(2) = \frac{L(1, E)}{\Omega_E}$

Computation of $L'_p(1, E)$

The properties on the previous slide imply that

$$L'_{p}(1,E) = -2\alpha'_{p}(2)L^{*}_{p}(2) = -2\alpha'_{p}(2)\frac{L(1,E)}{\Omega_{E}}$$

Thus, one must prove that $\alpha'_p(2) = -\frac{1}{2}\mathcal{L}(E)$. This is proved by a Galois cohomology argument. It involves the Galois representation attached to the Hida family. The Tate period enters the argument since the extension class associated with the exact sequence

$$0 \longrightarrow \mu_{p^{\infty}} \longrightarrow E[p^{\infty}] \longrightarrow \mathbf{Q}_{p}/\mathbf{Z}_{p} \longrightarrow 0$$

is given by the Kummer cocycles defined by p-power roots of q_E .

The two-variable p-adic *L*-function of Katz. Its domain of definition.

Suppose that K is an imaginary quadratic field and that p splits in K. There are two prime ideals \mathfrak{p} and $\overline{\mathfrak{p}}$ lying over p. The map $\kappa : G_K \to 1 + p \mathbb{Z}_p$ was defined before. It factors through $\operatorname{Gal}(K_{\infty}/K)$, where K_{∞} is the cyclotomic \mathbb{Z}_p -extension of K.

Let L_{∞} denote the unique \mathbf{Z}_p -extension of K in which $\overline{\mathfrak{p}}$ is unramified. The prime \mathfrak{p} is ramified in L_{∞}/K . We choose λ so that it factors through $\operatorname{Gal}(L_{\infty}/K)$ and defines an isomorphism

$$\operatorname{Gal}(L_{\infty}/K) \longrightarrow 1 + p \mathbf{Z}_{p}$$
.

We can make the choice of λ unique by requiring that it be the Galois representation corresponding to a Grossencharacter for K of type A_0 with infinity type (1, 0).

 $\operatorname{Hom}_{cont}\left(G_{\mathcal{K}},\overline{\mathbf{Q}}_{p}^{\times}\right) \text{ contains } \left\{ \left.\kappa^{s}\lambda^{k}\right. \middle| \left(s,k\right) \in \left\{\mathbf{Z}_{p}\times \left\{\mathbf{Z}_{p}\right\}_{s}, \left\{\mathbf{Z}_{p},\mathbf{Z}_{p}\right\}_{s}\right\}_{s} \right\} \in \left\{\mathbf{Z}_{p}, \left\{\mathbf{Z}_{p},\mathbf{Z}_{p}\right\}_{s}, \left\{\mathbf{Z}_{p},\mathbf{Z}_{p}\right\}_{s}\right\}$

Let $\psi_1 = \psi \omega^{-1}$ be as before. We assume from here on that $\psi_1(p) = 1$. Let *F* be the cyclic extension of **Q** cut out by ψ_1 . Thus, *p* splits completely in *F*/**Q**.

Choose any imaginary quadratic field K in which p splits completely and such that $K \cap F = \mathbf{Q}$. Let $\varphi = \psi_1|_{G_K}$.

The two-variable p-adic *L*-function $L_p(\cdot)$ is defined on the following domain: $\operatorname{Hom}_{cont}(G_K, \overline{\mathbf{Q}}_p^{\times})$. We will consider the restriction of that function to

$$\{ \varphi \kappa^{\boldsymbol{s}} \lambda^{\boldsymbol{k}} \mid (\boldsymbol{s}, \boldsymbol{k}) \in \mathsf{Z}_{p} imes \mathsf{Z}_{p} \}$$

Or, one can regard $L_{\mathfrak{p}}(\cdot)$ as a function on the family $\operatorname{Ind}_{G_{\kappa}}^{G_{\mathbf{Q}}}(\varphi \kappa^{s} \lambda^{k})$ of 2-dimensional Galois representations.

Properties of
$$L_{\mathfrak{p}}(\varphi \kappa^{s} \lambda^{k}) = L_{\mathfrak{p}}(s, k)$$

1. Interpolation property : For $(s, k) \in \mathbb{Z} \times \mathbb{Z}$ satisfying $1 \le s \le k$. For fixed $k \in \mathbb{Z}$, $k \ge 1$,

 $L_{\mathfrak{p}}(s,k) = c_{k+1} \cdot (\text{the } p - \text{adic } L - \text{function for a CM form of weight } k+1)$

with precise constants c_{k+1} .

2. Gross Factorization Theorem: For the line k = 0. Let $\varepsilon =$ the quadratic character corresponding to K. We have

$$L_{\mathfrak{p}}(0,s) = L_{\mathfrak{p}}(\varphi \kappa^{s}) = L_{\rho}(s,\psi)L_{\rho}(1-s,\varepsilon \psi_{1}^{-1})$$

So $L_{\mathfrak{p}}(0,0) = 0$ and $\left. \frac{dL_{\mathfrak{p}}(s,0)}{ds} \right|_{s=0} = \left. L_{p}'(0,\psi)L_{p}(1,\varepsilon\psi_{1}^{-1}). \right.$

3. For the line s = 0. Katz's Kronecker Limit Formula:

$$\frac{dL_{\mathfrak{p}}(0,k)}{dk}\Big|_{k=0} = L(0,\psi_1)L_{\mathfrak{p}}(1,\varepsilon\psi_1^{-1})$$

(ロ)、(型)、(E)、(E)、 E) の(の)

Thus, the ratio
$$\left(\frac{dL_{\mathfrak{p}}(s,0)}{ds}\Big|_{s=0}\right) / \left(\frac{dL_{\mathfrak{p}}(0,k)}{dk}\Big|_{k=0}\right)$$
 is equal $L'_{p}(0,\psi) / L(0,\psi_{1}).$

This should be $\mathcal{L}(\psi_1)$.

The linear term in the power series expansion for $L_{p}(s, k)$ is as + bk, where

$$a = \left. \frac{dL_{\mathfrak{p}}(s,0)}{ds} \right|_{s=0}, \qquad b = \left. \frac{dL_{\mathfrak{p}}(0,k)}{dk} \right|_{k=0}$$

One should have $a/b = \mathcal{L}(\psi_1)$.

We will now assume (for simplicity) that ψ_1 has order dividing p-1.

This direction involves $\mathcal{L}(\psi_1)$. Let D_{∞} be a \mathbf{Z}_p -extension of K. Then

$$K \subset D_{\infty} \subset K_{\infty}L_{\infty}$$

Then $\operatorname{Gal}(K_{\infty}L_{\infty}/D_{\infty})$ is isomorphic to \mathbf{Z}_p . Suppose δ is a topological generator.

Then $\kappa^s \lambda^k$ factors through $\operatorname{Gal}(D_\infty/K)$ when $\kappa^s \lambda^k(\delta) = 1$. The set

$$\{ (s,k) \mid \kappa^s \lambda^k(\delta) = 1 \}$$

is the line as + bk = 0, where $a = log_p(\kappa(\delta)), \ b = log_p(\lambda(\delta)).$

3. The direction where $L_{\mathfrak{p}}(s, k)$ has a double zero

Recall that ψ_1 is an odd character of $\operatorname{Gal}(F/\mathbf{Q})$ and that p splits completely in F/\mathbf{Q} . There is a \mathbf{Z}_p -extension F_∞ of F which is Galois over \mathbf{Q} and such that $\operatorname{Gal}(F/\mathbf{Q})$ acts on $\operatorname{Gal}(F_\infty/F)$ by the character ψ_1 . Completing at a prime v above p, we have $F_v = \mathbf{Q}_p$ and $F_{\infty,v}$ is a \mathbf{Z}_p -extension of \mathbf{Q}_p .

Any Z_p -extension of Q_p is determined by its universal norm subgroup which is of the form $\mu_{p-1}\langle q \rangle$, where $ord_p(q) \neq 0$ (except for the unramified Z_p -extension of Q_p). Excluding the unramified Z_p -extension, a Z_p -extension is determined by $\frac{log_p(q)}{ord_p(q)}$.

In the special case where ψ_1 has order 2, the universal norm subgroup for $F_{\infty,\nu}$ contains $\pi/\overline{\pi}$. (Recall that $\pi \in \mathcal{O}_F$ and $\pi\overline{\pi} = p^h$.) In general, one applies an idempotent to some *p*-unit π in *F*. There is one \mathbf{Z}_{p} -extension D_{∞} of K such that

$$D_{\infty,\overline{\mathfrak{p}}} = F_{\infty,v}$$

One associates a Selmer group to the representation $\varphi = \psi_1|_{G_K}$ over any \mathbf{Z}_p -extension D_∞ of K and also over the \mathbf{Z}_p^2 -extension $K_\infty L_\infty$ of K. The latter Selmer group has a characteristic ideal generated (essentially) by $L_p(s, k)$. This is a special case of the "Main Conjecture" formulated by Yager and proved by Rubin.

5. The direction where $L_{\mathfrak{p}}(s, k)$ has a double zero

For any \mathbb{Z}_{ρ} -extension D_{∞}/K , we denote the Selmer group for φ by $Sel_{\varphi}(D_{\infty})$. There is a natural action of $Gal(D_{\infty}/K)$ on that object.

Let I denote the augmentation ideal in $Z_p[[\operatorname{Gal}(D_{\infty}/K)]]$. When D_{∞} is any Z_p -extension of K, then $Sel_{\varphi}(D_{\infty})[I]$ has Z_p -corank 1. Usually, $Sel_{\varphi}(D_{\infty})[I^2]$ also has Z_p -corank 1. The one exception is when D_{∞} is chosen as above. Then $Sel_{\varphi}(D_{\infty})[I^2]$ has Z_p -corank 2.

The local condition at $\overline{\mathfrak{p}}$ is that cocycle classes be unramified. For the exceptional \mathbb{Z}_p -extension D_∞ (and none of the others \mathbb{Z}_p -extensions of K), the elements of $Sel_{\varphi}(D_\infty)[I]$ are actually locally trivial at $\overline{\mathfrak{p}}$, and not just locally unramified. This is what allows one to show that $Sel_{\varphi}(D_\infty)[I^2]$ has \mathbb{Z}_p -corank 2.

The corresponding line as + bk = 0 is the direction where $L_p(s, k)$ has a double zero.

One can restrict $\kappa^s \lambda^k$ to the local Galois group $G_{K_{\overline{p}}}$. One wants this to factor through $D_{\infty,\overline{p}}/\mathbf{Q}_p$. By local class field theory, if q is any universal norm for $D_{\infty,\overline{p}}/\mathbf{Q}_p$, then one wants

 $\kappa^{s}\lambda^{k}(\operatorname{Rec}(q))=1$

This suffices to determine the line as + bk = 0.

In the special case where ψ_1 has order 2, one can take $q = \pi/\overline{\pi}$. One finds that

$$a/b = rac{\log_p(rac{\pi}{\pi})}{ord_p(rac{\pi}{\pi})} = \mathcal{L}(\psi_1)$$

Thank you!