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Introduction

Suppose that ψ is an even Dirichlet character and that p is an odd
prime. The Kubota-Leopoldt p-adic L-function Lp(s, ψ) is an
analytic function of a p-adic variable characterized by the
interpolation property

Lp(1− n, ψ) =
(
1− ψn(p)pn−1

)
L(1− n, ψn)

for all integers n ≥ 1. Here ψn = ψω−n, where ω is the Dirichlet
character of conductor p satisfying ω(a) ≡ a (mod pZp) for all
integers a.

In particular, we have Lp(0, ψ) =
(
1− ψ1(p)

)
L(0, ψ1). Thus,

Lp(s, ψ) vanishes at s = 0 when ψ1(p) = 1. This talk will mostly
be about the derivative L′p(0, ψ) in that case.



Lp(s, ψ) as a function on a family of Galois representations

In terms of Galois representations, one can think of L(1− n, ψn) in
the above interpolation property as L(0,Vn−1), where Vn−1 is the
1-dimensional vector space over Qp on which GQ = Gal(Q/Q)
acts by

ψnχ
n−1 = ψω−nχn−1 = ψω−1ω1−nχn−1 = ψ1(χω−1)n−1 = ψ1κ

n−1 ,

where χ : GQ → Z×p is defined by the action of GQ on the group
µp∞ of p-power roots of unity and κ = χω−1. One defines
L(z ,Vn−1) by an Euler product as usual.

Notice that κ is a homomorphism from GQ to 1 + pZp. Thus, it
makes sense to write V−s for s ∈ Zp, the 1-dimensional space on
which GQ acts by ψ1κ

−s . One can then regard Lp(s, ψ) as a
function of the family of Galois representations V−s . They all have
the same residual representation as ψ1. Furthermore, notice that
GQ acts on V0 by ψ1.



The map κ

The homomorphism κ factors through Gal(Q∞/Q), where Q∞
denotes the cyclotomic Zp-extension of Q, a subfield of Q(µp∞).
Let Γ = Gal(Q∞/Q). Thus, Γ ∼= 1 + pZp

∼= Zp.

If K is a finite extension of Q and p - [K : Q], then K∞ = KQ∞ is
a Galois extension of K and Gal(K∞/K ) is canonically isomorphic
to Γ. We will regard κ as the corresponding homomorphism

GK −→ Gal(K∞/K ) −→ Γ = Gal(Q∞/Q) −→ 1 + pZp .

Then { κs
∣∣ s ∈ Zp } is a subset of Homcont(GK ,Q

×
p }



A p-adic analogue of a theorem of Lerch

Let d be the conductor of ψ1. Assume that p - d . Bruce Ferrero
and I proved the following formula in 1977:

L′p(0, ψ) =
d∑

c=1

ψ1(c)logp
(
Γp(c/d)

)
+ Lp(0, ψ)logp(d) .

Here Γp(x) is Morita’s p-adic Gamma function and logp is the
p-adic log function (defined on 1 + pZp and extended to Z×p ). The
interpolation property for Γp(x) is

Γp(n) = (−1)n
n−1∏
a=1
p-a

a

This extends to a continuous function for x ∈ Zp.



L′p(0, ψ1) when ψ1(p) = 1

At precisely the same time that Ferrero and I proved the above
formula, Gross and Koblitz proved a formula relating certain
products of the Γp(c/d)’s to Gaussian sums for Fpf , where f is the
order of p + dZ in (Z/dZ)×. If ψ1(p) = 1, then those products
show up in the above formula for L′p(0, ψ1), which is then a linear
combination of p-adic logs of algebraic numbers. As a
consequence, one can prove that L′p(0, ψ1) 6= 0 by using a theorem
from transcendental number theory (the Baker-Brumer theorem).

In the above, one extends logp to a homomorphism
logp : Q×p → Zp by taking logp(p) = 0. The kernel of logp is

µp−1p
Z.



A special case

Suppose ψ1 has order 2. Let F be the corresponding imaginary
quadratic field. Since ψ1(p) = 1, we have ph = ππ where π ∈ OF

and h = hF , the class number of F . Then the formula becomes

L′p(0, ψ1) =
4

|O×F |
· logp(π) = L(ψ1) · L(0, ψ1)

where the “L-invariant” L(ψ1) is defined by

L(ψ1) =
logp(ππ )

ordp(ππ )

The nonvanishing of L′p(0, ψ1) becomes clear in this case.



New proofs.

Another quite different proof of the above derivative formula has
been given in a recent paper by Dasgupta, Darmon, and Pollack.
The proof works even for the p-adic L-functions over totally real
number fields constructed by Deligne and Ribet.

In the rest of this talk, we describe a new proof of the formula for
L′p(0, ψ1) when ψ1(p) = 1 (due to Benjamin Lundell, Shaowei
Zhang, and myself). In place of the Gross-Koblitz formula, it uses
properties of a certain p-adic L-function of two-variables, including
the so-called Main Conjecture for that function (proved by Karl
Rubin).

We begin by briefly outlining a proof of a derivative formula for
another p-adic L-function using a two-variable approach.



Lp(s,E ), where E is an elliptic curve defined over Q

For an elliptic curve E/Q with good, ordinary or multiplicative
reduction at p, a p-adic L-function Lp(s,E ) can be defined.

Mazur & Swinnerton-Dyer (1974),

Mazur, Tate, & Teitelbaum (1985).

Just as for the Kubota-Leopoldt p-adic L-function, the
interpolation property for Lp(s,E ) sometimes forces that function
to have a zero. This happens when E has split, multiplicative
reduction at p. In that case, one always has Lp(1,E ) = 0.



The formula for L′p(1,E ), when E has split multiplicative
reduction at p

The formula proposed by Mazur, Tate, and Teitelbaum is

L′p(1,E ) = L(E ) · L(1,E )

ΩE
,

where

L(E ) =
logp(qE )

ordp(qE )

and qE ∈ Q×p is defined by

jE =
1

qE
+ 744 + 196884qE +

It is the “Tate period” for E .



The nonvanishing of L(E )

It was proved by K. Barré-Sirieix, G. Diaz, F. Gramain, and G.
Philibert that qE is transcendental.

Therefore, L(E ) 6= 0.



A proof of the formula, briefly and inaccurately sketched

We briefly outline the proof by Glenn Stevens and myself for the
formula.

The paper of Mazur, Tate, and Teitelbaum constructs p-adic
L-functions Lp(s, f ) for modular forms f of arbitrary weight. The
function Lp(s,E ) is Lp(s, fE ), where fE is the modular form of
weight 2 corresponding to E .

By Hida Theory, there is a Hida family of modular forms fk , where
k ≥ 2, such that fk is of weight k and f2 = fE .

The main ingredient in our proof: There is a two-variable p-adic
L-function Lp(s, k) (constructed by Kitagawa-Mazur) such that,
when k is an integer ≥ 2, we have

Lp(s, k) = ckLp(s, fk)

for some constants ck with c2 = 1.



Properties of Lp(s, k)

1. Assuming that L(z ,E ) has an even order zero at z = 1, Lp(s,E )
has an odd order zero at s = 1 and so does Lp(s, fk) at s = k

2

when k ≥ 2. Thus, Lp(k2 , k) = 0 for all k ∈ Zp.

2. Lp(s, 2) = Lp(s,E )

3. Lp(1, k) =
(
1− αp(k)−1

)
L∗p(k) for k ∈ Zp, where αp(k) and

L∗p(k) are analytic functions for k ∈ Zp. Furthermore,

αp(2) = 1, and L∗p(2) =
L(1,E )

ΩE
.



Computation of L′p(1,E )

The properties on the previous slide imply that

L′p(1,E ) = −2α′p(2)L∗p(2) = −2α′p(2)
L(1,E )

ΩE
.

Thus, one must prove that α′p(2) = −1
2L(E ). This is proved by a

Galois cohomology argument . It involves the Galois representation
attached to the Hida family. The Tate period enters the argument
since the extension class associated with the exact sequence

0 −→ µp∞ −→ E [p∞] −→ Qp/Zp −→ 0

is given by the Kummer cocycles defined by p-power roots of qE .



The two-variable p-adic L-function of Katz. Its domain of
definition.

Suppose that K is an imaginary quadratic field and that p splits in
K . There are two prime ideals p and p lying over p. The map
κ : GK → 1 + pZp was defined before. It factors through
Gal(K∞/K ) , where K∞ is the cyclotomic Zp-extension of K .

Let L∞ denote the unique Zp-extension of K in which p is
unramified. The prime p is ramified in L∞/K . We choose λ so
that it factors through Gal(L∞/K ) and defines an isomorphism

Gal(L∞/K ) −→ 1 + pZp .

We can make the choice of λ unique by requiring that it be the
Galois representation corresponding to a Grossencharacter for K of
type A0 with infinity type (1, 0).

Homcont

(
GK ,Q

×
p

)
contains { κsλk

∣∣ (s, k) ∈ Zp × Zp }



The two-variable p-adic L-function of Katz

Let ψ1 = ψω−1 be as before. We assume from here on that
ψ1(p) = 1. Let F be the cyclic extension of Q cut out by ψ1.
Thus, p splits completely in F/Q.

Choose any imaginary quadratic field K in which p splits
completely and such that K ∩ F = Q. Let ϕ = ψ1

∣∣
GK

.

The two-variable p-adic L-function Lp(·) is defined on the following

domain: Homcont

(
GK ,Q

×
p

)
. We will consider the restriction of

that function to

{ ϕκsλk
∣∣ (s, k) ∈ Zp × Zp } .

Or, one can regard Lp(·) as a function on the family Ind
GQ

GK
(ϕκsλk)

of 2-dimensional Galois representations.



Properties of Lp(ϕκsλk) = Lp(s, k)

1. Interpolation property : For (s, k) ∈ Z× Z satisfying 1 ≤ s ≤ k .
For fixed k ∈ Z, k ≥ 1,

Lp(s, k) = ck+1·(the p−adic L−function for a CM form of weight k+1)

with precise constants ck+1.

2. Gross Factorization Theorem: For the line k = 0. Let ε = the
quadratic character corresponding to K . We have

Lp(0, s) = Lp(ϕκs) = Lp(s, ψ)Lp(1− s, εψ−11 )

So Lp(0, 0) = 0 and
dLp(s, 0)

ds

∣∣∣∣
s=0

= L′p(0, ψ)Lp(1, εψ−11 ).



More properties of Lp(s, k)

3. For the line s = 0. Katz’s Kronecker Limit Formula:

dLp(0, k)

dk

∣∣∣∣
k=0

= L(0, ψ1)Lp(1, εψ−11 )

Thus, the ratio

(
dLp(s, 0)

ds

∣∣∣∣
s=0

)/(
dLp(0, k)

dk

∣∣∣∣
k=0

)
is equal

L′p(0, ψ)

/
L(0, ψ1).

This should be L(ψ1).



1. The direction where Lp(s, k) has a double zero

The linear term in the power series expansion for Lp(s, k) is
as + bk, where

a =
dLp(s, 0)

ds

∣∣∣∣
s=0

, b =
dLp(0, k)

dk

∣∣∣∣
k=0

One should have a/b = L(ψ1).

We will now assume (for simplicity) that ψ1 has order dividing
p − 1.



2. The direction where Lp(s, k) has a double zero

This direction involves L(ψ1). Let D∞ be a Zp-extension of K .
Then

K ⊂ D∞ ⊂ K∞L∞

Then Gal(K∞L∞/D∞) is isomorphic to Zp. Suppose δ is a
topological generator.

Then κsλk factors through Gal(D∞/K ) when κsλk(δ) = 1. The
set

{ (s, k)
∣∣ κsλk(δ) = 1}

is the line as + bk = 0, where a = logp
(
κ(δ)

)
, b = logp

(
λ(δ)

)
.



3. The direction where Lp(s, k) has a double zero

Recall that ψ1 is an odd character of Gal(F/Q) and that p splits
completely in F/Q. There is a Zp-extension F∞ of F which is
Galois over Q and such that Gal(F/Q) acts on Gal(F∞/F ) by the
character ψ1. Completing at a prime v above p, we have Fv = Qp

and F∞,v is a Zp-extension of Qp.

Any Zp-extension of Qp is determined by its universal norm
subgroup which is of the form µp−1〈q〉, where ordp(q) 6= 0 (except
for the unramified Zp-extension of Qp). Excluding the unramified

Zp-extension, a Zp-extension is determined by
logp(q)

ordp(q)
.

In the special case where ψ1 has order 2, the universal norm
subgroup for F∞,v contains π/π. (Recall that π ∈ OF and
ππ = ph. ) In general, one applies an idempotent to some p-unit
π in F .



4. The direction where Lp(s, k) has a double zero

There is one Zp-extension D∞ of K such that

D∞,p = F∞,v

One associates a Selmer group to the representation ϕ = ψ1

∣∣
GK

over any Zp-extension D∞ of K and also over the Z2
p-extension

K∞L∞ of K . The latter Selmer group has a characteristic ideal
generated (essentially) by Lp(s, k). This is a special case of the
”Main Conjecture” formulated by Yager and proved by Rubin.



5. The direction where Lp(s, k) has a double zero

For any Zp-extension D∞/K , we denote the Selmer group for ϕ by
Selϕ(D∞). There is a natural action of Gal(D∞/K ) on that
object.

Let I denote the augmentation ideal in Zp[[Gal(D∞/K )]]. When
D∞ is any Zp-extension of K , then Selϕ(D∞)[I ] has Zp-corank 1.

Usually, Selϕ(D∞)[I 2] also has Zp-corank 1. The one exception is
when D∞ is chosen as above. Then Selϕ(D∞)[I 2] has Zp-corank 2.

The local condition at p is that cocycle classes be unramified. For
the exceptional Zp-extension D∞ (and none of the others
Zp-extensions of K ), the elements of Selϕ(D∞)[I ] are actually
locally trivial at p, and not just locally unramified. This is what
allows one to show that Selϕ(D∞)[I 2] has Zp-corank 2.

The corresponding line as + bk = 0 is the direction where Lp(s, k)
has a double zero.



6. The direction where Lp(s, k) has a double zero

One can restrict κsλk to the local Galois group GKp
. One wants

this to factor through D∞,p/Qp. By local class field theory, if q is
any universal norm for D∞,p/Qp, then one wants

κsλk
(
Rec(q)

)
= 1

This suffices to determine the line as + bk = 0.

In the special case where ψ1 has order 2, one can take q = π/π.
One finds that

a/b =
logp(ππ )

ordp(ππ )
= L(ψ1)



Thank you!


