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The set-up

Suppose that F is a number field, that F∞ is the cyclotomic
Zp-extension of F , and that K is a finite Galois extension of F .
We will assume that K ∩ F∞ = F . Let K∞ = KF∞. Let

G = Gal(K∞/F ) , Γ = Gal(F∞/F ) ,

∆ = Gal(K/F ) ,

the last of which is a finite group. We can identify ∆ with
Gal(K∞/F∞) and G with ∆× Γ.

Suppose that E is an elliptic curve defined over F . We will always
assume that E has good ordinary reduction at the primes of F
lying over p.



Selmer groups for E

The p-primary subgroup SelE (K∞)p of the Selmer group for E
over K∞ is defined as the kernel of a map of the following form:

H1(K∞,E [p∞]) −→
⊕

v

Hv(K∞,E ) ,

where v runs over all the primes of F and Hv (K∞,E ) is defined in
a certain way in terms of local Galois cohomology groups. If Σ0 is
any finite set of primes of F , not containing primes above p or
above ∞, then we define a “non-primitive” Selmer group by:

SelΣ0
E (K∞)p = ker

(
H1(K∞,E [p∞]) −→

⊕

v 6∈Σ0

Hv(K∞,E )
)

.

Of course, one has an inclusion SelE (K∞)p ⊆ SelΣ0
E (K∞)p. One

has equality if Hv (K∞,E ) = 0 for all v ∈ Σ0.



Some modules over groups rings

The discrete Zp-module SelE (K∞)p has a natural action of G , ∆,
and Γ. Let XE (K∞) denote the Pontryagin dual of SelE (K∞)p.
Then we can regard XE (K∞) as a module over the group ring
Zp[∆], and also over the completed group rings Zp[[G ]] and
Λ = Zp[[Γ]]. The latter ring is the usual Iwasawa algebra.

For any set Σ0 as above, the Pontryagin dual of SelΣ0
E (K∞)p will

be denoted by XΣo

E (K∞) and is also a module over the above
group rings. Over the ring Λ = Zp[[Γ]], these modules are known
to be finitely-generated.



The difference between the primitive and non-primitive

Selmer groups

There is a conjecture of Mazur which asserts that SelE (K∞)p is a
cotorsion Λ-module. This means that XE (K∞) is a
finitely-generated, torsion Λ-module. This conjecture turns out to
imply that the map whose kernel is SelE (K∞)p is surjective. As a
consequence, it follows that

SelΣ0
E (K∞)p

/
SelE (K∞)p ∼=

⊕

v∈Σ0

Hv (K∞,E ) .

As we mention below, Hv (K∞,E ) is a cofinitely-generated
Zp-module. Its Pontryagin dual is a finitely-generated Zp-module.
It is also a module over the various group rings mentioned above.



An often needed assumption in this talk

We will often need to assume that SelE (K∞)p[p] is finite. This
means that SelE (K∞)p is a cofinitely-generated Zp-module. That
is, XE (K∞) is a finitely-generated Zp-module. Thus, as a
Λ-module, XE (K∞) is indeed a torsion module. Furthermore, the
µ-invariant is 0.

It is not hard to show that Hv (K∞,E ) ∼=
(
Qp/Zp)

δv (K∞,E) for any
v ∤ p,∞, where δv (K∞,E ) is a non-negative integer. Hence
Hv (K∞,E ) is a cofinitely-generated Zp-module for all v in Σ0.

The above assumption then implies that SelΣ0
E (K∞)p[p] is finite

and that SelΣ0
E (K∞)p is also a cofinitely-generated Zp-module.

Under the above assumption, XE (K∞) and XΣ0
E (K∞) will be

finitely-generated Zp[∆]-modules.



A theorem about projectivity

For simplicity, we will assume that p is odd. Define the following
set:

ΦK/F = {v
∣∣ v ∤ p,∞, and p|ev (K/F ) } .

Here ev (K/F ) denotes the ramification index for v in K/F .

If v is a prime of F lying above p, let E v denote E modulo v and
let kv denote the residue field for a prime of K above v .

Theorem A. Let us make the following assumptions:

(a) SelE (K∞)[p] is finite.

(b) ΦK/F ⊆ Σ0.

(c) E (K∞)[p] = 0 and E v (kv )[p] = 0 for all v |p.

Then XΣ0
E (K∞) is a projective Zp[∆]-module.



The multiplicity λX (σ).

Suppose that X is a finitely-generated, projective Zp[∆]-module.
Let V = X ⊗Zp

Qp, a finite-dimensional representation space for ∆
over Qp . For every absolutely irreducible representation σ of ∆
(defined over a finite extension F of Qp), let λX (σ) denote the
multiplicity of σ in V ⊗Qp

F .

If ρ is any representation of ∆ over F , then one can realize ρ over
O, the ring of integers in F . One can reduce the resulting
O-representation modulo m, the maximal ideal in O, obtaining a
representation ρ̃ over f = O/m, the residue field for F . Its
semisimplification ρ̃ss is well-defined.



A basic property of projective Zp[∆]-modules

Suppose that ρ1 and ρ2 are representions of ∆ (over F). For each
σ ∈ IrrF (∆), let mi (σ) denote the multiplicity of σ in ρi for
i = 1, 2.

Proposition. Assume that ρ̃ss1
∼= ρ̃ss2 . Then one has the linear

relation ∑

σ

m1(σ)λX (σ) =
∑

σ

m2(σ)λX (σ) ,

where σ varies over IrrF (∆).

If ρ1 6∼= ρ2, then the above linear relation is non-trivial. Such
non-trivial linear relations always exist if ∆ has order divisible by p.



The number of independent congruence relations

One can quantify this. Suppose that s is the number of conjugacy
classes in ∆ and t is the number of conjugacy classes of elements
of ∆ of order prime to p. Then the number of independent linear
relations arising as above is s − t.

Suppose that ∆ is a p-group. In this case, we have t = 1. In fact,
if ρ1 and ρ2 are representations of ∆ over F , then ρ̃ss1

∼= ρ̃ss2 if and
only if ρ1 and ρ2 have the same degree. This is because the only
irreducible representation of ∆ over f is the trivial representation.

In general, t is the number of isomorphism classes of irreducible
representations of ∆ over a sufficiently large finite field f.

If |∆| is not divisible by p, then t = s and there are no nontrivial
congruence relations. One has ρ̃ss1

∼= ρ̃ss2 if and only if ρ1 ∼= ρ2.



An illustration

As an illustration, suppose that ∆ = ∆r = PGL2(Z/p
r+1Z), where

r ≥ 0. Then ∆ has a quotient ∆0
∼= PGL2(Fp). It turns out that if

ρ1 is any representation of ∆ over F , then there exists a
representation ρ2 of ∆ factoring through the quotient group ∆0

such that ρ̃ss1
∼= ρ̃ss2 . Hence, under the assumption that X is a

finitely-generated, projective Zp[∆]-module, one can determine
λX (σ) for all σ ∈ IrrF (∆) if one knows λX (σ) for all
σ ∈ IrrF (∆0).



The PGL2 illustration continued

One can write down explicit congruence relations. Assume that p
is odd. If σ is an irreducible representation of ∆ = ∆r of degree
pr−1(p − 1)(p + 1), and r ≥ 2, then one has

λX (σ) = pr−2
∑

α∈IrrF (∆0)

deg(α)λX (α) .

It turns out that deg(α) is even for all but four irreducible
representations of ∆0. There are two 1-dimensional and two
p-dimensional irreducible representations of ∆0. If σ is as above,
then one has a parity result:

λX (σ) ≡
∑

2∤deg(α)

λX (α) (mod 2),

where the sum just has the four terms corresponding to the α’s of
degree 1 or p.



Quasi-projectivity

It is useful to have a broader form of the above proposition.
Suppose that X is a finitely-generated Zp[∆]-module. The
multiplicity λX (σ) just depends on V = X ⊗Zp

Qp. Suppose that
there are finitely-generated, projective Zp[∆]-modules X1 and X2

such that one has an exact sequence

0 −→ V1 −→ V2 −→ V −→ 0 ,

where Vi = Xi ⊗Zp
Qp for i = 1, 2. We then say that X is

quasi-projective.

Somewhat more generally, assume that X is a Zp[∆]-module which
is possibly not finitely-generated. The above definition makes sense
under the assumption that X/Xtors is a finitely-generated
Zp[∆]-module. Then V is still a finite-dimensional representation
space for ∆ over Qp .



Congruence relations for quasi-projective Zp[∆]-modules

Proposition. Assume that X is a projective or quasi-projective
Zp[∆]-module. Assume that ρ̃ss1

∼= ρ̃ss2 . Then one has the linear
relation ∑

σ

m1(σ)λX (σ) =
∑

σ

m2(σ)λX (σ) ,

where σ varies over IrrF (∆) and mi (σ) denotes the multiplicity of
σ in ρi for i = 1, 2.



The invariants λE (σ) and λΣ0

E (σ)

The modules X = XE (K∞) and X = XΣ0
E (K∞) defined previously

are Zp[∆]-modules. If SelE (K∞)[p] is finite, then they are
finitely-generated Zp[∆]-modules. For any σ ∈ IrrF (∆), the
corresponding invariant λX (σ) will be denoted by λE (σ) and
λΣ0
E (σ), respectively. They depend only on E , F , and σ, and Σ0

for the non-primitive case.



Congruence relations for λΣ0

E (σ).

Theorem B. Let us make the following assumptions:

(a) SelE (K∞)[p] is finite.

(b) ΦK/F ⊆ Σ0.

Then XΣ0
E (K∞) is a quasi-projective Zp[∆]-module. Consequently,

with the same notation as above, if ρ̃ss1
∼= ρ̃ss2 , then one has the

linear relation

∑

σ

m1(σ)λ
Σ0
E (σ) =

∑

σ

m2(σ)λ
Σ0
E (σ) ,

where σ varies over IrrF (∆).



The case where ∆ is a p-group

There is a theorem of Hachimori and Matsuno which relates the
Zp-coranks of SelE (K∞)p and SelE (F∞)p in the case where
K∞/F∞ is a p-extension. That theorem is equivalent to theorem B
in the case where |∆| is a power of p. Let σ0 be the trivial
representation of ∆. If ρ1 is the regular representation of ∆ and ρ2
is σ

|∆|
0 , then ρ̃ss1

∼= ρ̃ss2 .



Weakening the hypotheses

Proposition. Suppose that Σ0 is a finite set of non-archimedean
primes of F which contains no prime over p. Let Σ1 = Σ0 ∪ΦK/F

.

(i) Assume that all of the assumptions in theorem A are satisfied
except for the inclusion ΦK/F ⊆ Σ0. If the Pontryagin dual of

SelΣ0
E (K∞)p is projective as a Zp[∆]-module, then Hv (K∞,E ) = 0

for all v ∈ Σ1 − Σ0. Therefore SelΣ0
E (K∞)p = SelΣ1

E (K∞)p.

(ii) Suppose that p ≥ 5. If the Pontryagin dual of SelΣ0
E (K∞)p is

quasi-projective as a Zp[∆]-module, then Hv (K∞,E ) = 0 for all

v ∈ Σ1 − Σ0. Therefore Sel
Σ0
E (K∞)p = Sel

Σ1
E (K∞)p .



Weakening the hypotheses

Concerning the hypothesis that SelE (K∞)[p] is finite, it suffices to
assume that SelE (K∞)[p2]

/
SelE (K∞)[p] is finite.

Concerning the initial set-up of fields, it suffices to assume that
G = Gal(K∞/F ) fits into an exact sequence

1 −→ ∆ −→ G −→ Γ −→ 1 .

Then ∆ = Gal(K∞/F∞) is a normal subgroup of G and G will be
isomorphic to a semidirect product ∆⋊ Γ. The hypotheses must
be restated in a suitable way. For example, one replaces ΦK/F by
ΦK∞/F∞

(with the same definition in terms of ramification indices).



Weakening the hypotheses

One can also take ∆ to be a p-adic Lie group for theorem A. In
defining ΦK/F (or ΦK∞/F∞

), one should replace the statement
that p|ev (K/F ) by the statement that the inertia subgroup of ∆
for a prime above v contains a non-trivial pro-p subgroup.

Interestingly, if that inertia subgroup contains an infinite
pro-p-subgroup (which must then be isomorphic to Zp), it follows
that Hv (K∞,E ) = 0. If ∆ is a p-adic Lie group and has no
elements of order p, then Hv (K∞,E ) = 0 for all v ∈ ΦK/F . If one

takes Σ0 = ΦK/F , then Sel
Σ0
E (K∞)p = SelE (K∞)p .

As for theorem B, we don’t yet know how to extend this to the
case where ∆ is an infinite p-adic Lie group.



The difference λΣ0

E (σ)− λE (σ)

We denote that difference by δE (Σ0, σ). It is equal to the
multiplicity of σ in the representation space

⊕

v∈Σ0

Ĥv (K∞,E )⊗Zp
F

of ∆, where Ĥv (K∞,E ) denoted the Pontryagin dual of
Hv (K∞,E ). This multiplicity can be studied in a straightforward
way. Thus, the difference between λΣ0

E (σ) and λE (σ) can
determined by studying local Galois cohomology groups. We won’t
discuss this today.

In summary, if Σ0 is chosen suitably and if SelE (K∞)[p] is assumed
to be finite, then one can study the non-primitive λ-invariants
λΣ0
E (σ) by using the congruence relations, and thereby one can get

information about the invariants λE (σ).



Invariants over K

One can use information about the λE (σ)’s to study the action of
∆ on SelE (K )p . Let sE (σ) denote the multiplicity of σ in the
representation space XE (K )⊗Zp

F , where XE (K ) denotes the
Pontryagin dual of SelE (K )p . If the Tate-Shafarevich group for E
over K is finite, then sE (σ) = rE (σ), where rE (σ) is the multiplicity
of σ in E (K )⊗Z F . Of course, rE (σ) doesn’t depend on p.
By definition, one has

rank
(
E (K )

)
=

∑

σ

deg(σ)rE (σ) ,

corankZp

(
SelE (K )p

)
=

∑

σ

deg(σ)sE (σ) ,

where σ varies over IrrF (∆).



Parity

Assuming that E has good ordinary reduction at the primes of F
above p and that Mazur’s conjecture for SelE (K∞)p is true, one
can prove the following parity result:

If σ is an irreducible orthogonal representation of ∆, then

sE (σ) ≡ λE (σ) (mod 2) .

An irreducible representation σ is said to be orthogonal if σ can be
realized by orthogonal matrices over a suitable large field. Such
representations are self-dual.

As examples, all of the irreducible representations of dihedral
groups are orthogonal. The same is true for all the irreducible
representations of ∆r = PGL2(Z/p

r+1Z) for r ≥ 0 and p odd.



The parity conjecture

This refers to the conjecture that the sign in the (conjectural)
functional equation for the Hasse-Weil L-function L(E/K , s) is

(−1)rank
(
E(K)

)
. A refinement of this conjecture is that if σ is a

self-dual irreducible representation of ∆, then the sign in the
(conjectural) functional equation for the twisted Hasse-Weil
L-function L(E/F , σ, s) is (−1)rE (σ). There is a conjectural value
for this sign given by Deligne, and spelled out by Rohrlich.

For any prime p, there is a conjecture involving the invariants
sE (σ), namely that the conjectural sign in the functional equation
for L(E/F , σ, s) is (−1)sE (σ). This is a conjecture about the parity
of sE (σ), and hence (under suitable assumptions) the parity of
λE (σ). We refer to this as the p-Selmer version of the parity
conjecture.



Compatibility with congruence relations

With the assumptions in theorems A or B, and an additional
assumption that E has semistable reduction at primes of F lying
above 2 and 3, one can show that the parity conjecture is
compatible with the congruence relations (viewed as equations
over F2). The proof involves a careful study of the δv (E , σ)’s.

Suppose that ∆ ∼= PGL2(Z/p
r+1Z) for r ≥ 0. Let K0 be the

subfield of K such that ∆0 = Gal(K0/F ) ∼= PGL2(Fp). One can
show that if SelE (K0,∞)[p] is finite, then SelE (K∞)[p] is finite too.
Thus, it will be enough to assume the finiteness of SelE (K0,∞)[p].
Suppose that Σ0 contains ΦK/F . Under all of these assumptions,
one proves the following result.

If the p-Selmer version of the parity conjecture is true for all
irreducible representations of ∆0, then it is also true for all
irreducible representations of ∆.



Other results on the parity conjecture

The p-Selmer version of the parity conjecture has been studied by
Birch-Stephens, Kramer-Tunnell, Monsky, Nekovar, B.D. Kim, V.
and T. Dokchitser, Coates-Fukaya-Kato-Sujatha, and Mazur-Rubin.
The results in [CFKS] are somewhat parallel to the results just
mentioned, although the hypotheses and approach are different.

The results of Mazur and Rubin concern dihedral extensions of
degree 2pr . If ∆ is isomorphic to D2pr , then the irreducible
representations of ∆ have degree 1 or 2. The two 1-dimensional
representations factor through the quotient ∆0 of ∆ of order 2. If
σ has degree 2, and ρ is the direct sum of the two 1-dimensional
representations then σ̃ss ∼= ρ̃ss . In essence, under certain mild
assumptions, they show that if the parity conjecture holds for the
two 1-dimensional representations of ∆0, then it also holds for σ.



Projective dimension

Recall the assumptions in theorem A.

(a) SelE (K∞)[p] is finite.

(b) ΦK/F ⊆ Σ0.

(c) E (K∞)[p] = 0 and E v (kv )[p] = 0 for all v |p.

These assumptions imply that XΣ0
E (K∞) has a free resolution of

length 1 as a Zp[[G ]]-module, where G = Gal(K∞/F ) ∼= ∆× Γ. In
fact, this is true if one replaces (a) by the assumption that
SelE (K∞)p has finite Zp-corank (as conjectured by Mazur). The
other assumptions are needed in full strength.

We will write R for Zp[[G ]] and X for XΣ0
E (K∞). Thus, under the

above assumptions, one has an exact sequence

0 −→ Rd −→ Rd −→ X −→ 0 ,

where d ≥ 1.



A final remark

This is a remark related to the paper The GL2 main conjecture for
elliptic curves without complex multiplication

The map Rd −→ Rd is given by right-multiplication by a d × d
matrix with entries in R . The determinant of such a matrix, if it
makes sense, should be a “characteristic element” for the
R-module X .

This does make sense if G is commutative. And so the above exact
sequence gives a characteristic element ξ in R = Zp[[G ]]. One can
think of such an element as a Zp-valued measure on the Galois
group G = ∆× Γ. One can identify R with Λ[∆]. If σ : ∆ → O×

is a character of ∆, then σ induces a ring homomorphism
σ : R → O[[Γ]] and σ(ξ) is an element of O[[Γ]] = ΛO.



If G is non-commutative, then one can define a “determinant” ξ in
some K1. For a ring R, one defines K1(R) as a certain abelian
quotient of the direct limit of the groups GLn(R) under the map

sending an n× n matrix A to the (n+1)× (n+1) matrix

[
A 0
0 1

]
.

Assuming that G = ∆× Γ, one can identify R = Zp[[G ]] with
Zp[[Γ×∆]] = Λ[∆]. Recall that Λ = Zp[[Γ]]. If S is a
multiplicatively closed subset of the nonzero elements of Λ
containing an annihilator of X , Then one can left-tensor the above
exact sequence with R = RS = ΛS [∆], obtaining an isomorphism

Rd −→ Rd .

This defines a d × d matrix and hence an element ξ in K1(R).
Note that the matrix can be taken with entries in R .



An integrality property of ξ

One can think of ξ as a characteristic element for the R-module X .
It has a nice integrality property, namely if σ : ∆ → GLn(O) is any
irreducible representation of ∆, then σ induces ring
homomorphisms:

σ : Zp[∆] → Mn(O), σ : Λ[∆] → Mn(ΛO) ,

where ΛO = O[[Γ]]. This extends to a ring homomorphism

σ : R → Mn(ΛO,S) .

One then gets a homomorphism Φσ from K1(R) to

K1

(
Mn(ΛO,S)

)
= K1(ΛO,S) = Λ×

O,S .

The remark is that Φσ(ξ) is in ΛO.


