Iwasawa Theory and Projective Modules

Ralph Greenberg

University of Washington Seattle, Washington, USA

Aug 10, 2010

R. Greenberg, *Iwasawa theory, projective modules, and modular representations*

J. Coates, P. Schneider, R. Sujatha, *Modules over Iwasawa algebras*

J. Coates, T. Fukaya, K. Kato, R. Sujatha, *Root numbers, Selmer groups, and non-commutative lwasawa theory*

J. Coates, T. Fukaya, K. Kato, R. Sujatha, O. Venjakob, The GL_2 main conjecture for elliptic curves without complex multiplication

Suppose that F is a number field, that F_{∞} is the cyclotomic \mathbb{Z}_{p} -extension of F, and that K is a finite Galois extension of F. We will assume that $K \cap F_{\infty} = F$. Let $K_{\infty} = KF_{\infty}$. Let

$$G = \operatorname{Gal}(K_{\infty}/F)$$
, $\Gamma = \operatorname{Gal}(F_{\infty}/F)$,

$$\Delta = \operatorname{Gal}(K/F)$$
,

the last of which is a finite group. We can identify Δ with $\operatorname{Gal}(K_{\infty}/F_{\infty})$ and G with $\Delta \times \Gamma$.

Suppose that E is an elliptic curve defined over F. We will always assume that E has good ordinary reduction at the primes of F lying over p.

Selmer groups for E

The *p*-primary subgroup $\operatorname{Sel}_E(K_{\infty})_p$ of the Selmer group for *E* over K_{∞} is defined as the kernel of a map of the following form:

$$H^1(K_{\infty}, E[p^{\infty}]) \longrightarrow \bigoplus_{\nu} \mathcal{H}_{\nu}(K_{\infty}, E)$$
,

where v runs over all the primes of F and $\mathcal{H}_v(K_\infty, E)$ is defined in a certain way in terms of local Galois cohomology groups. If Σ_0 is any finite set of primes of F, not containing primes above p or above ∞ , then we define a "non-primitive" Selmer group by:

$$\operatorname{Sel}_{E}^{\Sigma_{0}}(K_{\infty})_{p} = \operatorname{ker}\left(H^{1}(K_{\infty}, E[p^{\infty}]) \longrightarrow \bigoplus_{v \notin \Sigma_{0}} \mathcal{H}_{v}(K_{\infty}, E)\right)$$

Of course, one has an inclusion $\operatorname{Sel}_{E}(K_{\infty})_{p} \subseteq \operatorname{Sel}_{E}^{\Sigma_{0}}(K_{\infty})_{p}$. One has equality if $\mathcal{H}_{v}(K_{\infty}, E) = 0$ for all $v \in \Sigma_{0}$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

The discrete Z_{ρ} -module $\operatorname{Sel}_{E}(K_{\infty})_{\rho}$ has a natural action of G, Δ , and Γ . Let $X_{E}(K_{\infty})$ denote the Pontryagin dual of $\operatorname{Sel}_{E}(K_{\infty})_{\rho}$. Then we can regard $X_{E}(K_{\infty})$ as a module over the group ring $Z_{\rho}[\Delta]$, and also over the completed group rings $Z_{\rho}[[G]]$ and $\Lambda = Z_{\rho}[[\Gamma]]$. The latter ring is the usual Iwasawa algebra.

For any set Σ_0 as above, the Pontryagin dual of $\operatorname{Sel}_E^{\Sigma_0}(K_\infty)_p$ will be denoted by $X_E^{\Sigma_o}(K_\infty)$ and is also a module over the above group rings. Over the ring $\Lambda = \mathbf{Z}_p[[\Gamma]]$, these modules are known to be finitely-generated.

The difference between the primitive and non-primitive Selmer groups

There is a conjecture of Mazur which asserts that $\operatorname{Sel}_E(K_{\infty})_p$ is a cotorsion Λ -module. This means that $X_E(K_{\infty})$ is a finitely-generated, torsion Λ -module. This conjecture turns out to imply that the map whose kernel is $\operatorname{Sel}_E(K_{\infty})_p$ is surjective. As a consequence, it follows that

$$\mathrm{Sel}_E^{\Sigma_0}(K_\infty)_p/\mathrm{Sel}_E(K_\infty)_p \cong \bigoplus_{\nu \in \Sigma_0} \mathcal{H}_{\nu}(K_\infty, E)$$
.

As we mention below, $\mathcal{H}_{\nu}(K_{\infty}, E)$ is a cofinitely-generated \mathbf{Z}_{p} -module. Its Pontryagin dual is a finitely-generated \mathbf{Z}_{p} -module. It is also a module over the various group rings mentioned above.

We will often need to assume that $\operatorname{Sel}_E(K_\infty)_p[p]$ is finite. This means that $\operatorname{Sel}_E(K_\infty)_p$ is a cofinitely-generated \mathbf{Z}_p -module. That is, $X_E(K_\infty)$ is a finitely-generated \mathbf{Z}_p -module. Thus, as a Λ -module, $X_E(K_\infty)$ is indeed a torsion module. Furthermore, the μ -invariant is 0.

It is not hard to show that $\mathcal{H}_{v}(K_{\infty}, E) \cong (\mathbf{Q}_{p}/\mathbf{Z}_{p})^{\delta_{v}(K_{\infty}, E)}$ for any $v \nmid p, \infty$, where $\delta_{v}(K_{\infty}, E)$ is a non-negative integer. Hence $\mathcal{H}_{v}(K_{\infty}, E)$ is a cofinitely-generated \mathbf{Z}_{p} -module for all v in Σ_{0} . The above assumption then implies that $\operatorname{Sel}_{E}^{\Sigma_{0}}(K_{\infty})_{p}[p]$ is finite and that $\operatorname{Sel}_{E}^{\Sigma_{0}}(K_{\infty})_{p}$ is also a cofinitely-generated \mathbf{Z}_{p} -module.

Under the above assumption, $X_E(K_{\infty})$ and $X_E^{\Sigma_0}(K_{\infty})$ will be finitely-generated $\mathbf{Z}_p[\Delta]$ -modules.

For simplicity, we will assume that p is odd. Define the following set:

$$\Phi_{K/F} = \{ v \mid v \nmid p, \infty, \text{ and } p | e_v(K/F) \}$$

Here $e_v(K/F)$ denotes the ramification index for v in K/F.

If v is a prime of F lying above p, let \overline{E}_v denote E modulo v and let k_v denote the residue field for a prime of K above v.

Theorem A. Let us make the following assumptions:

(a) $\operatorname{Sel}_{E}(K_{\infty})[p]$ is finite.

(b)
$$\Phi_{K/F} \subseteq \Sigma_0$$
.

(c) $E(K_{\infty})[p] = 0$ and $\overline{E}_{v}(k_{v})[p] = 0$ for all v|p.

Then $X_E^{\Sigma_0}(K_{\infty})$ is a projective $\mathbf{Z}_p[\Delta]$ -module.

Suppose that X is a finitely-generated, projective $\mathbf{Z}_p[\Delta]$ -module. Let $V = X \otimes_{\mathbf{Z}_p} \mathbf{Q}_p$, a finite-dimensional representation space for Δ over \mathbf{Q}_p . For every absolutely irreducible representation σ of Δ (defined over a finite extension \mathcal{F} of \mathbf{Q}_p), let $\lambda_X(\sigma)$ denote the multiplicity of σ in $V \otimes_{\mathbf{Q}_p} \mathcal{F}$.

If ρ is any representation of Δ over \mathcal{F} , then one can realize ρ over \mathcal{O} , the ring of integers in \mathcal{F} . One can reduce the resulting \mathcal{O} -representation modulo \mathfrak{m} , the maximal ideal in \mathcal{O} , obtaining a representation $\tilde{\rho}$ over $\mathfrak{f} = \mathcal{O}/\mathfrak{m}$, the residue field for \mathcal{F} . Its semisimplification $\tilde{\rho}^{ss}$ is well-defined.

Suppose that ρ_1 and ρ_2 are representions of Δ (over \mathcal{F}). For each $\sigma \in \operatorname{Irr}_{\mathcal{F}}(\Delta)$, let $m_i(\sigma)$ denote the multiplicity of σ in ρ_i for i = 1, 2.

Proposition. Assume that $\tilde{\rho}_1^{ss} \cong \tilde{\rho}_2^{ss}$. Then one has the linear relation

$$\sum_{\sigma} m_1(\sigma)\lambda_X(\sigma) = \sum_{\sigma} m_2(\sigma)\lambda_X(\sigma) ,$$

where σ varies over $\operatorname{Irr}_{\mathcal{F}}(\Delta)$.

If $\rho_1 \not\cong \rho_2$, then the above linear relation is non-trivial. Such non-trivial linear relations always exist if Δ has order divisible by p.

One can quantify this. Suppose that s is the number of conjugacy classes in Δ and t is the number of conjugacy classes of elements of Δ of order prime to p. Then the number of independent linear relations arising as above is s - t.

Suppose that Δ is a *p*-group. In this case, we have t = 1. In fact, if ρ_1 and ρ_2 are representations of Δ over \mathcal{F} , then $\tilde{\rho}_1^{ss} \cong \tilde{\rho}_2^{ss}$ if and only if ρ_1 and ρ_2 have the same degree. This is because the only irreducible representation of Δ over f is the trivial representation.

In general, t is the number of isomorphism classes of irreducible representations of Δ over a sufficiently large finite field f.

If $|\Delta|$ is not divisible by p, then t = s and there are no nontrivial congruence relations. One has $\tilde{\rho}_1^{ss} \cong \tilde{\rho}_2^{ss}$ if and only if $\rho_1 \cong \rho_2$.

An illustration

As an illustration, suppose that $\Delta = \Delta_r = PGL_2(\mathbb{Z}/p^{r+1}\mathbb{Z})$, where $r \geq 0$. Then Δ has a quotient $\Delta_0 \cong PGL_2(\mathbb{F}_p)$. It turns out that if ρ_1 is any representation of Δ over \mathcal{F} , then there exists a representation ρ_2 of Δ factoring through the quotient group Δ_0 such that $\tilde{\rho}_1^{ss} \cong \tilde{\rho}_2^{ss}$. Hence, under the assumption that X is a finitely-generated, projective $\mathbb{Z}_p[\Delta]$ -module, one can determine $\lambda_X(\sigma)$ for all $\sigma \in \operatorname{Irr}_{\mathcal{F}}(\Delta)$ if one knows $\lambda_X(\sigma)$ for all $\sigma \in \operatorname{Irr}_{\mathcal{F}}(\Delta_0)$.

The *PGL*₂ illustration continued

One can write down explicit congruence relations. Assume that p is odd. If σ is an irreducible representation of $\Delta = \Delta_r$ of degree $p^{r-1}(p-1)(p+1)$, and $r \ge 2$, then one has

$$\lambda_X(\sigma) = p^{r-2} \sum_{\alpha \in \operatorname{Irr}_{\mathcal{F}}(\Delta_0)} \deg(\alpha) \lambda_X(\alpha)$$

It turns out that $deg(\alpha)$ is even for all but four irreducible representations of Δ_0 . There are two 1-dimensional and two *p*-dimensional irreducible representations of Δ_0 . If σ is as above, then one has a parity result:

$$\lambda_X(\sigma) \equiv \sum_{2 \nmid \deg(\alpha)} \lambda_X(\alpha) \pmod{2},$$

where the sum just has the four terms corresponding to the α 's of degree 1 or p.

Quasi-projectivity

It is useful to have a broader form of the above proposition. Suppose that X is a finitely-generated $\mathbf{Z}_{\rho}[\Delta]$ -module. The multiplicity $\lambda_X(\sigma)$ just depends on $V = X \otimes_{\mathbf{Z}_{\rho}} \mathbf{Q}_{\rho}$. Suppose that there are finitely-generated, projective $\mathbf{Z}_{\rho}[\Delta]$ -modules X_1 and X_2 such that one has an exact sequence

$$0 \longrightarrow V_1 \longrightarrow V_2 \longrightarrow V \longrightarrow 0$$
 ,

where $V_i = X_i \otimes_{\mathbb{Z}_p} \mathbb{Q}_p$ for i = 1, 2. We then say that X is quasi-projective.

Somewhat more generally, assume that X is a $Z_p[\Delta]$ -module which is possibly not finitely-generated. The above definition makes sense under the assumption that X/X_{tors} is a finitely-generated $Z_p[\Delta]$ -module. Then V is still a finite-dimensional representation space for Δ over Q_p . **Proposition.** Assume that X is a projective or quasi-projective $\mathbf{Z}_p[\Delta]$ -module. Assume that $\tilde{\rho}_1^{ss} \cong \tilde{\rho}_2^{ss}$. Then one has the linear relation

$$\sum_{\sigma} m_1(\sigma)\lambda_X(\sigma) = \sum_{\sigma} m_2(\sigma)\lambda_X(\sigma) ,$$

where σ varies over $\operatorname{Irr}_{\mathcal{F}}(\Delta)$ and $m_i(\sigma)$ denotes the multiplicity of σ in ρ_i for i = 1, 2.

The modules $X = X_E(K_{\infty})$ and $X = X_E^{\sum_0}(K_{\infty})$ defined previously are $\mathbf{Z}_p[\Delta]$ -modules. If $\operatorname{Sel}_E(K_{\infty})[p]$ is finite, then they are finitely-generated $\mathbf{Z}_p[\Delta]$ -modules. For any $\sigma \in \operatorname{Irr}_{\mathcal{F}}(\Delta)$, the corresponding invariant $\lambda_X(\sigma)$ will be denoted by $\lambda_E(\sigma)$ and $\lambda_E^{\sum_0}(\sigma)$, respectively. They depend only on E, F, and σ , and \sum_0 for the non-primitive case. **Theorem B.** Let us make the following assumptions:

- (a) $\operatorname{Sel}_{E}(K_{\infty})[p]$ is finite.
- (b) $\Phi_{K/F} \subseteq \Sigma_0$.

Then $X_E^{\Sigma_0}(K_{\infty})$ is a quasi-projective $\mathbf{Z}_p[\Delta]$ -module. Consequently, with the same notation as above, if $\tilde{\rho}_1^{ss} \cong \tilde{\rho}_2^{ss}$, then one has the linear relation

$$\sum_{\sigma} m_1(\sigma) \lambda_E^{\Sigma_0}(\sigma) = \sum_{\sigma} m_2(\sigma) \lambda_E^{\Sigma_0}(\sigma) ,$$

▲日▼▲□▼▲□▼▲□▼ □ のので

where σ varies over $\operatorname{Irr}_{\mathcal{F}}(\Delta)$.

There is a theorem of Hachimori and Matsuno which relates the \mathbf{Z}_p -coranks of $\operatorname{Sel}_E(K_\infty)_p$ and $\operatorname{Sel}_E(F_\infty)_p$ in the case where K_∞/F_∞ is a *p*-extension. That theorem is equivalent to theorem B in the case where $|\Delta|$ is a power of *p*. Let σ_0 be the trivial representation of Δ . If ρ_1 is the regular representation of Δ and ρ_2 is $\sigma_0^{|\Delta|}$, then $\widetilde{\rho}_1^{ss} \cong \widetilde{\rho}_2^{ss}$.

Proposition. Suppose that Σ_0 is a finite set of non-archimedean primes of F which contains no prime over p. Let $\Sigma_1 = \Sigma_0 \cup \Phi_{K/F}$

(i) Assume that all of the assumptions in theorem A are satisfied except for the inclusion $\Phi_{K/F} \subseteq \Sigma_0$. If the Pontryagin dual of $\operatorname{Sel}_E^{\Sigma_0}(K_\infty)_p$ is projective as a $\mathbf{Z}_p[\Delta]$ -module, then $\mathcal{H}_v(K_\infty, E) = 0$ for all $v \in \Sigma_1 - \Sigma_0$. Therefore $\operatorname{Sel}_E^{\Sigma_0}(K_\infty)_p = \operatorname{Sel}_E^{\Sigma_1}(K_\infty)_p$.

(ii) Suppose that $p \geq 5$. If the Pontryagin dual of $\operatorname{Sel}_{E}^{\Sigma_{0}}(K_{\infty})_{p}$ is quasi-projective as a $\mathbb{Z}_{p}[\Delta]$ -module, then $\mathcal{H}_{v}(K_{\infty}, E) = 0$ for all $v \in \Sigma_{1} - \Sigma_{0}$. Therefore $\operatorname{Sel}_{E}^{\Sigma_{0}}(K_{\infty})_{p} = \operatorname{Sel}_{E}^{\Sigma_{1}}(K_{\infty})_{p}$.

Concerning the hypothesis that $\operatorname{Sel}_{E}(K_{\infty})[p]$ is finite, it suffices to assume that $\operatorname{Sel}_{E}(K_{\infty})[p^{2}]/\operatorname{Sel}_{E}(K_{\infty})[p]$ is finite.

Concerning the initial set-up of fields, it suffices to assume that $G = \operatorname{Gal}(K_{\infty}/F)$ fits into an exact sequence

$$1 \ \longrightarrow \ \Delta \ \longrightarrow \ G \ \longrightarrow \ \Gamma \ \longrightarrow \ 1 \ .$$

Then $\Delta = \operatorname{Gal}(K_{\infty}/F_{\infty})$ is a normal subgroup of G and G will be isomorphic to a semidirect product $\Delta \rtimes \Gamma$. The hypotheses must be restated in a suitable way. For example, one replaces $\Phi_{K/F}$ by $\Phi_{K_{\infty}/F_{\infty}}$ (with the same definition in terms of ramification indices).

One can also take Δ to be a *p*-adic Lie group for theorem A. In defining $\Phi_{K/F}$ (or $\Phi_{K_{\infty}/F_{\infty}}$), one should replace the statement that $p|e_v(K/F)$ by the statement that the inertia subgroup of Δ for a prime above *v* contains a non-trivial pro-*p* subgroup.

Interestingly, if that inertia subgroup contains an infinite pro-*p*-subgroup (which must then be isomorphic to \mathbf{Z}_p), it follows that $\mathcal{H}_v(K_\infty, E) = 0$. If Δ is a *p*-adic Lie group and has no elements of order *p*, then $\mathcal{H}_v(K_\infty, E) = 0$ for all $v \in \Phi_{K/F}$. If one takes $\Sigma_0 = \Phi_{K/F}$, then $\operatorname{Sel}_E^{\Sigma_0}(K_\infty)_p = \operatorname{Sel}_E(K_\infty)_p$.

As for theorem **B**, we don't yet know how to extend this to the case where Δ is an infinite *p*-adic Lie group.

The difference
$$\lambda_E^{\Sigma_0}(\sigma) - \lambda_E(\sigma)$$

We denote that difference by $\delta_E(\Sigma_0, \sigma)$. It is equal to the multiplicity of σ in the representation space

$$\bigoplus_{\nu\in\Sigma_0} \ \widehat{\mathcal{H}}_{\nu}(K_{\infty},E) \otimes_{\mathbf{Z}_{\rho}} \mathcal{F}$$

of Δ , where $\widehat{\mathcal{H}}_{\nu}(K_{\infty}, E)$ denoted the Pontryagin dual of $\mathcal{H}_{\nu}(K_{\infty}, E)$. This multiplicity can be studied in a straightforward way. Thus, the difference between $\lambda_{E}^{\Sigma_{0}}(\sigma)$ and $\lambda_{E}(\sigma)$ can determined by studying local Galois cohomology groups. We won't discuss this today.

In summary, if Σ_0 is chosen suitably and if $\operatorname{Sel}_E(K_\infty)[p]$ is assumed to be finite, then one can study the non-primitive λ -invariants $\lambda_E^{\Sigma_0}(\sigma)$ by using the congruence relations, and thereby one can get information about the invariants $\lambda_E(\sigma)$.

Invariants over K

One can use information about the $\lambda_E(\sigma)$'s to study the action of Δ on $\operatorname{Sel}_E(K)_p$. Let $s_E(\sigma)$ denote the multiplicity of σ in the representation space $X_E(K) \otimes_{\mathbb{Z}_p} \mathcal{F}$, where $X_E(K)$ denotes the Pontryagin dual of $\operatorname{Sel}_E(K)_p$. If the Tate-Shafarevich group for Eover K is finite, then $s_E(\sigma) = r_E(\sigma)$, where $r_E(\sigma)$ is the multiplicity of σ in $E(K) \otimes_{\mathbb{Z}} \mathcal{F}$. Of course, $r_E(\sigma)$ doesn't depend on p. By definition, one has

$$\operatorname{rank}(E(\mathcal{K})) = \sum_{\sigma} deg(\sigma)r_E(\sigma) ,$$

$$\operatorname{corank}_{\mathsf{Z}_p}(\operatorname{Sel}_{\mathsf{E}}(\mathsf{K})_p) = \sum_{\sigma} \operatorname{deg}(\sigma) s_{\mathsf{E}}(\sigma) ,$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

where σ varies over $\operatorname{Irr}_{\mathcal{F}}(\Delta)$.

Parity

Assuming that *E* has good ordinary reduction at the primes of *F* above *p* and that Mazur's conjecture for $\operatorname{Sel}_E(K_{\infty})_p$ is true, one can prove the following parity result:

If σ is an irreducible orthogonal representation of Δ , then

$$s_E(\sigma) \equiv \lambda_E(\sigma) \pmod{2}$$

An irreducible representation σ is said to be orthogonal if σ can be realized by orthogonal matrices over a suitable large field. Such representations are self-dual.

As examples, all of the irreducible representations of dihedral groups are orthogonal. The same is true for all the irreducible representations of $\Delta_r = PGL_2(\mathbf{Z}/p^{r+1}\mathbf{Z})$ for $r \ge 0$ and p odd.

This refers to the conjecture that the sign in the (conjectural) functional equation for the Hasse-Weil *L*-function L(E/K, s) is $(-1)^{\operatorname{rank}(E(K))}$. A refinement of this conjecture is that if σ is a self-dual irreducible representation of Δ , then the sign in the (conjectural) functional equation for the twisted Hasse-Weil *L*-function $L(E/F, \sigma, s)$ is $(-1)^{r_E(\sigma)}$. There is a conjectural value for this sign given by Deligne, and spelled out by Rohrlich.

For any prime p, there is a conjecture involving the invariants $s_E(\sigma)$, namely that the conjectural sign in the functional equation for $L(E/F, \sigma, s)$ is $(-1)^{s_E(\sigma)}$. This is a conjecture about the parity of $s_E(\sigma)$, and hence (under suitable assumptions) the parity of $\lambda_E(\sigma)$. We refer to this as the *p*-Selmer version of the parity conjecture.

Compatibility with congruence relations

With the assumptions in theorems A or B, and an additional assumption that *E* has semistable reduction at primes of *F* lying above 2 and 3, one can show that the parity conjecture is compatible with the congruence relations (viewed as equations over \mathbf{F}_2). The proof involves a careful study of the $\delta_v(E, \sigma)$'s.

Suppose that $\Delta \cong PGL_2(\mathbb{Z}/p^{r+1}\mathbb{Z})$ for $r \ge 0$. Let K_0 be the subfield of K such that $\Delta_0 = \operatorname{Gal}(K_0/F) \cong PGL_2(\mathbb{F}_p)$. One can show that if $\operatorname{Sel}_E(K_{0,\infty})[p]$ is finite, then $\operatorname{Sel}_E(K_{\infty})[p]$ is finite too. Thus, it will be enough to assume the finiteness of $\operatorname{Sel}_E(K_{0,\infty})[p]$. Suppose that Σ_0 contains $\Phi_{K/F}$. Under all of these assumptions, one proves the following result.

If the p-Selmer version of the parity conjecture is true for all irreducible representations of Δ_0 , then it is also true for all irreducible representations of Δ .

The *p*-Selmer version of the parity conjecture has been studied by Birch-Stephens, Kramer-Tunnell, Monsky, Nekovar, B.D. Kim, V. and T. Dokchitser, Coates-Fukaya-Kato-Sujatha, and Mazur-Rubin. The results in [CFKS] are somewhat parallel to the results just mentioned, although the hypotheses and approach are different.

The results of Mazur and Rubin concern dihedral extensions of degree $2p^r$. If Δ is isomorphic to D_{2p^r} , then the irreducible representations of Δ have degree 1 or 2. The two 1-dimensional representations factor through the quotient Δ_0 of Δ of order 2. If σ has degree 2, and ρ is the direct sum of the two 1-dimensional representations then $\tilde{\sigma}^{ss} \cong \tilde{\rho}^{ss}$. In essence, under certain mild assumptions, they show that if the parity conjecture holds for the two 1-dimensional representations of Δ_0 , then it also holds for σ .

Projective dimension

Recall the assumptions in theorem A.

- (a) $\operatorname{Sel}_{E}(K_{\infty})[p]$ is finite.
- $(b) \quad \Phi_{K/F} \ \subseteq \ \Sigma_0.$
- (c) $E(\mathcal{K}_{\infty})[p] = 0$ and $\overline{E}_{v}(k_{v})[p] = 0$ for all v|p.

These assumptions imply that $X_E^{\Sigma_0}(K_\infty)$ has a free resolution of length 1 as a $\mathbf{Z}_p[[G]]$ -module, where $G = \operatorname{Gal}(K_\infty/F) \cong \Delta \times \Gamma$. In fact, this is true if one replaces (a) by the assumption that $\operatorname{Sel}_E(K_\infty)_p$ has finite \mathbf{Z}_p -corank (as conjectured by Mazur). The other assumptions are needed in full strength.

We will write R for $Z_p[[G]]$ and X for $X_E^{\Sigma_0}(K_\infty)$. Thus, under the above assumptions, one has an exact sequence

$$0 \longrightarrow R^d \longrightarrow R^d \longrightarrow X \longrightarrow 0 \quad ,$$

where $d \geq 1$.

A final remark

This is a remark related to the paper The GL_2 main conjecture for elliptic curves without complex multiplication

The map $R^d \longrightarrow R^d$ is given by right-multiplication by a $d \times d$ matrix with entries in R. The determinant of such a matrix, if it makes sense, should be a "characteristic element" for the R-module X.

This does make sense if G is commutative. And so the above exact sequence gives a characteristic element ξ in $R = \mathbb{Z}_p[[G]]$. One can think of such an element as a \mathbb{Z}_p -valued measure on the Galois group $G = \Delta \times \Gamma$. One can identify R with $\Lambda[\Delta]$. If $\sigma : \Delta \to \mathcal{O}^{\times}$ is a character of Δ , then σ induces a ring homomorphism $\sigma : R \to \mathcal{O}[[\Gamma]]$ and $\sigma(\xi)$ is an element of $\mathcal{O}[[\Gamma]] = \Lambda_{\mathcal{O}}$.

If G is non-commutative, then one can define a "determinant" ξ in some K_1 . For a ring \mathfrak{R} , one defines $K_1(\mathfrak{R})$ as a certain abelian quotient of the direct limit of the groups $GL_n(\mathfrak{R})$ under the map sending an $n \times n$ matrix A to the $(n+1) \times (n+1)$ matrix $\begin{bmatrix} A & 0 \\ 0 & 1 \end{bmatrix}$.

Assuming that $G = \Delta \times \Gamma$, one can identify $R = \mathbb{Z}_p[[G]]$ with $\mathbb{Z}_p[[\Gamma \times \Delta]] = \Lambda[\Delta]$. Recall that $\Lambda = \mathbb{Z}_p[[\Gamma]]$. If *S* is a multiplicatively closed subset of the nonzero elements of Λ containing an annihilator of *X*, Then one can left-tensor the above exact sequence with $\mathfrak{R} = R_S = \Lambda_S[\Delta]$, obtaining an isomorphism

$$\mathfrak{R}^d \longrightarrow \mathfrak{R}^d$$

This defines a $d \times d$ matrix and hence an element ξ in $K_1(\mathfrak{R})$. Note that the matrix can be taken with entries in R.

An integrality property of ξ

One can think of ξ as a characteristic element for the *R*-module *X*. It has a nice integrality property, namely if $\sigma : \Delta \to GL_n(\mathcal{O})$ is any irreducible representation of Δ , then σ induces ring homomorphisms:

$$\sigma: \mathbf{Z}_{\rho}[\Delta] \to M_n(\mathcal{O}), \qquad \sigma: \Lambda[\Delta] \to M_n(\Lambda_{\mathcal{O}}) \ ,$$

where $\Lambda_{\mathcal{O}} = \mathcal{O}[[\Gamma]]$. This extends to a ring homomorphism

$$\sigma:\mathfrak{R}\to M_n(\Lambda_{\mathcal{O},S})$$

One then gets a homomorphism Φ_{σ} from $K_1(\mathfrak{R})$ to

$$K_1(M_n(\Lambda_{\mathcal{O},S})) = K_1(\Lambda_{\mathcal{O},S}) = \Lambda_{\mathcal{O},S}^{\times}$$

The remark is that $\Phi_{\sigma}(\xi)$ is in $\Lambda_{\mathcal{O}}$.