Solutions for the Galois Theory Problems

Problem 1. Suppose that $\theta \in K$, but $\theta \notin F$. Then $2 = [K : F] = [K : F(\theta)][F(\theta) : F]$ and $[F(\theta) : F] > 1$. It follows that $K = F(\theta)$ and that the minimal polynomial for θ over F has degree 2. Let $f(x)$ be the minimal polynomial for θ over F. We can write $f(x) = x^2 + ax + b$, where $a, b \in F$.

We know that $f(x) = (x - \theta)(x - \beta)$, where θ is as above and $\beta \in C$. Thus, we have

$$f(x) = (x - \theta)(x - \beta) = x^2 - (\theta + \beta)x + \theta\beta = x^2 + ax + b$$

and so it follows that $\theta + \beta = -a$ and $\theta\beta = b$.

The splitting field for $f(x)$ over F is $F(\theta, \beta)$. Since $K = F(\theta)$, we have $K \subseteq F(\theta, \beta)$. Now note that $\beta = -a - \theta$ is in the field $K = F(\theta)$. Hence K is a field containing F and also containing β as well as θ. Thus, $F(\theta, \beta) \subseteq K$. We have proved that $K = F(\theta, \beta)$.

Thus, K is actually the splitting field over F for $f(x)$, which is a polynomial with coefficients in F. Therefore, K is indeed a finite, Galois extension of F.

Problem 2.

(a) By the rational root test, the only possible rational roots of $f(x) = x^3 - x - 1$ are 1 and -1. Neither of those numbers is a root. Since $\deg(f(x)) = 3$, it follows that $f(x)$ is irreducible over \mathbb{Q}. If θ is a complex root of $f(x)$, then $[\mathbb{Q}(\theta) : \mathbb{Q}] = 3$. It will be useful to make the following observation: Suppose that F is an extension of \mathbb{Q}, that $[F : \mathbb{Q}] = 2$, and that θ is any complex root of $f(x)$. Then $\theta \notin F$. This is clear because $[\mathbb{Q}(\theta) : \mathbb{Q}] = 3$ and hence the degree of θ over \mathbb{Q} does not divide $[F : \mathbb{Q}]$. Thus, $f(x)$ has no root in F and therefore $f(x)$ is irreducible over F. We are again using the fact that $\deg(f(x)) = 3$ to make that conclusion.

In particular, $f(x)$ is irreducible over each of the fields $\mathbb{Q}(\sqrt{-23})$ and $\mathbb{Q}(\sqrt{23})$. Thus, if F is any one of the three fields \mathbb{Q}, $\mathbb{Q}(\sqrt{-23})$, or $\mathbb{Q}(\sqrt{23})$, and if K is the splitting field for $f(x)$ over F, then we can say that $Gal(K/F)$ is isomorphic to a subgroup of S_3 and that $|Gal(K/F)| = [K : F]$ is divisible by 3. This means that $Gal(K/F)$ is isomorphic to either S_3 itself, or to A_3.

The criterion for deciding between those two possibilities involves the discriminant of $f(x)$. We have

$$d = disc(f(x)) = -4(-1)^3 - 27(-1)^2 = -23.$$
Note that \(d = -23 \) is not a square in \(\mathbb{Q} \). Note also that \(-23\) is not a square in the field \(\mathbb{Q}(\sqrt{23}) \). This follows from the fact that \(\mathbb{Q}(\sqrt{23}) \) is a subfield of \(\mathbb{R} \). It also follows from the lemma proved at the beginning of my solutions for problem set 4.

It follows that \(\text{Gal}(K/F) \) is isomorphic to \(S_3 \) when \(F = \mathbb{Q} \) or \(F = \mathbb{Q}(\sqrt{23}) \).

Obviously, \(d = -23 \) is a square in the field \(F = \mathbb{Q}(\sqrt{-23}) \). Hence, \(\text{Gal}(K/F) \) is isomorphic to \(A_3 \) in this case.

Alternatively, let \(K \) denote the splitting field for \(f(x) \) over \(\mathbb{Q} \). As proved in class, \(K \) must contain \(\sqrt{d} \). Hence, \(K \) must contain \(F = \mathbb{Q}(\sqrt{-23}) \). That is, we have \(\mathbb{Q} \subset F \subset K \).

Hence, as discussed in class, the field \(K \) is also the splitting field for \(f(x) \) over \(F \). Furthermore, the intermediate field \(F \) for the extension \(K/Q \) corresponds to the subgroup \(\text{Gal}(K/F) \) of \(\text{Gal}(K/Q) \) and has index 2. Since \(\text{Gal}(K/Q) \cong S_3 \), it follows that \(\text{Gal}(K/F) \cong A_3 \).

(b) Let \(K \) be the splitting field over \(\mathbb{Q} \) for \(f(x) = x^8 - 1 \). We proved in class that \([K : \mathbb{Q}] = 4\). Also, by problem A in problem set 3, there is an injective group homomorphism \(\rho \) from \(\text{Gal}(K/Q) \) to \((\mathbb{Z}/8\mathbb{Z})^\times \). Both groups have order 4 and so \(\rho \) is an isomorphism. Thus, \(\text{Gal}(K/Q) \) is isomorphic to \((\mathbb{Z}/8\mathbb{Z})^\times \), which is an abelian group in which every element has order 1 or 2. Thus, \(\text{Gal}(K/Q) \) is isomorphic to \(\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \) as a group.

We also know that \(i \in K \) and hence that \(\mathbb{Q}(i) \subset K \). We have \(\mathbb{Q} \subset \mathbb{Q}(i) \subset K \).

Also, \(4 = [K : \mathbb{Q}] = [K : \mathbb{Q}(i)][\mathbb{Q}(i) : \mathbb{Q}] = 2[K : \mathbb{Q}(i)] \). These remarks show that \(K \) is also the splitting field for \(f(x) \) over \(\mathbb{Q}(i) \) and that \([K : \mathbb{Q}(i)] = 2\). It follows that \(\text{Gal}(K/\mathbb{Q}(i)) \) has order 2. Hence that Galois group is isomorphic to \(\mathbb{Z}/2\mathbb{Z} \).

(c) Let \(f(x) = x^3 - x^2 - 4 \). Note that \(f(2) = 0 \). Thus, \(f(x) \) is reducible over \(\mathbb{Q} \). In fact, we have

\[
f(x) = (x - 2)(x^2 + x + 2).
\]

It follows that the splitting fields over \(\mathbb{Q} \) for \(f(x) \) and for \(g(x) = x^2 + x + 2 \) coincide. The rational root test shows that \(g(x) \) is irreducible over \(\mathbb{Q} \).

Let \(K \) denote the splitting field over \(\mathbb{Q} \) for \(f(x) \). If \(\theta \) is a complex root of \(g(x) \), then \(K = \mathbb{Q}(\theta) \), as explained in the solution for problem 1. Thus, \([K : \mathbb{Q}] = 2 \) and \(\text{Gal}(K/\mathbb{Q}) \) is of order 2. The Galois group is isomorphic to \(\mathbb{Z}/2\mathbb{Z} \).
As an incidental remark, we have $K = \mathbb{Q}(\sqrt{-7})$.

(d) Let $f(x) = x^3 - x^2 - 2x + 1$. The rational root test shows that the only possible roots of $f(x)$ in \mathbb{Q} are 1 or -1. Neither is actually a root. Since $\deg(f(x)) = 3$, it follows that $f(x)$ is irreducible over \mathbb{Q}. Thus, if K denotes the splitting field over \mathbb{Q} for $f(x)$, then $Gal(K/\mathbb{Q})$ is isomorphic either to S_3 or to A_3.

Using a formula from the handout about discriminants, and taking $a_1 = -1$, $a_2 = -2$, and $a_3 = 1$, we have

$$disc(f(x)) = 49.$$

Note that 49 is a square in \mathbb{Q}. It follows that $Gal(K/\mathbb{Q})$ is isomorphic to A_3, a cyclic group of order 3.

Problem 3. All of the complex roots of the polynomial $x^{17} - 1$ are powers of ω, which is one of the complex roots of that polynomial. It follows that $K = \mathbb{Q}(\omega)$ is the splitting field over \mathbb{Q} for $x^{17} - 1$. Therefore, K is a Galois extension of \mathbb{Q}. Furthermore, according to problem F in problem set 4, we know that there is an isomorphism

$$\rho : Gal(K/\mathbb{Q}) \rightarrow (\mathbb{Z}/17\mathbb{Z})^\times.$$

Now $(\mathbb{Z}/17\mathbb{Z})^\times$ has order 16. In fact, it is a cyclic group of order 16. One sees this just by verifying that $3 + 17\mathbb{Z}$ generates the group $(\mathbb{Z}/17\mathbb{Z})^\times$. For that verification, it suffices to note that $3^8 = 6561$ and $6561 \equiv -1 \pmod{17}$. This means that $3 + 17\mathbb{Z}$ is an element of $(\mathbb{Z}/17\mathbb{Z})^\times$ whose order does not divide 8. That element must therefore have order 16.

Since ρ is an isomorphism, we can now say that $G = Gal(K/\mathbb{Q})$ is a cyclic group of order 16. This fact implies that G has a unique subgroup H of order 2. By the Fundamental Theorem of Galois Theory, it follows that there is a unique intermediate field L for the extension K/\mathbb{Q} such that $Gal(K/L)$ has order 2. We have $H = Gal(K/L)$. Furthermore, $[K : L] = 2$ and so $[L : \mathbb{Q}] = 8$. Since $H = Gal(K/L)$ is a normal subgroup of G, it follows that L is a Galois extension of \mathbb{Q}.

We can also say that $Gal(L/\mathbb{Q}) \cong G/H$. Now G is a cyclic group, and so G/H must also be a cyclic group. Its order is $[G : H] = 8$.

To find a generator for L over \mathbb{Q}, consider the minimal polynomial $m(x)$ for ω over L. The only element in $(\mathbb{Z}/17\mathbb{Z})^\times$ of order 2 is $-1 + 17\mathbb{Z}$. Let τ denote the corresponding element of $Gal(K/\mathbb{Q})$. Then $H = \langle \tau \rangle$, the cyclic subgroup of G generated by τ. Using the definition of the isomorphism ρ, we have

$$\tau(\omega) = \omega^{-1}.$$
As explained in class, it follows that the minimal polynomial for ω over L is given by
\[m(x) = (x-\omega)(x-\tau(\omega)) = (x-\omega)(x-\omega^{-1}) = x^2 - (\omega + \omega^{-1})x + \omega\omega^{-1} = x^2 - \beta x + 1, \]
where $\beta = \omega + \omega^{-1}$. In particular, note that β must be an element of the field L.

Let $F = \mathbb{Q}(\beta)$. Then we have $\mathbb{Q} \subseteq F \subseteq L \subseteq K$. By the degree formula, we have
\[[K : F] = [K : L][L : F]. \]

Now $[K : L] = 2$. But notice that $K = F(\omega)$, that ω is a root of the quadratic polynomial $m(x)$, and that $m(x)$ has coefficients in the field F. It follows that $[K : F] \leq 2$. Thus, we see that $[L : F] = 1$ and we must have $L = F$. That is, we have $L = \mathbb{Q}(\beta)$.

We add one incidental remark. Notice that $\beta = 2\cos(\frac{2\pi}{17})$. Thus, the field L described above is generated over \mathbb{Q} by $\cos(\frac{2\pi}{17})$.

Problem 4. By definition, $M = \mathbb{Q}(\kappa, \lambda)$ is the field KL, the compositum of the fields K and L. Since K and L are finite Galois extensions of \mathbb{Q}, there exists polynomials $f(x)$ and $g(x)$ in $\mathbb{Q}[x]$ such that K is the splitting field over \mathbb{Q} for $f(x)$ and L is the splitting field over \mathbb{Q} for $g(x)$. Thus, by definition, K is the smallest extension of \mathbb{Q} containing all the roots of $f(x)$ and L is the smallest extension of \mathbb{Q} containing all the roots of $g(x)$.

It follows that $M = KL$ is the smallest extension of \mathbb{Q} containing all the roots of $f(x)g(x)$. Furthermore, $f(x)g(x) \in \mathbb{Q}[x]$. Thus, we can say that M is the splitting field over \mathbb{Q} for $f(x)g(x)$. Therefore, M is indeed a finite, Galois extension of \mathbb{Q}.

Note that $M = KL$ contains both K and L. Hence K and L are intermediate fields for the extension M/\mathbb{Q}. Both K and L are Galois extensions of \mathbb{Q}. Thus, we can use the restriction maps to define homomorphisms from $\text{Gal}(M/\mathbb{Q})$ to $\text{Gal}(K/\mathbb{Q})$ and to $\text{Gal}(L/\mathbb{Q})$. We can define one single homomorphism
\[\phi : \text{Gal}(M/\mathbb{Q}) \longrightarrow \text{Gal}(K/\mathbb{Q}) \times \text{Gal}(L/\mathbb{Q}) \]
by
\[\phi(\sigma) = (\sigma|_K, \sigma|_L), \]
for all $\sigma \in \text{Gal}(M/\mathbb{Q})$.

We omit the straightforward verification that ϕ is a group homomorphism. Furthermore, since $M = \mathbb{Q}(\kappa, \lambda)$, it follows that an element $\sigma \in \text{Gal}(M/\mathbb{Q})$ is completely determined if one knows $\sigma(\kappa)$ and $\sigma(\lambda)$. Consequently, such a σ is completely determined if one knows $\sigma|_K$ and $\sigma|_L$. Consequently, the homomorphism ϕ is injective.
The above arguments are rather general. Suppose now that \([K : \mathbb{Q}] = 3\) and \([L : \mathbb{Q}] = 3\).

By assumption, \(K\) and \(L\) are Galois extensions of \(\mathbb{Q}\). Both \(\text{Gal}(K/\mathbb{Q})\) and \(\text{Gal}(L/\mathbb{Q})\) are cyclic groups of order 3. They are isomorphic to \(\mathbb{Z}/3\mathbb{Z}\).

The injective homomorphism \(\phi\) defined above shows that \(\text{Gal}(M/\mathbb{Q})\) is isomorphic to a subgroup of \(\text{Gal}(K/\mathbb{Q}) \times \text{Gal}(L/\mathbb{Q})\), which is a group of order 9. Therefore, \(|\text{Gal}(M/\mathbb{Q})|\) divides 9. It follows that \([M : \mathbb{Q}]\) divides 9. Since \(\mathbb{Q} \subset K \subset M\), we also can say that \([M : \mathbb{Q}]\) is divisible by \([K : \mathbb{Q}] = 3\). Therefore, either \([M : \mathbb{Q}] = 3\) or \([M : \mathbb{Q}] = 9\).

We will show that \([M : \mathbb{Q}] = 9\). Assume to the contrary that \([M : \mathbb{Q}] = 3\). Since \(K\) and \(L\) are extensions of \(\mathbb{Q}\) of degree 3 and both are subfields of \(M\), it would follow that \(K = M\) and \(L = M\). Hence, it would follow that \(K = L\). However, it is assumed in this problem that \(K \neq L\). Thus, we have a contradiction. This means that \([M : \mathbb{Q}] = 9\).

The homomorphism \(\phi\) is injective. Both \(\text{Gal}(M/\mathbb{Q})\) and \(\text{Gal}(K/\mathbb{Q}) \times \text{Gal}(L/\mathbb{Q})\) have order 9. It follows that \(\phi\) is an isomorphism. Therefore, \(\text{Gal}(M/\mathbb{Q})\) is indeed isomorphic to \(\mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}\), as stated.

Problem 5. This problem is closely related to problem 3. Instead of considering the splitting field for \(x^{17} - 1\), we consider the splitting field for \(x^{29} - 1\). Denote the splitting field over \(\mathbb{Q}\) for \(x^{29} - 1\) by \(M\). This time, we have a group isomorphism \(\rho : \text{Gal}(M/\mathbb{Q}) \rightarrow (\mathbb{Z}/29\mathbb{Z})^\times\).

The group \((\mathbb{Z}/29\mathbb{Z})^\times\) is a cyclic group of order 28. It is generated by \(2 + 29\mathbb{Z}\). To verify this, it suffices to show that \(2^{14} \not\equiv 1 \pmod{29}\) and \(2^4 \not\equiv 1 \pmod{29}\), which we leave to the reader. Let \(G = \text{Gal}(M/\mathbb{Q})\). Then \(G\) is a cyclic group of order 28.

If \(H\) is the unique subgroup of \(G\) of order 2, then \(G/H\) is a cyclic group of order 14 and hence is isomorphic to \(\mathbb{Z}/14\mathbb{Z}\). Thus, if \(K = MH\), then we have \(\text{Gal}(K/\mathbb{Q}) \cong G/H\). Hence, \(\text{Gal}(K/\mathbb{Q})\) is isomorphic to \(\mathbb{Z}/14\mathbb{Z}\).

Problem 6. The complex roots of \(f(x)\) are

\[
-\frac{1}{2} + \frac{\sqrt{-3}}{2}, \quad -\frac{1}{2} - \frac{\sqrt{-3}}{2}, \quad -\frac{1}{2} + \frac{\sqrt{5}}{2}, \quad -\frac{1}{2} - \frac{\sqrt{5}}{2}.
\]

The field \(F\) is generated over \(\mathbb{Q}\) by the above four numbers. Now one sees easily that we have \(F = \mathbb{Q}(\sqrt{-3}, \sqrt{5})\). The field \(F\) is a Galois extension of \(\mathbb{Q}\) and, just as for the field \(\mathbb{Q}(\sqrt{2}, \sqrt{3})\) discussed in class, one finds that \([F : \mathbb{Q}] = 4\).

The polynomial \(g(x)\) has degree 3 and is irreducible over \(\mathbb{Q}\). This follows from the rational root test. Therefore, \(\beta\) has degree 3 over \(\mathbb{Q}\). Hence, for \(K = \mathbb{Q}(\beta)\), we have \([K : \mathbb{Q}] = 3\).
Now $F \cap K$ is a subfield of F and also a subfield of K. Of course, the field $F \cap K$ contains \mathbb{Q}. It follows that $[F \cap K : \mathbb{Q}]$ divides both $[F : \mathbb{Q}] = 4$ and $[K : \mathbb{Q}] = 3$. Therefore, $[F \cap K : \mathbb{Q}] = 1$. Hence, we have $F \cap K = \mathbb{Q}$.

Now we will consider $F \cap L$. Here L is the splitting field over \mathbb{Q} for $g(x)$. Since $g(x)$ has degree 3 and is irreducible over \mathbb{Q}, we know that $Gal(L/\mathbb{Q})$ is isomorphic either to S_3 or to A_3. The discriminant of $g(x)$ is

$$d = -4 \cdot 3^3 - 27 \cdot 1^2 = -5 \cdot 27 = -135.$$

Thus, L contains the field $\mathbb{Q}(\sqrt{d}) = \mathbb{Q}(\sqrt{-15})$, we have $Gal(L/\mathbb{Q}) \cong S_3$, and $[L : \mathbb{Q}] = 6$.

Notice that $\sqrt{-15} = \sqrt{5}\sqrt{-3}$ is in the field F. Hence we have $\mathbb{Q}(\sqrt{-15}) \subset F$. Also, as we found above, we have $\mathbb{Q}(\sqrt{-15}) \subset L$. Thus, we have

$$\mathbb{Q}(\sqrt{-15}) \subseteq F \cap L.$$

We will prove equality by verifying that both of these fields have degree 2 over \mathbb{Q}. This is clear for $\mathbb{Q}(\sqrt{-15})$. The above inclusion shows that $[F \cap L : \mathbb{Q}]$ is divisible by 2.

Now $F \cap L$ is a subfield of both F and L, which are extensions of \mathbb{Q} of degree 4 and 6, respectively. It follows that $[F \cap L : \mathbb{Q}]$ divides both 4 and 6. Hence $[F \cap L : \mathbb{Q}] \leq 2$. Since $[F \cap L : \mathbb{Q}]$ is divisible by 2, it follows that we indeed have $[F \cap L : \mathbb{Q}] = 2$. Consequently, we have proved that $F \cap L = \mathbb{Q}(\sqrt{-15})$.

Problem 7. We are given that K is a finite, Galois extension of \mathbb{Q}. Let $G = Gal(K/\mathbb{Q})$. By assumption, we have $G \cong S_4$. Now S_4 contains a subgroup of order 6, namely

$$\{ g \in S_4 \mid g(4) = 4 \},$$

a subgroup of S_4 which is isomorphic to S_3. It follows that G has a subgroup H such that $H \cong S_3$. We let L denote K^H. Note that

$$[L : \mathbb{Q}] = [G : H] = \frac{|G|}{|H|} = \frac{24}{6} = 4.$$

By the Primitive Element Theorem, we have $L = \mathbb{Q}(\beta)$ for some $\beta \in \mathbb{C}$. Since $[L : \mathbb{Q}] = 4$, it follows that β has degree 4 over \mathbb{Q}. Let $g(x)$ be the minimal polynomial for β over \mathbb{Q}.

We have $g(x) \in \mathbb{Q}[x]$ and $\deg(g(x)) = 4$. Let M denote the splitting field for $g(x)$ over \mathbb{Q}. Since K is a Galois extension of \mathbb{Q} and $\beta \in K$, it follows that all of the complex roots of $g(x)$ are also in K. We proved this in class. Thus, it follows that $M \subseteq K$. Also, $L \subseteq M$. Thus, we have $L \subseteq M \subseteq K$.
By the degree formula, we have $[K : L] = [K : M][M : L]$. Also, $Gal(K/L) = H \cong S_3$. Therefore, $[K : L] = 6$. Thus, $[K : M]$ divides 6.

Since M is a Galois extension of \mathbb{Q}, it follows that $Gal(K/M)$ is a normal subgroup of $G = Gal(K/\mathbb{Q})$. But $|Gal(K/M)| = [K : M]$ divides 6. Recall that S_4 has normal subgroups only of orders 24, 12, 4, and 1. Now, 24, 12, and 4 don’t divide 6. Therefore, we can conclude that $|Gal(K/M)| = 1$. Hence $Gal(K/M) = \{id_G\}$. This means that $M = K$. That is, the splitting field over \mathbb{Q} for $g(x)$ is indeed the field K.

Problem 8. It was unfortunately not specified in the problem, but we want $f(x)$ to be a polynomial of degree 3.

Let $G = Gal(K/\mathbb{Q})$. We are given that $G \cong S_4$. Now S_4 has a subgroup of order 8, namely the dihedral group D_8. Thus, G also has a subgroup of order 8. Let H be such a subgroup.

Now let $L = K^H$. We have $H = Gal(K/L)$. Thus, $[K : L] = |H| = 8$. Furthermore, we have $[L : \mathbb{Q}] = [G : H] = 3$.

Suppose that $\theta \in L$, but $\theta \not\in \mathbb{Q}$. Since $[L : \mathbb{Q}] = 3$, it follows that $L = \mathbb{Q}(\theta)$. Let $f(x)$ be the minimal polynomial for θ over \mathbb{Q}. Then $f(x) \in \mathbb{Q}[x]$, $f(x)$ has degree 3, and $f(x)$ is irreducible over \mathbb{Q}.

One root of $f(x)$ is θ. Now $\theta \in L$ and $L \subset K$. Hence $\theta \in K$. Since K is a Galois extension of \mathbb{Q}, it follows that all of the roots of $f(x)$ must be in K. The polynomial $f(x)$ has all of the requested properties in this problem.