Galois Theory Problems

1. Suppose that F and K are subfields of \mathbb{C}, that $F \subset K$, and that $[K : F] = 2$. Prove that K is a Galois extension of F.

2. Determine the Galois groups for the splitting fields of the following polynomials over the specified fields.

 (a) $x^3 - x - 1$ over \mathbb{Q}, over $\mathbb{Q}(\sqrt{-23})$, over $\mathbb{Q}(\sqrt{23})$.

 (b) $x^8 - 1$ over \mathbb{Q}, over $\mathbb{Q}(i)$.

 (c) $x^3 - x^2 - 4$ over \mathbb{Q}.

 (d) $x^3 - x^2 - 2x + 1$ over \mathbb{Q}.

3. Let $K = \mathbb{Q}(\omega)$, where $\omega = \cos(\frac{2\pi}{17}) + \sin(\frac{2\pi}{17})i$. Prove that K contains a unique subfield L such that $[L : \mathbb{Q}] = 8$. Prove that L is a Galois extension of \mathbb{Q}. Find an element $\beta \in L$ such that $L = \mathbb{Q}(\beta)$.

4. Suppose that $\kappa, \lambda \in \mathbb{Q}$. Assume that $K = \mathbb{Q}(\kappa)$ and $L = \mathbb{Q}(\lambda)$ are Galois extensions of \mathbb{Q} and that $[K : \mathbb{Q}] = [L : \mathbb{Q}] = 3$. Furthermore, assume that $K \neq L$. Let $M = \mathbb{Q}(\kappa, \lambda)$. Prove that M is a Galois extension of \mathbb{Q} and that $\text{Gal}(M/\mathbb{Q}) \cong \mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$.

5. Prove the existence of a Galois extension K of \mathbb{Q} such that $\text{Gal}(K/\mathbb{Q}) \cong \mathbb{Z}/14\mathbb{Z}$.

6. This question concerns three subfields $F, K,$ and L of \mathbb{C}. Let F be the splitting field over \mathbb{Q} for the polynomial $f(x) = (x^2 + x + 1)(x^2 + x - 1)$. Let $K = \mathbb{Q}(\beta)$, where β is the real root of the polynomial $g(x) = x^3 + 3x + 1$. Let L denote the splitting field over \mathbb{Q} for the polynomial $g(x)$. Determine the field $F \cap K$ as precisely as you can. Determine the field $F \cap L$ as precisely as you can.

7. Suppose that K is a finite, Galois extension of \mathbb{Q} and that $\text{Gal}(K/\mathbb{Q}) \cong S_4$. Prove that there exists a polynomial $g(x) \in \mathbb{Q}[x]$ such that $g(x)$ has degree 4 and K is the splitting field for $g(x)$ over \mathbb{Q}.

8. Suppose that K is a finite, Galois extension of \mathbb{Q} and that $\text{Gal}(K/\mathbb{Q}) \cong S_4$. Prove that there exists an irreducible polynomial $f(x) \in \mathbb{Q}[x]$ such that all three roots of $f(x)$ are in the field K.