Some Ring Theory Problems

1. Suppose that I and J are ideals in a ring R. Assume that $I \cup J$ is an ideal of R. Prove that $I \subseteq J$ or $J \subseteq I$.

2. Find an example of an integral domain R and two ideals I and J of R with the following properties: Both I and J are principal ideals of R, but $I + J$ is not a principal ideal of R.

3. Suppose that R is a commutative ring with identity and that K is an ideal of R. Let $R' = R/K$. The correspondence theorem gives a certain one-to-one correspondence between the set of ideals of R containing K and the set of ideals of R'. If I is an ideal of R containing K, we let I' denote the corresponding ideal of R'. Show that if I is principal, then so is I'.

4. Suppose that R is an integral domain. Suppose that I and J are ideals in R and that $I = (b)$ where $b \in R$. Prove that $I + J = R$ is and only if $b + I$ is a unit in the ring R/J.

5. Suppose that R is an integral domain and that $a, b \in R$. We say that a and b are “relatively prime” if $(a) + (b) = R$. Suppose that $c \in R$. Assume that a and b are relatively prime and that $a|bc$ in R. Prove that $a|c$ in R.

6. Suppose that R is a PID. Suppose that a, b are nonzero elements of R and that they are relatively prime. Prove that $(a) \cap (b) = (ab)$. Furthermore, consider the map

\[\varphi : R/(ab) \longrightarrow R/(a) \times R/(b) \]

defined by $\varphi(r + (ab)) = (r + (a), r + (b))$ for all $r \in R$. Prove that φ is a well-defined map and that it is a ring isomorphism. (This result is often referred to as the Chinese Remainder Theorem.)

7. Suppose that $R = \mathbb{Z}[\sqrt{2}]$. Suppose that M_1 and M_2 are maximal ideals of R. True or False: If the rings R/M_1 and R/M_2 are isomorphic, then $M_1 = M_2$. If true, give a proof. If false, give a counterexample.

8. Give an explicit example of an injective ring homomorphism from $\mathbb{Z}/5\mathbb{Z}$ to $\mathbb{Z}/20\mathbb{Z}$. No justification of your answer is needed.

9. Consider the ring $R = \mathbb{Q}[x]/I$, where $I = (x^2 - x)$. Show that $\beta = x + I$ is an idempotent element in R, but that $\beta \neq 0_R$ and $\beta \neq 1_R$. Find an idempotent element in R which is not
equal to 0_R, 1_R or β. Prove that $R \cong \mathbb{Q} \times \mathbb{Q}$. (It may be helpful to review the exercises about idempotents.)

10. This question concerns ring homomorphisms φ from a ring R to a ring S. In each part of this question, give an example of R, S, and φ satisfying the stated requirements. No explanations are needed. You must specify R, S, and φ precisely.

(a) R is a field, S is not a field, and φ is injective.
(b) R and S are integral domains, φ is surjective, but not injective.
(c) R is a noncommutative ring, S is an integral domain, and φ is surjective.

11. Give a specific example of a prime ideal in the ring $\mathbb{Q}[x]$ which is not a maximal ideal.

12. This question concerns the ring $\mathbb{Z}[i]$. The integer 11213 is a prime number. Furthermore, it turns out that $11213 = 82^2 + 67^2$. You may use these facts in this question without verifying them.

(a) Find a maximal ideal I in the ring $\mathbb{Z}[i]$ which contains 11213. Explain why your ideal I is actually a maximal ideal in $\mathbb{Z}[i]$.
(b) Find all of the irreducible elements α in $\mathbb{Z}[i]$ which divide 11213 in that ring.
(c) Prove that $\mathbb{Z}[i]/I$ is isomorphic to $\mathbb{Z}/11213\mathbb{Z}$.