FINAL EXAM FOR MATH 308 - AUTUMN, 2004

INSTRUCTIONS: Please read the questions carefully. Show your work clearly and completely. Your explanations should be understandable and convincing. If A is any matrix, then $\mathcal{N}(A)$ denotes the null space of A and $\mathcal{R}(A)$ denotes the range of A.

QUESTION 1. Let $A = \begin{bmatrix} 1 & 3 & 4 \\ 1 & 0 & 3 \\ 1 & 1 & 3 \end{bmatrix}$. Let $V_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$, $V_2 = \begin{bmatrix} 3 \\ 0 \\ 1 \end{bmatrix}$, and $V_3 = \begin{bmatrix} 4 \\ 3 \end{bmatrix}$.

(a) Compute $\text{Det}(A)$.
(b) Find A^{-1}.
(c) There is a unique matrix B such that $BA = \begin{bmatrix} 4 & 9 & -1 \end{bmatrix}$. Find this matrix B.
(d) Suppose that C is a 3×3 matrix. Suppose that you are told that C is row-equivalent to A. Without knowing anything more about the matrix C, can you determine the number of solutions X to the matrix equation $CX = \begin{bmatrix} 4 \\ 3 \\ 3 \end{bmatrix}$? Explain your answer briefly.
(e) Suppose that F is a 3×3 matrix. Suppose that you are told that $V_1, V_2,$ and V_3 are eigenvectors for the matrix F, and that the corresponding eigenvalues are $2, 1, \text{and } 5$, respectively. Without knowing anything more about the matrix F, can you determine F? If so, what is F?

QUESTION 2. For each of the following matrices A, find the eigenvalues. For each eigenvalue, find a basis for the corresponding eigenspace. Determine if the matrix A is diagonalizable. If A is diagonalizable, then find an invertible matrix T and a diagonal matrix D such that $A = TDT^{-1}$.

(a) $A = \begin{bmatrix} 3 & 1 & 5 \\ 0 & 4 & 5 \\ 0 & 0 & 3 \end{bmatrix}$, (b) $A = \begin{bmatrix} 3 & 1 & 5 \\ 0 & 4 & -5 \\ 0 & 0 & 3 \end{bmatrix}$.
QUESTION 3. In each part of this question, find a specific example of a matrix satisfying all of the stated requirements if it is possible. If no such example exists, explain why.

(a) Give an example (if possible) of a 3×3 matrix A such that each of the matrix equations

$$AX = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \quad \text{and} \quad AX = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

has at least one solution, but the matrix equation $AX = \begin{bmatrix} -1 \\ 2 \\ 5 \end{bmatrix}$ has no solutions.

(b) Give an example (if possible) of a 3×4 matrix B with the following two properties:

(i) $\text{rank}(B) = 2$ and (ii) the matrix equation $BX = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ has no solutions.

(c) Give an example (if possible) of a 2×2 matrix C which is singular, but not diagonalizable.

QUESTION 4.

(a) Let $W = \text{Sp}\left\{ \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix} \right\}$. Find a 3×3 matrix P such that $\mathcal{N}(P) = W$.

(Note: In parts (b), (c), and (d) of this question, use the matrix P that you found in part (a). If you were unable to do part (a), then just choose any matrix P such that $\text{rank}(P) = 1$.)

(b) Find a basis for $\mathcal{R}(P)$.

(c) Let U be any nonzero column in the matrix P that you found in part (a). Verify that U is an eigenvector for P.

(d) Determine the eigenvalues of the matrix P and their algebraic multiplicities.

QUESTION 5. Suppose that A is a 2×2 matrix and that the characteristic polynomial of A is $p(t) = t^2 - 4$. This information does not determine the matrix A. There are many such matrices. However, this information is sufficient to determine A^6. What is the matrix A^6? Explain your answer carefully.