Propositions about Conjugacy

Definition. Suppose that G is a group. Suppose that $a, b \in G$. We say that a and b are conjugate in G if there exists an element $g \in G$ such that $b = gag^{-1}$. We will write $a \sim_G b$ if a and b are conjugate in G.

1. The relation \sim_G is an equivalence relation on the set G. Each equivalence class under this equivalence relation is called a *conjugacy class* in G.

2. If a and b are conjugate in G, then |a| = |b|.

3. A group G is abelian if and only if each conjugacy class in G consists of exactly one element.

4. An element $z \in G$ is in the center Z(G) of G if and only if the set $\{z\}$ is a conjugacy class in G.

5. Suppose that G is a group and that $a \in G$. Define

$$C(a) = \{ g \in G \mid ga = ag \} .$$

The C(a) is a subgroup of G (which is called the *centralizer of a in G*). Furthermore, the cardinality of the conjugacy class of a in G is equal to the index [G : C(a)].

6. If G is a finite group, then the cardinality of every conjugacy class in G divides |G|.

7. (The class equation.) Suppose that G is a finite group. Let k denote the number of distinct conjugacy classes in G. Suppose that $a_1, ..., a_k$ are representatives of the distinct conjugacy classes of G. Then

$$|G| = \sum_{j=1}^{k} [G: C(a_j)]$$

8. Suppose that G is a group and that H is a subgroup of G. Then H is a normal subgroup of G if and only if H is a union of conjugacy classes of G.

Some Theorems about Finite Groups

1. Suppose that G is a group of order p, where p is a prime. Then $G \cong \mathbb{Z}_p$.

2. Suppose that G is a finite group and that $|G| = p^n$, where p is a prime and $n \ge 1$. Then $|Z(G)| = p^m$, where $m \ge 1$. Thus, $Z(G) \ne \{e\}$.

3. Let G be any group. Then Z(G) is a normal subgroup of G. If G/Z(G) is a cyclic group, then G is an abelian group (and therefore Z(G) = G).

4. Suppose that G is a group of order p^2 , where p is a prime. Then G is abelian.

5. Suppose that G is a nonabelian group of order p^3 , where p is a prime. Then $Z(G) \cong \mathbb{Z}_p$ and $G/Z(G) \cong \mathbb{Z}_p \times \mathbb{Z}_p$.

6. Suppose that G is a group of order pq, where p and q are distinct primes. Assume that q > p and that $q \not\equiv 1 \pmod{p}$. Then $G \cong \mathbb{Z}_{pq}$.

7. (Cauchy's Theorem.) Suppose that G is a finite group and that p is a prime which divides |G|. Then G contains at least one subgroup of order p. Thus, G has at least one element of order p. The number of elements of order p in G is a multiple of p - 1.