Propositions about Conjugacy

Definition. Suppose that G is a group. Suppose that $a, b \in G$. We say that a and b are conjugate in G if there exists an element $g \in G$ such that $b=g a g^{-1}$. We will write $a \sim_{G} b$ if a and b are conjugate in G.

1. The relation \sim_{G} is an equivalence relation on the set G. Each equivalence class under this equivalence relation is called a conjugacy class in G.
2. If a and b are conjugate in G, then $|a|=|b|$.
3. A group G is abelian if and only if each conjugacy class in G consists of exactly one element.
4. An element $z \in G$ is in the center $Z(G)$ of G if and only if the set $\{z\}$ is a conjugacy class in G.
5. Suppose that G is a group and that $a \in G$. Define

$$
C(a)=\{g \in G \mid g a=a g\} .
$$

The $C(a)$ is a subgroup of G (which is called the centralizer of a in G). Furthermore, the cardinality of the conjugacy class of a in G is equal to the index $[G: C(a)]$.
6. If G is a finite group, then the cardinality of every conjugacy class in G divides $|G|$.
7. (The class equation.) Suppose that G is a finite group. Let k denote the number of distinct conjugacy classes in G. Suppose that a_{1}, \ldots, a_{k} are representatives of the distinct conjugacy classes of G. Then

$$
|G|=\sum_{j=1}^{k}\left[G: C\left(a_{j}\right)\right]
$$

8. Suppose that G is a group and that H is a subgroup of G. Then H is a normal subgroup of G if and only if H is a union of conjugacy classes of G.

Some Theorems about Finite Groups

1. Suppose that G is a group of order p, where p is a prime. Then $G \cong \mathbb{Z}_{p}$.
2. Suppose that G is a finite group and that $|G|=p^{n}$, where p is a prime and $n \geq 1$. Then $|Z(G)|=p^{m}$, where $m \geq 1$. Thus, $Z(G) \neq\{e\}$.
3. Let G be any group. Then $Z(G)$ is a normal subgroup of G. If $G / Z(G)$ is a cyclic group, then G is an abelian group (and therefore $Z(G)=G$).
4. Suppose that G is a group of order p^{2}, where p is a prime. Then G is abelian.
5. Suppose that G is a nonabelian group of order p^{3}, where p is a prime. Then $Z(G) \cong \mathbb{Z}_{p}$ and $G / Z(G) \cong \mathbb{Z}_{p} \times \mathbb{Z}_{p}$.
6. Suppose that G is a group of order $p q$, where p and q are distinct primes. Assume that $q>p$ and that $q \not \equiv 1(\bmod p)$. Then $G \cong \mathbb{Z}_{p q}$.
7. (Cauchy's Theorem.) Suppose that G is a finite group and that p is a prime which divides $|G|$. Then G contains at least one subgroup of order p. Thus, G has at least one element of order p. The number of elements of order p in G is a multiple of $p-1$.
