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Abstract. The polynomial numerical hull of degree k is a set in the complex plane associated
with a matrix A that is designed to give more information than the spectrum can provide about
the behavior of A under the action of polynomials. We give an example of the application of the
polynomial numerical hull of degree k to explain the cutoff phenomenon that is often observed in
Markov processes. In particular, we consider the much-publicized result that it takes seven riffle
shuffles to randomize a deck of cards [Bayer and Diaconis, Ann. Appl. Prob. 2, 294-313 (1992)].
While this result cannot be explained by eigenvalues, it is shown to be very well-predicted by the
1l-norm polynomial numerical hulls of various degrees associated with a matrix derived from the
probability transition matrix.
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1. Introduction. Let A be an n by n matrix. The polynomial numerical hull
of A of degree k was introduced by Nevanlinna [10, 11] and further studied by the
author [5]. Tt is defined as

(1) Gr(A4) ={z € C: [p(A)l = Ip(z)| Vp € P},

where Py, is the set of polynomials of degree k or less. In many cases, the norm of
interest is the 2-norm, but in this paper we will concentrate on the 1-norm polynomial
numerical hull.

The polynomial numerical hull of any degree contains the spectrum of A since, if
A is an eigenvalue and v a corresponding normalized eigenvector of A, then p(A)v =
p(A)v implies ||p(A4)|| > |p(N)| for any matrix norm compatible with the given vector
norm. For k greater than or equal to the degree of the minimal polynomial of A,
the polynomial numerical hull of degree k consists precisely of the spectrum since the
minimal polynomial of A has roots only at the eigenvalues but satisfies ||p(4)|| = 0.
For values of k between one and the degree of the minimal polynomial, the polynomial
numerical hull of degree k is a closed bounded set — it is a subset, for instance, of
{z: |z| < ||A||} — that contains the spectrum.

These sets were identified to give more information than the spectrum alone can
provide about the behavior of a matrix under the action of polynomials. In this paper
we describe an application of the polynomial numerical hull in explaining the cutoff
phenomenon that is often observed in Markov processes. In particular, we consider
the much-publicized result that it takes seven riffle shuffles to randomize a deck of
cards [1, 9]. While the eigenvalues of the probability transition matrix cannot explain
this fact, the 1-norm polynomial numerical hulls of various degrees can.

A related set, that was perhaps first introduced by Landau [8] and Varah [13] and
later popularized by Trefethen [12, 3], is the e-pseudospectrum of A. It is defined as

A(A) = {z€C: (z=I- A7 =),

Again, while one often is interested in the 2-norm pseudospectra, the more relevant
norm for the card shuffling problem is the 1-norm. Jénsson and Trefethen considered
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the 1-norm pseudospectra of the probability transition matrix associated with the
riffle shuffle and demonstrated that the behavior of this system probably would not
be governed by its eigenvalues; even for small values of €, the e-pseudospectrum was
shown to contain much more than just the spectrum [6]. In [6], the authors also made
the important contribution of presenting the problem in a linear algebra framework
that made further analysis much easier, and that is the framework adopted here.
Moreover, a MATLAB code was provided for computing the probability transition
matrix and that code was used in the computations of this paper.

While examination of the pseudospectra of the transition matrix suggested that
there might be a transient phase, the pseudospectral plots did not seem to provide a
means by which the entire behavior of the system could be readily deduced; it was
not suggested in [6] that one could look at the pseudospectra and easily determine
the length of the transient phase or the exact behavior of the system during this
phase. The lower bound (1) provided by the polynomial numerical hull enables one to
estimate the early behavior of the system and the estimate turns out to be remarkably
good in this case. For the card shuffling problem, as we will see in the next section
(and as was noted in [6]), the distance from randomness is governed by the 1-norms
of the powers of a matrix A that is derived from the probability transition matrix. It
follows from (1) that these powers satisfy

(2) 145l > sup{|2[* : 2 € Gra(A)},

where Gi 1(A) denotes the 1-norm polynomial numerical hull of degree k. Hence this
distance can drop below one only when G 1(A) lies strictly inside the unit disk. As
it turns out, this first happens for k = 7.

2. The Card Shuffling Problem and Polynomial Numerical Hulls. A
standard riffle shuffle can be modeled in the following way [1]: A deck of n cards is
first cut into two heaps with the probability of a heap containing k cards being given

by a binomial distribution: < Z ) /2™. Cards from the left and right heaps are then

riffled together into a single pile, with the probability of dropping the next card from a
given heap being proportional to the number of cards in that heap. With this model,
the process of shuffling cards is represented as a Markov chain. The states of the
system are the n! possible orderings of the cards, and, given the current ordering, one
can write down the probability of achieving any other ordering on the next shuffle.
On the face of it, this simple model seems computationally intractable for even
moderate size values of n since it deals with n! possible states and requires the use
of an n! by n! probability transition matrix. Bayer and Diaconis showed that the
number of states of the system could be drastically reduced, however, by considering
only the number of rising sequences in any particular ordering [1]. A rising sequence
is a maximal list of consecutively numbered cards (perhaps interspersed with other
cards) found during one pass through the deck. For example, the ordering 146235
has three rising sequences: {1,2,3}, {4,5}, and {6}. By counting only the number of
rising sequences and deriving the probabilities of moving from a given number of rising
sequences to any other number with a single shuffle, the possible states of the system
were reduced from n! to n. Now the problem becomes easy to handle numerically.
The entries of the n by n probability transition matrix P are given by [6]:

_omf n+1 aj
P]’l_2 (2Z_J>az7
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F1G. 1. Steady-state distribution of rising sequences.
where o denotes the number of permutations of {1,...,n} that have exactly j rising

sequences. The numbers a; are called Eulerian numbers and satisfy the recurrence
A =kAr 1+ (r—k+1)A 4 1,

where A1; =1, A1, = 0 for k # 1, and o = Ap; [4, 7]. Here we have defined the
probability transition matrix P so that a shuffle of the deck corresponds to applying
P on the left to the current state vector.

The eigenvalues of P are known to be 277, 5 = 0,1,...,n — 1. The largest
eigenvalue is 1 and the corresponding eigenvector,

v=(ai,...,an)T /0!,

represents the steady-state to which the system converges after infinitely many shuf-
fles. Figure 1 shows a plot of the steady-state distribution of rising sequences for a
problem of size n = 52. It can be noted, for example, that with probability .9999 a
well-shuffled deck has between 19 and 34 rising sequences.

The distance from randomness (the steady-state) after k shuffles is measured
by the difference between P*sy and v = P>sg, where sq is the initial state vector
and P> = lim; , P/ = (v,...,v). For an initially sorted deck, there is one rising
sequence and so = (1,0,...,0)7. If we define A = P — P>, then A¥ = Pk — p>,
and the distance from randomness after k¥ > 1 shuffles is the norm of A¥s,. An upper
bound on this distance, which turns out to be exact [6] when the appropriate norm
is used, is the norm of A*.

The asymptotic rate of convergence toward the steady-state is determined by the
spectral radius of A, which is the second largest eigenvalue of P: 1/2. This means that
after sufficiently many initial shuffles, each new shuffle will reduce the distance from
the steady-state by about a factor of 2. At what point this asymptotic convergence
rate starts to be achieved, however, cannot be determined from the eigenvalues, nor
can the behavior of the system before this point.

The 1-norm of the difference between P*sq and v = P®s is the sum of absolute
values of the differences between the probability of each number of rising sequences
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1-Norm Distance from Randomness (solid) and Lower Bound (dashed)
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Fi1G. 2. 1-Norm distance from randomness (solid) and lower bound based on polynomial nu-
merical hulls of various degrees (dashed).

after k shuffles and that after infinitely many shuffles. This number is at most 2, and
for £ = 0 it is very nearly equal to 2 since the probability of having only one rising
sequence after infinitely many shuffles is tiny; that is, so — v = (1, —vs,...,—v,)7T,
where va +. ..+ v, = 1. If this number is large (e.g., greater than 1) then one probably
can tell by counting the number of rising sequences after k shuffles that the deck has
not been thoroughly mixed. The 1-norm is easily seen to be equal to twice the total
variation norm used by Bayer and Diaconis [2].

The solid line in Figure 2 is a plot of ||A*||; versus k, again for the problem of
size n = 52. After about k¥ = 6 shuffles the asymptotic behavior of the system sets in,
with ||A¥||; being reduced by about a factor of two each time k is increased by one.
Before this point, however, the behavior of the system is quite different. It can be
seen from Figure 2 that ||A¥||; remains almost constant until £ = 5, where it begins
to decrease. There are large (absolute) decreases at steps 6 and 7, and ||A¥||; first
drops below one at step k = 7.

The early behavior of the system is not hard to understand if one thinks about
rising sequences and the steady-state distribution of Figure 1. Initially the deck has
only one rising sequence and after one shuffle it has at most two. Since the probability
of having only two rising sequences after many shuffles is extremely small, the 1-norm
distance from the steady-state vector remains almost constant. After j shuffles, there
are at most 2’ rising sequences so for j < 4 the number of rising sequences is less
than or equal to 16. This is still highly unlikely in a well-shuffled deck, so the 1-norm
distance to randomness does not decrease significantly.

How can one see this from properties of the matrix A? The eigenvalues give no
hint that there is a (fairly) sudden cutoff. The 1-norm polynomial numerical hulls of
various degrees do provide such insight, however. The 1-norm polynomial numerical
hulls of degrees 1 through 8 are sketched in Figures 3 and 4, and Table 1 lists the
values

v =sup{|z|: z€ Gr1(A)}, k=1,...,10,
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F1Gg. 3. Polynomial numerical hulls of degrees k = 1,2,3,4 for the card shuffling matriz. Points
in the polynomial numerical hull of the given degree are marked with dots, and the unit circle is
plotted for comparison in the k =2, 3, and 4 figures.

computed to three decimal places. Based on these numbers and using inequality (2)
one obtains the third column of Table 1 and the dashed curve in Figure 2 as a lower
bound on ||A*||;. Note how closely the lower bound predicts the actual behavior of
the system.

K[ v [ F T4
1| 2.000 2.00 2.00
2| 1.414 2.00 2.00
3| 1.259 2.00 2.00
4] 1.189 2.00 2.00
5 | 1.130 1.84 1.85
6 | 1.031 1.20 1.23
71 .904 49 .67
8| .767 12 .33
9 635 | 1.7e-2 A7
10 539 | 2.1e-3 | 8.6e-2
TABLE 1

v, versus k for the card shuffling matriz.

It should be noted that the computation of polynomial numerical hulls of various
degrees presently is not an easy or exact task. A definition equivalent to (1) is

3) Gr(4) ={CeC: ,in llp(A = CD)|| = 1},

where P} (0) denotes the set of polynomials of degree k or less with value one at the
origin. To see that (3) is equivalent to (1), note that ¢ € Gi(A) (defined in (1)) if and
only if ||p(A4)]| > [p(¢)] for all p € Py, if and only if ||g(A)|| > 1 for all ¢ of the form
q(z) = p(2)/p(C), where p € P, and p(¢) # 0 (i.e., for all ¢ € Ps, with ¢(¢) = 1), and
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F1G. 4. Polynomial numerical hulls of degrees k = 5,6,7,8 for the card shuffling matriz. Points
in the polynomial numerical hull of the given degree are marked with dots, and the unit circle is
plotted for comparison. The first value of k for which vi, <1 is k=T7: vy = .904.

this is equivalent to ||g(A)|| = ||l +c1(A—=CI) +ca(A—CD2+...+ (A= CD¥|| > 1
for all ¢q,...,ck. This is the condition that ( lie in the set defined in (3).

To compute the sets in Figures 3 and 4 and the values in Table 1, we tested many
points ¢ throughout a region known to contain Gy 1 (A); for k = 1 we considered points
in the disk of radius || A||; about the origin, and for k¥ > 1 we tested points in G;_1 1 (A).
For each point ¢ on a lattice of spacing 0.1 throughout this region, an optimization
code (initially FMINUNC in MATLAB) was run to determine the polynomial p €
Pr(0) for which ||p(A— ¢I)||; was minimal. When ( is real, this optimization problem
can be expressed as a linear programming problem: Find coefficients ¢1,...,c, an n
by n matrix Z with nonnegative entries, and a number v to satisfy

min vy subject to

Cls4+5Cks
k
—ZijS[I-FZCg(A—CI)Z]USZU, ,j=1,...,n,
£=1

izijS’Ya .7:177”

i=1

This formulation (actually a modification of it, in which the matrices (4 — (I)*,
¢ =1,...,k were replaced by a basis orthonormal in the Frobenius norm) was used
as a check on the original optimization procedure, as was the use of different initial
guesses for the solution. If a polynomial p € Pi(0) was found for which |[p(A — ¢I)||1
was less than one, then ¢ was determined to lie outside Gr1(A4). If not, then several
checks of the sort described above were run, to see if a different method or initial guess
could lead to a polynomial with |[p(A — {I)||1 < 1. In all cases, the only questionable
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points were those very very close to the boundary of the region, where the computed
minimal value of ||P(A — ¢I)||; was very close to one, and a judgment was made as
to whether the slight difference was due to roundoff or was real. If no polynomial
could be found to make ||p(4 — ¢I)||1 < 1, then it was decided that ¢ € Gy 1(A).
To obtain the values in Table 1, we honed in on the largest value to an accuracy
of .001 by using a bisection procedure. It is hoped that methods can be developed
for computing polynomial numerical hulls of various degrees without simply testing
many, many points.

It may seem surprising that the lower bound (2) provides such a good estimate
of the actual behavior of this system at the early stages; there is no guarantee that
this will always happen. It can be understood why the estimate works so well for
k = 1,...,4 by noting that the vectors sg, Psq,..., P*sy, and v each have their
nonnegligible entries in different positions: if e; denotes the jth unit vector, then

so = €1, Psy = ey, P¥sg is an approximate linear combination of €9k-111,...,€qk for
k =2,3,4, and v is an approximate linear combination of ejg, ..., e34. It follows that
for any coefficients ¢y, ¢y, . .., cr we have
k k k
AT, = A - Pig. — .
1D e Al = 11D eiAsolli = 1Y eiPPso = (Y e;)vla
Jj=0 =0 Jj=0 Jj=1
k k

(4) R feol + ) le +1 ¢l

j=1 j=1

The fact that the inequality || E?:o cj Ay > || E;‘C:o cj A7 s||1 is actually an equality
as in (4) is established in [6].

Taking k = 1 in (4), it is seen that the condition that z be in Gy 1(A4) defined in
(1) is approximately the condition that |co|+2|c1| be greater than or equal to |co+c¢1 2]
for all cp,c1. This clearly holds if and only if |z| < 2 and so G;,1(A) is very close to a
disk of radius 2 about the origin.

For k between 2 and 4, Gy 1(A) is not simply a disk about the origin, but one can
argue using (4) that z = 2/F lies in or very close to G ;(A); that is,

k k k
(5) leol + D el + 1D il > 1 ¢ 27/¥|, Yeg,en,... ek
Jj=1 7j=1 7=0

To see that (5) holds, note that the left-hand side satisfies

k k k k k
leol + D lejl + 1D eil = leol + (2 = 25) Y el + @VF = 1) Y el + 1D ¢
Jj=1 Jj=1 7=1 7j=1

j=1
k k
> Jeo + (2= 2"%) Y " fes| + 24D e,
j=1 7j=1

while the right-hand side satisfies

k k
|3 274 < Jeol + 274 Y2077

Jj=0 Jj=1
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k k
<leo| + 2741 il + ) ey (27K —21/H)]

j=1 7j=1
k k
< leol + 2% il + (2= 2%) Y eyl
=1 =1

Combining this with the fact that v} < ||A*||; < 2, for k = 1,...,4, it is established
analytically that vf ~ 2, for k=1,...,4.

A number of other Markov processes (e.g., the Ehrenfests’ urn [2, 6, 5]) go through
a similar initial phase in which the 1-norm distance from the steady-state remains
almost constant. For these problems as well, the lower bound (2) should provide a
good estimate of the early behavior of the system.

3. Conclusions. While much work remains to be done to efficiently compute
polynomial numerical hulls of various degrees and to understand their geometry and
their relation to other sets such as the e-pseudospectrum, it is clear that for this
particular example the polynomial numerical hull of degree k is a valuable tool in
understanding and predicting the behavior of the system. There are many other
applications remaining to be explored; examples include stability analysis of finite
difference schemes for time-dependent ordinary and partial differential equations and
estimates of the convergence rate of the GMRES algorithm for solving linear systems.
The polynomial numerical hulls of various degrees appear to provide important in-
formation about the behavior of a matrix that cannot be gleaned from the spectrum
alone and so are deserving of further study.

Acknowledgments: The author thanks Nick Trefethen and Mark Embree for helpful
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