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Abstract. Six characterizations of the polynomial numerical hull
of degree k are established for bounded linear operators on a Hilbert
space. It is shown how these characterizations provide a natu-
ral distinction between interior and boundary points. One of the
characterizations is used to prove that the polynomial numerical
hull of any fixed degree k for a Toeplitz matrix whose symbol is
piecewise continuous approaches all or most of that of the infinite-
dimensional Toeplitz operator, as the matrix size goes to infinity.

1. Introduction

The polynomial numerical hull of degree k for a bounded linear op-
erator A on a Hilbert space is defined as

(1) Hk(A) := {z ∈ C : ‖p(A)‖ ≥ |p(z)| ∀p ∈ Pk},

where Pk denotes the set of polynomials of degree k or less [10, 11, 5].
The sets Hk(A) are nonempty and compact, and H1(A) is equal to
the closure of the field of values of A [10]. Polynomial numerical hulls
were introduced as a tool for understanding and estimating ‖f(A)‖ for
various classes of functions f . When the operator A is normal and ‖ · ‖
is the 2-norm, the spectrum of A suffices for understanding ‖f(A)‖, but
when A is nonnormal the spectrum often does not supply the kind of
information required in applications [14]. Polynomial numerical hulls
have been shown to be a useful tool in a number of applications where
the underlying operator A is nonnormal, [5, 6, 7]. Nonetheless, very
little is known about these sets.
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The purpose of this paper is to present several characterizations of
polynomial numerical hulls and their boundary. It is hoped that our
characterizations of the boundary will eventually permit us to apply
methods similar to those used for pseudospectra to compute the poly-
nomial numerical hull. Notwithstanding this numerical interest, an
understanding of the geometry of the boundary of the polynomial nu-
merical hull is fundamental to an understanding of the geometry of the
entire set. We conclude this note by showing that the polynomial nu-
merical hull of any fixed degree k for a Toeplitz matrix whose symbol
is piecewise continuous approaches all or most of that of the infinite-
dimensional Toeplitz operator, as the matrix size goes to infinity. More
precisely, we show that the polynomial numerical hull of degree k for
the Toeplitz operator contains the uniform and partial limits [12] (or,
equivalently, the inner and outer limits [13], respectively) as N → ∞
of the polynomial numerical hulls of degree k for the N by N Toeplitz
matrix, which in turn contain the closure of the interior of that of the
Toeplitz operator.

The notation we use is standard. However, for the convenience of the
reader, we list some of this notation here. Let H be a complex Hilbert
space with inner product 〈· , ·〉. We also use this notation to denote the

usual inner product on Ck: 〈z , w〉 :=
∑k

j=1 zjw̄j ∀ z, w ∈ Ck, where
w̄j is the complex conjugate of wj. The space of linear transformations
from H to itself is denoted L(H), and the subset of these that are
bounded is denoted B(H). We use the notation ‖·‖ for the Hilbert
space norm for vectors and the corresponding operator norm for linear
operators and matrices. The interior, boundary, and convex hull of a
subset S of Ck are denoted int S, bdry S, and coS, respectively. If
K ⊂ Ck is convex and x ∈ K, we denote the normal cone to K at x by

NK(x) :=
{

z ∈ C
k : Re 〈z , y − x〉 ≤ 0 ∀ y ∈ K

}

.

It is straightforward to show that x ∈ int K if and only if NK(x) = {0}.

2. The Field of Values

The polynomial numerical hull is intimately related to the notion
of the field of values, or numerical range, of an operator. Indeed, the
polynomial numerical hull of degree 1 of an operator coincides with the
closure of the field of values. But there are other connections as well.
For this reason, we begin our discussion with the field of values.

Let B be a linear operator on the Hilbert space H. The field of
values, or numerical range, of B is defined as

(2) F(B) := {〈Bq , q〉 : ‖q‖ = 1} .
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The field of values is always a convex set, but it is not necessarily
closed in the infinite dimensional case. For this reason, define F(B) :=
clF(B) to be the closure of the field of values of B. The results of the
following lemma are known, at least in the case of finite dimensional
spaces (see, for example, [8, 5]), but we include the proofs here for
completeness.

Lemma 2.1. Let B ∈ B(H). The following statements are equivalent:

(i) 0 /∈ F(B).
(ii) There exists c ∈ C such that F(cB) lies in the open right half

plane.
(iii) min {‖I − cB‖ : c ∈ C} < 1.

Moreover, 0 ∈ bdry (F(B)) if and only if there is a c ∈ C such that
F(cB) lies in the closed right half plane with zero on its boundary.

Proof. [(i) ⇐⇒ (ii)] Use the convexity of F(B) and the fact that
F(cB) = cF(B) to rotate F(B) to the right half plane.

[(ii) ⇐⇒ (iii)] Observe the following equivalences:

min
c∈C

‖I − cB‖ < 1(3)

⇐⇒

∃ ε > 0, c ∈ C \ {0} such that ‖(I − cB)x‖2 < 1 − ε ∀ ‖x‖ = 1

⇐⇒

∃ε > 0, c ∈ C \ {0} such that

−2 Re 〈cBx , x〉 + ‖cBx‖2 < −ε ∀ ‖x‖ = 1
.(4)

The final equivalence (4) implies that there exists ε > 0 and c ∈ C\{0}
such that

(5) ε < Re 〈cBx , x〉 ∀ ‖x‖ = 1,

or equivalently, F(cB) lies in the open right half plane.
Next suppose that F(cB) lies in the open right half plane, or equiv-

alently, (5) holds with ε > 0. Let λ > 0 be such that 0 < λ < ε/ ‖cB‖2,
or equivalently,

(6) −2λε + ‖λcB‖2 < −λε with λ > 0.

Set ĉ = λc ∈ C\{0} and ε̂ = λε > 0 so that (6) gives −2ε̂+‖ĉB‖2 < −ε̂.

Then −2 Re 〈ĉBx , x〉 + ‖ĉBx‖2 ≤ −2ε̂ + ‖ĉB‖2 < −ε̂ for all ‖x‖ = 1
which, by (4), is equivalent to (3).

Let us now suppose that 0 ∈ bdry (F(B)). The result follows again
by rotation and using the convexity of F(B).

�
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We also make use of a generalization of the field of values known as
the k-dimensional field of values of k transformations {Bj}

k
j=1 ⊂ B(H)

[8]. This set is given by

(7)
{

(〈B1q , q〉〉, . . . , 〈Bkq , q〉)T : ‖q‖ = 1
}

.

Our results refer to the convex hull of this set which we denote by
F({Bj}

k
j=1). The set F({Bj}

k
j=1) is convex by definition, but may

not be closed in infinite dimensions, and so we define F({Bj}
k
j=1) :=

clF({Bj}
k
j=1). We now connect this notion to that of the classical field

of values thereby allowing us to apply the results of the previous lemma
to the k-dimensional field of values.

Lemma 2.2. Let Bj ∈ B(H) for j = 1, . . . , k. Then we have:

1. 0 ∈ F({Bj}
k
j=1) if and only if 0 ∈ F(

∑k

j=1 cjBj) for all c ∈ Ck.

2. 0 ∈ bdry
(

F({Bj}
k
j=1)

)

if and only if 0 ∈ F(
∑k

j=1 cjBj) for all

c ∈ C
k and there exists ĉ ∈ C

k \ {0} such that

0 ∈ bdry

(

F(

k
∑

j=1

ĉjBj)

)

.

Proof. 1. Let us first suppose that 0 ∈ F({Bj}
k
j=1). By Caratheodory’s

Theorem [13, p. 55], there exist sequences {λν} ⊂ R
2k+1
+ , {qνj} ⊂

H, j = 1, . . . , 2k + 1, satisfying ‖qνj‖ = 1 for all j = 1, . . . , 2k + 1 and

ν = 1, 2, . . . ,
∑2k+1

j=1 λνj = 1 for ν = 1, 2, . . . , and

2k+1
∑

j=1

λνj (〈B1qνj , qνj〉 , . . . , 〈Bkqνj , qνj〉)
T −→ 0 .

Therefore, given any c ∈ Ck, we have

〈

c ,
2k+1
∑

j=1

λνj





〈B1qνj , qνj〉
...

〈Bkqνj , qνj〉





〉

=
2k+1
∑

j=1

λνj

〈[

k
∑

`=1

c`B`

]

qνj , qνj

〉

−→ 0,

and so 0 ∈ F
(

∑k

j=1 cjBj

)

since this set is convex and closed.

Next we suppose that 0 /∈ F({Bj}
k
j=1) and show that there exists

c ∈ Ck such that 0 /∈ F
(

∑k

j=1 cjBj

)

. Since 0 /∈ F({Bj}
k
j=1) where



POLYNOMIAL NUMERICAL HULL 5

F({Bj}
k
j=1) is a nonempty closed convex set, the Hahn-Banach Theo-

rem yields the existence of a c ∈ Ck \ {0} such that

0 > Re
〈

c , (〈B1q , q〉 , . . . , 〈Bkq , q〉)T
〉

= Re

〈[

k
∑

j=1

cjBj

]

q , q

〉

for all ‖q‖ = 1, which implies that 0 /∈ F
(

∑k

j=1 cjBj

)

.

2. If 0 ∈ bdryF({Bj}
k
j=1), then 0 ∈ F(

∑k

j=1 cjBj) for all c ∈ C
k,

by part 1, and the normal cone to F({Bj}
k
j=1) at 0 must contain a

nonzero element ĉ ∈ Ck. But then 1 is an element of the normal cone
to F(

∑k

j=1 ĉjBj) at 0 since for every ‖q‖ = 1,

Re

〈[

k
∑

j=1

ĉjBj

]

q , q

〉

= Re
〈

ĉ , (〈B1q , q〉 , . . . , 〈Bkq , q〉)T
〉

≤ 0 .

Hence 0 ∈ bdryF(
∑k

j=1 ĉjBj) since its normal cone at 0 contains a
nonzero element.

Next assume that 0 ∈ F(
∑k

j=1 cjBj) for all c ∈ C
k and there exists

ĉ ∈ Ck \ {0} such that 0 ∈ bdryF(
∑k

j=1 ĉjBj). Again, by part 1,

0 ∈ F({Bj}
k
j=1). Since 0 ∈ bdryF(

∑k

j=1 ĉjBj), the normal cone to

F(
∑k

j=1 ĉjBj) at 0 must contain a nonzero element ζ ∈ C. But then

ζĉ is a nonzero element of the normal cone to F({Bj}
k
j=1) at 0 since

for every ‖q‖ = 1

Re

〈

ζĉ ,





〈B1q , q〉
...

〈Bkq , q〉





〉

= Re ζ

〈[

k
∑

j=1

ĉjBj

]

q , q

〉

≤ 0.

Since the normal cone to F({Bj}
k
j=1) at 0 contains a nonzero element,

0 must be on the boundary of this set. �

The relationship between the polynomial numerical hull and the k-
dimensional field of values is obtained by setting the operators Bj in
definition (7) equal to powers of a single operator A − ζI with A ∈
B(H) yielding the following observation about the field of values of
polynomials in A.

Lemma 2.3. Given A ∈ B(H) and ζ ∈ C, we have

0 ∈ F(
k
∑

j=1

cj(A − ζI)j) ∀ c ∈ C
k ⇐⇒ p(ζ) ∈ F(p(A)) ∀ p ∈ Pk.
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Proof. Every polynomial p ∈ Pk can be written in the form p(A) =

p(ζ)I +
∑k

j=1 cj(A− ζI)j, for some c ∈ Ck, and conversely every poly-
nomial of this form is in Pk. Hence the lemma is an immediate conse-
quence of the identity

{ω} + F(B) = F(ωI + B),

for every ω ∈ C and B ∈ B(H). �

3. Characterizations of Hk(A)

Let p ∈ Pk and z ∈ C be such that p(z) 6= 0. Expanding p at z we
have

p(ζ) = c0 + c1(ζ − z) + c2(ζ − z)2 + · · · + ck(ζ − z)k ,

where p(z) = c0 6= 0. Hence, given A ∈ B(H), the inequality ‖p(A)‖ ≥
|p(z)| is equivalent to

∥

∥c0I + c1(A − zI) + c2(A − zI)2 + · · ·+ ck(A − zI)k
∥

∥ ≥ |c0| .

Divide this inequality through by |c0| 6= 0 to obtain the equivalent
inequality

∥

∥

∥

∥

∥

I −
k
∑

j=1

ĉj(A − zI)j

∥

∥

∥

∥

∥

≥ 1,

where ĉj = −cj/|c0|, j = 1, . . . , k. Since the inequality ‖p(A)‖ ≥ |p(z)|
holds trivially when p(z) = 0, we obtain the equivalence

(8) ‖p(A)‖ ≥ |p(z)| ∀ p ∈ Pk ⇐⇒ min
c∈Ck

∥

∥

∥

∥

∥

I −

k
∑

j=1

cj(A − zI)j

∥

∥

∥

∥

∥

= 1 ,

where equality is attained in the minimization at c = 0. Combining
this equivalence with the results of the previous section gives a variety
of characterizations of the polynomial numerical hull.

Theorem 3.1. Let A ∈ B(H) and k ∈ N. Then the following state-
ments are equivalent:

1. z ∈ Hk(A).

2. min
c∈Ck

∥

∥

∥

∥

∥

I −
k
∑

j=1

cj(A − zI)j

∥

∥

∥

∥

∥

= 1.

3. 0 ∈ F

(

k
∑

j=1

cj(A − zI)j

)

for all c ∈ Ck.

4. inf
‖q‖=1

Re

〈[

k
∑

j=1

cj(A − zI)j

]

q , q

〉

≤ 0 for all c ∈ C
k.



POLYNOMIAL NUMERICAL HULL 7

5. 0 ∈ F
(

{(A − zI)j}k
j=1

)

.

6. p(z) ∈ F(p(A)) for all p ∈ Pk.

Remarks (1) The equivalence of 1. and 2. was first established in
[5, Theorem 4]. The equivalence of 1. and 5. is given in [5,
Corollary 5].

(2) In [2], Davies introduces the set

Numk(A) := {z ∈ C : p(z) ∈ F(p(A)) ∀p ∈ Pk}.

The equivalence of 1. and 6. above implies that Numk(A) =
Hk(A). Note that the definition of the set Numk(A) does not
require the use of the norm. Therefore, this definition may prove
useful in extending the notion of the polynomial numerical hull
to unbounded operators as well as to linear operators on more
general spaces.

Proof. The equivalence of 1. and 2. is simply a restatement of (8). The
equivalence of 2. and 3. is a consequence of the equivalence of (i) and
(iii) in Lemma 2.1. The equivalence of 3. and 4. follows from the
equivalence of (i) and (ii) in Lemma 2.1. The equivalence of 3. and 5.
follows from part 1. of Lemma 2.2. Finally, the equivalence of 3. and
6. is the content of Lemma 2.3. �

In the next result we use Theorem 3.1 to characterize the boundary
points of the polynomial numerical hull.

Theorem 3.2. Let A ∈ B(H), ζ ∈ C, and k ∈ N. Then the following
statements are equivalent:

1. ζ ∈ bdry (Hk(A)).
2. For all c ∈ C

k

(9) 0 ∈ F

(

k
∑

j=1

cj(A − ζI)j

)

,

and there exists ĉ ∈ Ck \ {0} such that

(10) 0 ∈ bdryF

(

k
∑

j=1

ĉj(A − ζI)j

)

.

3. For all c ∈ Ck

inf
‖q‖=1

Re

〈

[

k
∑

j=1

cj(A − ζI)j]q , q

〉

≤ 0

and there exists ĉ ∈ C
k \ {0} such that this infimum is zero.
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4. 0 ∈ bdryF({(A − ζI)j}k
j=1).

5. For all p ∈ Pk, p(ζ) ∈ F(p(A)) and there exists a nonconstant
p̂ ∈ Pk such that p̂(ζ) ∈ bdryF(p̂(A)).

Proof. The equivalence of 2. and 3. follows from Lemma 2.1; the
equivalence of 3. and 4. is a consequence of Lemma 2.2; and the
equivalence of 2. and 5. follows from Lemmas 2.2 and 2.3. We conclude
by establishing the equivalence of 1. and 2.

Condition (9) was already shown to be equivalent to the statement
ζ ∈ Hk(A); hence it holds for ζ ∈ bdryHk(A) since the set is closed.

To show that ζ ∈ bdryHk(A) implies (10), let ζ be a point on the
boundary of Hk(A), and let {ζm}

∞
m=0 be a sequence of points out-

side Hk(A) and converging to ζ. For each point ζm, it follows from
3. in Theorem 3.1 that there exist coefficients c1,m, . . . , ck,m such that

0 /∈ F
(

∑k

j=1 cj,m(A − ζmI)j
)

. We can take these coefficients to satisfy
∑k

j=1 |cj,m|
2 = 1, since multiplying an operator by a nonzero scalar just

multiplies its field of values by that scalar and does not affect whether
or not the closure of the field of values contains the origin. Since the
vectors (c1,m, . . . , ck,m, ζm) are bounded, there is a convergent subse-
quence, {(c1,m`

, . . . , ck,m`
, ζm`

)}∞`=1, converging to, say, (ĉ1, . . . , ĉk, ζ).
Since the field of values is a continuous function of the linear operator
[8] and since, by 3. in Theorem 3.1,

0 /∈ F(
k
∑

j=1

cj,m`
(A − ζm`

I)j) → F(
k
∑

j=1

ĉj(A − ζI)j) 3 0,

it follows that 0 ∈ bdryF(
∑k

j=1 ĉj(A − ζI)j).

Conversely, suppose ζ is a point in the interior of Hk(A) and suppose

that 0 ∈ bdryF
(

∑k

j=1 cj(A − ζI)j
)

, for certain scalars c1, . . . , ck. We

will show that each cj must be 0.
Since Hk(A) contains a disk of radius r > 0 about ζ, it follows from

3. in Theorem 3.1 that for any scalars d1, . . . , dk, any δ ∈ [0, r), and
any θ ∈ [0, 2π),

(11) 0 ∈ F

(

k
∑

j=1

dj(A − (ζ − δeiθ)I)j

)

.

Expanding using the binomial formula, we find

k
∑

j=1

dj(A − (ζ − δeiθ)I)j =

k
∑

j=1

dj

j
∑

`=0

(

j
`

)

δ`ei`θ(A − ζI)j−`.
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Separating out the ` = 0 and ` = j terms we get

k
∑

j=1

dj(A − ζI)j+
k
∑

j=1

dj

j−1
∑

`=1

(

j
`

)

δ`ei`θ(A − ζI)j−`+

(

k
∑

j=1

djδ
jeijθ

)

I

=
k
∑

j=1

(

dj +

k−j
∑

`=1

dj+`

(

j + `
`

)

δ`ei`θ

)

(A − ζI)j +

(

k
∑

j=1

djδ
jeijθ

)

I.

Suppose dk = ck and dj, j = k − 1, ..., 1 are determined by

(12) dj = cj −

k−j
∑

`=1

dj+`

(

j + `
`

)

δ`ei`θ.

Then

(13)
k
∑

j=1

dj(A − (ζ − δeiθ)I)j =
k
∑

j=1

cj(A − ζI)j +

(

k
∑

j=1

djδ
jeijθ

)

I,

and the field of values of this matrix is that of
∑k

j=1 cj(A− ζI)j shifted

by
∑k

j=1 djδ
jeijθ. To express

∑k

j=1 djδ
jeijθ in terms of the cj’s, note

that if
∑k

j=1 cj(A−ζI)j =
∑k

j=1 cj(A−(ζ−δeiθ)I−δeiθI)j is expanded
using the binomial formula, then the expansion involves powers from 1
to k of A− (ζ−δeiθ)I plus the term (

∑k

j=1 cj(−1)jδjeijθ)I. Comparing

this with (13), it follows that

(14)
k
∑

j=1

djδ
jeijθ =

k
∑

j=1

cj(−1)j+1δjeijθ.

If the origin is on the boundary of F(
∑k

j=1 cj(A − ζI)j), then there
is a line through the origin that separates the field of values from a
half-plane. Suppose c1 = . . . = c`−1 = 0 but c` 6= 0. Choose θ so that

ei`θ(−1)`+1c` lies in the half-plane containing F(
∑k

j=1 cj(A− ζI)j) and
is orthogonal to the separating line. Then if the field of values is shifted
in the direction of ei`θ(−1)`+1c` its closure will exclude the origin. By
choosing δ > 0 sufficiently small, one can make the shift term in (14)
arbitrarily close to c`(−1)`+1δ`ei`θ, and so one can exclude the origin

from the closure of the field of values of
∑k

j=1 dj(A− (ζ − δeiθ)I)j, but

this contradicts (11). Therefore each coefficient cj must be 0. �
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4. Polynomial Numerical Hulls of Toeplitz Matrices and

Operators

In this section T denotes an infinite-dimensional Toeplitz operator:

(15) T =









a0 a−1 a−2 . . .
a1 a0 a−1 . . .
a2 a1 a0 . . .
...

...
...

. . .









.

The symbol of T evaluated at a point z is defined as

(16) a(z) := a0 +
∞
∑

`=1

a`z
` +

∞
∑

`=1

a−`z
−`.

We will assume throughout that a ∈ L∞(U), where U := {z ∈ C : |z| =
1} denotes the unit circle, so that the matrix in (15) corresponds to a
bounded linear operator on `2 (see, e.g., [1]).

The polynomial numerical hull of degree 1 for T , i.e., the closure of
the field of values, is known [9]:

(17) H1(T ) = co (a(U)) ,

where a(U) := {a(z) : z ∈ U}. An extension to Hk(T ) is obtained us-
ing the polynomially convex hull of degree k [4], defined for any compact
set S ⊂ C as

pcok(S) := {z ∈ C : |p(z)| ≤ max
ζ∈S

|p(ζ)| ∀p ∈ Pk}.

Theorem 4.1. The polynomial numerical hull of degree k ≥ 1 for T
satisfies

(18) co (a(U)) ⊃ Hk(T ) ⊃ pcok (a(U)) .

Proof. The left inclusion follows from (17) and the fact that Hk(T ) ⊂
H1(T ). To establish the right inclusion, let p(T ) be any polynomial in
T . By the spectral mapping theorem, σ(p(T )) = p(σ(T )), where σ(·)
denotes the spectrum. By the Hartman-Wintner theorem (see, e.g., [1,
Theorem 1.25, p. 27]), the essential spectrum of T contains the range
of its symbol a(U). Hence

‖p(T )‖ ≥ sup
ζ∈σ(p(T ))

|ζ| ≥ sup
|z|=1

|p(a(z))| .

The result then follows from definition (1) of Hk(T ). �

In words, the polynomial numerical hull of degree k for an infinite-
dimensional Toeplitz operator lies somewhere between the polynomi-
ally convex hull of degree k and the ordinary convex hull of the image,
under the symbol, of the unit circle U .



POLYNOMIAL NUMERICAL HULL 11

Let TN be the N by N Toeplitz matrix consisting of the upper left
block of the operator in (15):

(19) TN =













a0 a−1 a−2 . . . a−(N−1)

a1 a0 a−1 . . . a−(N−2)

a2 a1 a0 . . . a−(N−3)
...

...
...

. . .
...

aN−1 aN−2 aN−3 . . . a0













.

It is known that if T is banded or, more generally, if a is piecewise
continuous on the unit circle, then the polynomial numerical hull of
degree 1 of TN approaches that of T as N → ∞ [3, 6, 12]. Moreover, if
p(TN) is any polynomial in TN and if a is piecewise continuous on the
unit circle, then it follows from results in [12, Theorem 2] that

(20) p-limN→∞F(p(TN )) = u-limN→∞F(p(TN)) = F(p(T )).

Here u-limN→∞SN , for a sequence of sets SN , denotes the set of all
limits of sequences of points {sN ∈ SN}

∞
N=1, while p-limN→∞SN de-

notes all limits of subsequences {sN`
∈ SN`

}∞`=1, where (N1, N2, . . .) is
a subsequence of (1, 2, . . .). Roch [12] refers to these set-valued limits
as the uniform and partial limits of the sequence {SN}, respectively.
An extensive literature on these notions of limit dates from the orig-
inal work of Painlevé in 1902. The uniform limit is more commonly
known as the limit infimum, or inner limit, and the partial limit is more
commonly known as the limit supremum, or outer limit [13, Ch. 4].
Clearly u-limN→∞SN ⊂ p-limN→∞SN . Note that if ζ ∈ int (F(p(T ))),
then (20) implies that for N large enough, ζ ∈ int

(

F(p(TN))
)

, since
these sets are convex and they contain sequences of points approach-
ing points on a circle about ζ in int (F(p(T ))) [See, for example, [13,
Prop. 4.15]].

Theorem 4.2. Assume a in (16) is piecewise continuous on the unit
circle. For any fixed degree k ≥ 1,
(21)
Hk(T ) ⊃ p-limN→∞Hk(TN ) ⊃ u-limN→∞Hk(TN ) ⊃ cl (int (Hk(T ))) ,

where cl(·) denotes the closure.

Proof. First suppose ζN`
∈ Hk(TN`

) is a convergent subsequence with
ζN`

→ ζ as ` → ∞. It follows from 3. Theorem 3.1 that for all c1, . . . , ck,

0 ∈ F(
∑k

j=1 cj(TN`
− ζN`

I)j). Since the field of values is a continuous
multi-valued function of the operator, it follows that for each c1, . . . , ck,
there is a sequence of points sN`

∈ F(
∑k

j=1 cj(TN`
− ζI)j) such that

sN`
→ 0 as ` → ∞. By (20), this implies that 0 ∈ F(

∑k

j=1 cj(T −ζI)j),
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and hence, again by 3. Theorem 3.1, ζ ∈ Hk(T ). This establishes the
first inclusion in (21). The second inclusion is clear from the definitions
of u-lim and p-lim.

Let ζ ∈ int (Hk(T )). Then, by 2. Theorem 3.2, we know that for

all c1, . . . , ck with
∑k

j=1 |cj|
2 = 1, 0 ∈ int

(

F
(

∑k

j=1 cj(T − ζI)j
))

.

It follows from (20) that there exists n ≡ n(c1, . . . , ck) such that for

all N ≥ n, 0 ∈ int (F(
∑k

j=1 cj(TN − ζI)j)). Since the coefficients
come from a compact set and since the field of values is a continuous
multi-valued function of c1, . . . , ck, there exist coefficients ĉ1, . . . , ĉk for
which the required minimum n-value, n̂ ≡ n(ĉ1, . . . , ĉk), is maximal and

finite. Therefore, for N ≥ n̂ and for all c1, . . . , ck with
∑k

j=1 |cj|
2 =

1, 0 ∈ int (F(
∑k

j=1 cj(TN − ζI)j)). Hence, by 2. Theorem 3.2, ζ ∈

int (Hk(TN )). This shows that every interior point of Hk(T ) eventually
lies in Hk(TN) and hence that every limit of interior points of Hk(T ) is
a limit of points in Hk(TN ). This proves the third inclusion in (21). �

The preceding theorems leave open the possibility that Hk(T ) con-
tains isolated points or curves between the region enclosed by a(U)
and co(a(U)), and, in this case, it is not known if there is a sequence
or subsequence of points in Hk(TN) converging to these points. In the
simplest case, where the region enclosed by a(U) is a convex set, Theo-
rems 4.1 and 4.2 imply that p-limN→∞Hk(TN ) = u-limN→∞Hk(TN) =
Hk(T ) = co(a(U)).

Finally, note that Theorem 4.2 makes no direct use of Toeplitz prop-
erties; it uses only relation (20) and properties of the polynomial numer-
ical hull. Hence for any sequence of matrices or operators AN satisfying

p-limN→∞F(p(AN )) = u-limN→∞F(p(AN)) = F(p(A)),

for all polynomials p, the analogue of relation (21) will hold, namely,

Hk(A) ⊃ p-limN→∞Hk(AN ) ⊃ u-limN→∞Hk(AN) ⊃ cl (int (Hk(A))) ,

for any fixed k ≥ 1.
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References
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