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Abstract

For a given square matrix A and positive integer k, we consider
sets {2 in the complex plane satisfying

A)| >
lp(A)]| > max[p(=)],

for all polynomials p of degree k or less. The largest such set, re-
ferred to as the polynomial numerical hull of degree k, was intro-
duced by Nevanlinna [Convergence of Iterations for Linear Equations,
Birkhé&user, 1993] and a number of properties of this set were derived
for both matrices and linear operators. We give several equivalent
characterizations of the polynomial numerical hull of degree k and we
actually compute these sets for several matrices. For k = 1, this set
is just the field of values of A, and for k£ > m, where m is the de-
gree of the minimal polynomial of A, it is the spectrum of A. For
1 < k < m, these sets are intermediate between the field of values and
the spectrum and sometimes resemble pseudospectra.

1 Introduction

Let A be a given n by n matrix. In order to estimate ||f(A)|| for various
functions f, it is helpful if one can associate A with some set in the complex
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plane and relate ||f(A)|| to the size of f on this set. For normal matrices,
an appropriate set is the spectrum of A, since if A = QAQ*, where () is uni-
tary and A is a diagonal matrix of eigenvalues, then f(A) = Qf(A)Q* and
£ (A)|| = ||f(A)]|, for any norm invariant under unitary similarity transfor-
mations. In this paper we will be concerned mainly with the spectral norm
and, unless otherwise stated, || - || will denote the Euclidean norm for vec-
tors and the induced spectral norm for matrices. Some of the results will be
shown to hold more generally, however, for any norm that is greater than or
equal to the numerical radius: ||B|| > v(B) = max{|¢*Bq| : ¢*q = 1}.

For nonnormal matrices, it is less clear what (if any) set(s) in the complex
plane should be associated with A. One would like to identify sets Q providing
upper bounds: ||f(A4)| < max,.q|f(2)|, as well as sets Q providing lower
bounds: ||f(A)|| > max,cq |f(2)], for all functions f in some class of interest.
In this paper we consider polynomials of a fixed degree £k or less and look for
sets (2 satisfying

[p(A)]| = max|p(2)] (1)

for all such polynomials p.
Specifically, we define

Fir(A)={q*Aq: ¢*q=1and ¢*Alq= (¢*Aq)?, j=1,...,k}, (2

and show that this set has the desired property (1). It is shown that this
definition is equivalent to

Fi(d)={CeC: 0e F{(A-CI)}_)} (3)
where F({B;}%_)) denotes the k-dimensional generalized field of values [8]:

q*Biq
F({B;}}_,) = : D gfg=1
q*Brq

Using results from Faber, et al [4], it is shown that the largest set with
property (1) is:

Gr(A) ={C € C: 0 € co[F({(A - CI)}_0)I}, (4)

where col-] denotes the convex hull.



The largest set satisfying (1) was earlier considered by Nevanlinna [14]
and was referred to as the polynomial numerical hull of degree k. A number
of properties of this set were derived for both matrices and linear operators
[14, 15], but it was never characterized as in (4) or computed for specific
matrices. For nonnormal matrices, these sets are, in some ways, the analog
of eigenvalues for a normal matrix; for any kth degree polynomial p, we have
lp(A)|| > ||lp(B)]| for any normal matrix B with eigenvalues spread densely
throughout the polynomial numerical hull of degree k&, and this does not hold
if B has eigenvalues outside this set.

For £ = 1, each of these sets is the field of values of A, and for £ > m,
where m is the degree of the minimal polynomial of A, they are shown to
be the spectrum of A. For 1 < k < m, the sets Fi(A) and Gi(A) are
intermediate between the field of values and the spectrum: F(A) D Gx(A4) D
Fi(A) D o(A), where F(-) denotes the field of values and o(+) the spectrum.

One application of this analysis is in describing the convergence rate of
the GMRES algorithm for solving linear systems Az = b. An upper bound
on the residual norm at iteration k& of the algorithm is:

min [lp(4)] )
where P, (0) denotes the set of polynomials of degree k£ or less with value
1 at the origin. This quantity is said to be the residual norm for the ideal
GMRES algorithm [7]. It provides an upper bound on the actual residual
norm in the GMRES algorithm for the worst possible initial residual, but it
is not always sharp [4, 17]. The worst-case behavior of the actual GMRES
algorithm is governed by

max min A)b||. 6
||b||:)§pev>k(0)“p( )| (6)

It follows from property (1) that the quantities

,Sin max [p(z)] (7)
where Q = F;(A) or Gi(A) provide lower bounds on the ideal GMRES resid-
ual norm (5). We present numerical examples to illustrate that they are often
good estimates of (5) as well.

Related work in the literature has been aimed at finding sets Qcc
such that || f(A)|| < ymax,.q |f(2)|, for some moderate size number -y, and
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either for all analytic functions f or specifically for the polynomial P that
achieves the minimum in (5). Trefethen has suggested taking 2 to be the
e-pseudospectrum of A [21]:

Ad)={z€C: [[(zI = A) | > '} (8)

Expressing f(A) as a Cauchy integral about I'c, the boundary of A, and
replacing the norm of the Cauchy integral by the integral of the norm of the
integrand, one obtains the following upper bound:

ET) a2, ©)

2me  z€A.

IF (A <

where £(I'¢) denotes the length of I'. [21]. To obtain a good estimate of
||f(A)||, one must try to choose € large enough so that the first factor is of
moderate size, but small enough so that the set A, is not too large.

More generally, if I" is the boundary of any set O containing the spectrum

of A, then we have from the Cauchy integral formula
1
FA) = 5 [l = )71 (2) dz
r

T om

and taking norms on each side,

1 -1
P < o [T = 27 7))
(%/F ||(ZI — A)—1|| |d2"> I?eaé(|f(z)| (10)

IN

Numerical computations suggest that the polynomial numerical hull of
degree k < m is sometimes very similar to the e-pseudospectrum for a mod-
erate size value of e. Using either (9), or (10) with I" taken to be the boundary
of the polynomial numerical hull of degree k, one can thus obtain realistic
upper bounds on |[p(A)||, when p is a polynomial of degree much less than
the minimal polynomial of A.

Another approach to obtaining upper bounds on the size of the ideal
GMRES polynomial P, uses the field of values of A. Eiermann has shown
that if Q is a compact convex set containing F (A) but not containing the
origin, then

min A)|| € ¢, min max|p(z)], 11
min [p(4)] < & min max p(2) (1)



where the constant ¢, depends on Q but not on A [2, 3]. For this bound to
provide useful information, it is necessary that 0 be outside both F(A) and
), but that { be chosen large enough so that ¢ is of moderate size.

Other sets Q satisfying ||Py(A)|| > minycp, (o) max,cq [p(2)| have been
identified by Huhtanen and Nevanlinna [9]. They showed that if A differs
from a normal matrix B by a matrix of small rank, then (5) is bounded
below by the minimum over p € Pi(0) of the maximum absolute value of
p at certain eigenvalues of B [9]. Huhtanen then extended this analysis to
low-rank modifications of the matrix A that yield matrices B with well-
conditioned eigenvectors and showed that the quantity in (5) is greater than
or equal to one over the condition number of the eigenvectors of B times the
maximum absolute value of p on certain eigenvalues of B [10].

In this paper we study the sets Fy(A) and Gx(A) defined in (2) and (4).
In section 2, we establish basic properties of these sets and relate ||p(A)|| to
the maximum absolute value of p on these sets, for polynomials p of degree
k or less. Section 3 describes a method for computing Gi(A), although it
is hoped that better methods can be developed. It also contains numerical
examples showing the polynomial numerical hull of degree k for several ma-
trices and various values of k. Section 4 states some conclusions and possible
applications.

2 Basic Properties of F;(A) and G;(A)

Theorem 1. Let F;(A) be defined by (2). For any polynomial p of degree
k or less we have

>
IP(A) > max, [p()] (12)

where || - || can be any norm that satisfies || B|| > max{|¢*Bq| : ¢*q = 1}, for
all n by n matrices B; e.g., the spectral norm, the Frobenius norm, etc.

Proof: Let z = q*Aq be an element of Fj(A). Then for any polynomial
p of degree k or less, we have ¢"p(A)q = p(q”Aqg), so |[p(A)|| = [¢"p(A)g| =
p(z)|. O

Theorem 2. The definitions (2) and (3) of Fi(A) are equivalent.
Proof: Let q be any vector with ¢*¢ = 1. The condition ¢*(A — (I)g =0
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is equivalent to ¢*Aq = (. If this condition is satisfied, then the condition
q*(A — (I)%*q = 0 is equivalent to ¢*A%q = (? = (¢*Ag)?, etc. O

The set Fi(A) is not quite the largest set for which inequality (1) holds,
but the following theorem shows that if { ¢ Fj(A), then for any vector b with
||b]] = 1, one can construct a polynomial p for which ||p(A)b|| < |p(¢)|. This
is the more relevant question in analyzing the behavior of the true GMRES
algorithm for the worst possible right-hand side vector [4, 17].

Theorem 3. Let ||- || denote the Euclidean norm for vectors and the induced
spectral norm for matrices. If { ¢ Fj(A), then for any vector b with ||| = 1,
there is a polynomial p of degree £ or less such that |[p(A)b| < |p(¢)|-

Proof: Since ¢ ¢ Fr(A), there is no vector b with norm one satisfying
b*(A—C¢I)7b =0, for all j = 1,...k; that is, any vector b with norm one has
a nonzero projection onto the Krylov space

span{(A — CI)b, (A — CI)2, ..., (A — CI)*b}.

It follows that there is a polynomial p; 1 of degree k — 1 or less in (A — ()
such that
16— (A~ ¢{Dpr-1(A — DI < 1.
Define p(z) = 1 — (2= C)pe1(2 ), 50 that p(¢) = 1 but [[p(A)p] <1. ©
The next corollary shows that the largest set satisfying inequality (1) is

the set Gi(A) defined in (4). It follows easily from the following result in [4],
whose proof we include here for completeness (and because it is so pretty!):

Theorem 4 (Faber, et al [4]). For any n by n matrix B and any positive
integer k, we have minyep, (o) [|p(B)|| = 1 if and only if 0 € co[F({B7}5_,)].

Proof: By the Hahn-Banach theorem, if 0 is not in the convex set S =
co[F({ B7}%_,)], then there exists a separating hyperplane for 0 and S; that
is, there is a k-vector ¢ = (cy, . ..,cx)T such that Re(c*w) > 0 for all w € S.
This implies that for any ¢ with ¢*q¢ = 1, we have

Re (Z qu*qu> = Re (q*(z E]-Bj)q> > 0. (13)

=1

Define pe_1(B) = ¥5_, & B~. Then (13) implies that the field of values of
Bpy_1(B) lies in the right half-plane, and it follows that there is a positive
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number « such that |[p(B)|| = ||/ — aBpx_1(B)|| < 1. To see this, note that
if C = Bpy_1(B) then ||I —aC/|| is the square root of the largest eigenvalue of
I —a(C+C*)+a?C*C, where C + C* is positive definite. For o sufficiently
small (e.g., @ < Apin(C + C*)/Amaz(C*C)), this matrix will have all its
eigenvalues less than 1.

Conversely, if 0 € S, then there is no separating hyperplane for 0 and S,
or even for 0 and F({B’}f_,). That is, there is no vector ¢ for which the
quantity in (13) has the same sign for all vectors ¢ with ¢*¢ = 1. Hence
the field of values of any polynomial of the form Bpy_;(B), where py_; is
any polynomial of degree k£ — 1 or less, must contain the origin. It follows
that for any p € P(0), since p(z) must be of the form p(z) = 1 + zpx_1(2),
there is a vector ¢ with ¢*¢ = 1 such that ¢*p(B)g = 1, and this implies that
lp(B)[| > 1. O

Definition.[14] For a given n by n matrix A and positive integer k, the
polynomial numerical hull of A of degree k is the largest set {2 C C for which
inequality (1) holds for all polynomials p of degree k or less.

Corollary 5. The set Gi(A) defined in (4) is the polynomial numerical hull
of A of degree k.

Proof: By the previous theorem, there is a polynomial p € P,(0) with
IP(A — CI)|| < 1 if and only if ¢ ¢ Gi(A); that is, there is a polynomial p of
the form

p(2)=14+ci(z = +...+cr(z — Q) (14)

with |[p(A)]| < 1= |p(¢)| if and only if ¢ Gi(A). Therefore Gx(A) contains
the polynomial numerical hull of degree k.

It also follows that if ( € Gi(A), then, since any polynomial ¢ of degree
k or less that is nonzero at ¢ can be written as a multiple of one of the form
(14), q(2) = q({)p(2), there is no such polynomial with ||g(A)|| < |¢(¢)|, or,
equivalently, every such polynomial satisfies ||¢(A)|| > |¢(¢)|. This inequality
obviously holds also if ¢(¢) = 0, so G(A) is contained in the polynomial
numerical hull of degree k. O

Having established the relationship between ||p(A)|| and the magnitude
of p on Fi(A) and Gi(A), we now list some simple properties of these sets.
Some of these properties of G (A) also can be found in [13], as can a different
approach to computing these sets.



Theorem 6.

(i) Fk(A) and Gi(A) are invariant under unitary similarity transformations
of A.

(ii) For vy € C, Fp(vI + A) = v+ Fx(A) and G (vI + A) = v+ Gx(A).

(i) F1(A) = Gi(A) = F(A).

For 1 < j < k, F(A) D F;(A) D Fu(4) D o(A) and F(A) > G;(A4) >
Gr(A) D a(A).

For k greater than or equal to the degree of the minimal polynomial of
A, Fr(A) = Gr(A) = o(A).

(iv) Fi(A) C Ge(A) C Mo [F (AT,

(v) If A is a normal matrix or an upper triangular Toeplitz matrix, then
Fi(A) = Gi(A) for all k.

(vi) If A is Hermitian, then
FulA) = Gu(4) = { colol, k=1 (15)

Proof:

(i) This follows from the invariance of the k-dimensional generalized field of
values under unitary similarity transformations.

(ii) We have & € Gi(yI + A) if and only if there exist unit vectors ¢, and g,
and a number ¢ € [0,1] such that

A+ =8Daq GA+ (v =8)1g 0
: +(1—t) . = :

@A+ (v =D A+ (v —D*e 0
and we have £ € Fi(~vI + A) if and only if this holds for ¢ = 1. Each of

these is easily seen to be equivalent to the condition that ( = & — v be
in Gi(A) or Fr(A), respectively.
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(iii) The identity F;(A) = F(A) is immediate from definition (2), as is the
inclusion F(A) D F;(A) D Fi(A) D o(A), for 1 < j < k. It follows
from (3) and (4), since F(A—(I) is a convex set, that G;(A) = F(A).
It is also clear from (4) that for j < k, G;(A4) D Gk(A) D Fi(A). This
establishes the first two parts of (iii). The third part then follows from
Theorem 1 and Corollary 5, taking p to be the minimal polynomial of

A.

(iv) It follows from definition (2) that if ¢*Ag € Fr(A), then (¢*Aq)’ €
F(A7). Thus Fi(A) C NE_,[F(A)]H9. To see that Gy (A) C N, [F (A7),
note that ( € G¢(A) if and only if there exist unit vectors ¢; and ¢, and
a number ¢ € [0, 1] such that tq; (A — (1) g1 + (1 —t)g3(A—(I)ig = 0,
for all j = 1,...,k. For j = 1, this says ( = t¢fAq; + (1 — )¢5 Aqgo,
which implies ¢ € co[F(A)] = F(A). Taking j = 2 and substituting
this expression for ¢, we find that ¢* = tq}A%q + (1 — )¢5 Ao, s0
¢% € co[F(A?)] = F(A?). Continuing in this way, we see that each
¢ €co[F(A)]=F(AY), j=1,...,k.

(v) This follows from results in Faber et al [4] showing that for normal
matrices and for upper triangular Toeplitz matrices the k-dimensional
generalized field of values is convex. (See also [6, 11] for analysis leading
to the result for normal matrices.)

(vi) This result is given in [15, Proposition 3.10] for bounded linear opera-
tors. In the finite dimensional case, for k£ = 1, it is just the statement
that the field of values of a Hermitian matrix is the convex hull of its
eigenvalues. For £ > 1 and for ¢ a unit vector, ¢*Aq in Fy(A) with A
Hermitian implies (¢*Aq)? = ¢*A%q = ||Aq||*>. By the Cauchy-Schwarz
inequality, this can happen only if ¢ and Aq are parallel; i.e., Aqg = Aq,
and then ¢*Ag=X€o(4). O

When A is normal but nonhermitian, one might expect a result like
(15) to hold, but in this case, depending on the eigenvalue distribution,
Fr(A), k£ > 1, may contain more than just the spectrum of A. Although
lp(A)|] = maxyeoa) [P(A)], there may be other points z € C for which
Ip(2)] < maxyeq(a)|p(A)], for all polynomials of degree k& or less. For ex-
ample, if the eigenvalues of A are densely distributed around the unit circle,
then for £k << n, Fi(A) will consist of almost the entire unit disk, since,

9



by the maximum principal, a polynomial must obtain its maximum absolute
value on the boundary of the disk.

While the sets Fi(A) and Gi(A) are neither convex nor necessarily con-
nected, they are compact sets. They are bounded since they are subsets of
F(A), and they are closed since the k-dimensional generalized field of val-
ues, being the continuous image of the unit sphere, is closed. To see that
Fi(A) is closed, note that if s, £ = 1,2, ..., is a sequence of points in F(A)
converging to some value ¢, then (¢, ...,(F)" is a sequence of vectors in the
k-dimensional generalized field of values F({A7}%_)), converging to the vec-
tor (C,...,C*)T, which also must be in this generalized field of values; i.e.,

C & fk(A)

3 Computation of the Polynomial Numerical
Hull of a Given Degree and Numerical Ex-
amples

Using the fact that the polynomial numerical hull of degree £ is a subset of the
field of values of A, or, more specifically, that it is a subset of ﬂle F(ANVI,
one can proceed to test points ¢ in this region to determine if 0 € co[F'({(A—
CI)7Y*_)]. According to Theorem 4, this is equivalent to determining if
min,ep, (o) ||P(A—¢I)|| is equal to one. The problem of finding the polynomial
p € Px(0) that minimizes ||p(A — (I)||, for a given value of (, can be cast as
a semidefinite programming problem, and an algorithm and software for its
solution have been developed by Toh, et al [19, 18].

Here we use this software to approximate polynomial numerical hulls of
various degrees for a number of example problems. It is hoped that methods
can be developed for computing these sets without simply testing all possible
points. Of course, once a closed boundary curve of the polynomial numerical
hull of degree k has been identified, one can argue by the maximum principle
that the region inside this curve also must be contained in the set. Hence
some of our computations involve testing of only enough points to determine
a good approximation to the boundary curve.

Example 1. Jordan Block. As a first example, we consider a Jordan block
of size n = 24 with eigenvalue 0 and compute the polynomial numerical hull
of degree k = 23. Figure 1 shows a plot of the field of values (the region inside
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Jordan block: n=24, k=23

0.8
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0.2

o
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—04f

-0.81

-1 -0.5 0 0.5 1

Figure 1: Field of values and polynomial numerical hull of degree k£ for a
Jordan block. n =24, k = 23.

the outer curve) and an approximation to the polynomial numerical hull of
degree n — 1 = 23 (the shaded region). The single eigenvalue zero is marked
by an asterisk. This indicates that for polynomials of degree less than n, a
Jordan block behaves in many ways like a normal matrix with eigenvalues
spread throughout most of its field of values; that is, |[p(A)|| > ||p(B)||, when
B is a normal matrix with eigenvalues throughout the shaded region.

Using inequality (10) with ' taken to be the boundary of this set and
noting that the resolvent norm on I' is roughly 100 (i.e., T' closely resem-
bles the 10~2-pseudospectrum of A), we obtain fairly tight upper and lower
bounds on the norms of polynomials applied to this Jordan block:

semax | p(2)] < [Ip(A)l <90 max |p(2)],
for all polynomials p of degree n — 1 = 23 or less.

Example 2. Gauss-Seidel Matriz. It is well-known that the convergence
rate of the Gauss-Seidel method may depend on whether an upwind or down-
wind direction is chosen for the sweeps; that is, it is sometimes better to use
the upper triangular part and sometimes better to use the lower triangular
part of the matrix as a preconditioner, even when the spectral radii of the
two iteration matrices are the same. Trefethen has used this phenomenon
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Figure 2: Convergence of the Gauss-Seidel iteration.

to illustrate the relation between pseudospectra and the performance of the
Gauss-Seidel iteration [22].
Consider the matrix

—1.16
.16 1

The spectral radius of I — M~1C is about .73 when M is taken to be either
the lower or the upper triangle of C'. Hence, asymptotically the iteration
Ty = ¥ + M~ (b — Cxy) converges to the solution of the linear system
Cz = b, reducing the error by approximately the factor .73 at each step in
the later stages. If M is taken to be the lower triangle of C', however, as
in the Gauss-Seidel method, then the iteration matrix A = I — M 'C is
highly nonnormal and the error grows by several orders of magnitude before
reaching this asymptotically convergent regime. This is shown in Figure 2.
The explanation is that the polynomial numerical hull of any degree k < n
for the iteration matrix is much larger than suggested by the eigenvalues.
Figure 3 shows the field of values (inside the outer curve) and the polynomial
numerical hull of degree & = 29 (shaded) for the Gauss-Seidel iteration matrix
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Gauss-Seidel matrix: n=30, k=29
T

%%%%%%%%%*—%

I I 1
-1.5 -1 -0.5 0 0.5 1

Figure 3: Field of values and polynomial numerical hull of degree k for the
Gauss-Seidel iteration matrix. n = 30, k£ = 29.

of size n = 30. The eigenvalues of the matrix are marked with asterisks.
Again it is seen that the polynomial numerical hull of degree n — 1 fills most
of the field of values. The largest absolute value of a point in the polynomial
numerical hull of degree 29 is about 1.256, indicating that over the first 29
steps the error in the Gauss-Seidel iteration (more precisely, ||A¥||) must grow
to at least 1.256%° ~ 700. In fact, it grows to about 14 times this value before
beginning to decrease, as shown in Figure 2.

Again using inequality (10) with I" taken to be the boundary of the poly-
nomial numerical hull of degree & = n — 1 (which closely resembles the
10~2-pseudospectrum of A), we obtain fairly tight upper and lower bounds:

omax | |p(2)] < [Ip(A)]l < 100 max [p(2)],
for all polynomials p of degree n — 1 = 29 or less.

Since this example involves simple powers of the matrix A, one also can
obtain lower and upper bounds on sup, ||A’|| using the Kreiss matrix the-
orem [12, 16, 23]. According to that theorem (in its current sharp form)
[16],

r(A) < supl||4?|| < enr(A), where r(A) = sup(|z| = 1)|[(zf — A)7}|.
j>0

|z|>1
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A numerical computation shows that r(A) ~ 4324, and the factor en is
approximately 82. The polynomial numerical hull of degree k£ provides lower
and upper bounds on ||A7|| for j < k, while the Kreiss matrix theorem gives
bounds on sup; [|A7]|.

Ezxample 3. The Ehrenfests’ Urn. This example is similar to the previous
one in that it involves the norms of powers of a matrix. The setup represents
a simple model of diffusion and displays a cutoff phenomenon described by
Diaconis [1]. Consider two urns and d balls. Initially all of the balls are in urn
2. At each step, the probability of moving a ball from one urn to the other
is proportional to the number of balls in the urn. Letting the state space
be the number of balls {0,1,...,d} in urn 1, the transition probabilities
are: P(i,i —1) = i/(d+ 1), P(i,i) = 1/(d+ 1), and P(i,i + 1) = (d —
i)/(d+1). Applying the probability transition matrix PT to the initial vector
(1,0,...,0)T many times, the system approaches its stationary state, which

is a binomial distribution: 7(j) = ( ;l ) /24 0<j<d.

Asymptotically, the difference between the current state of the system
and the stationary state converges to zero at a rate determined by the sec-
ond largest eigenvalue of the matrix, but a number of steps are required
before any convergence towards the stationary state is seen. The number of
steps depends on the norm in which this difference is measured. The most
appropriate norm is the total variation distance described in [1], and this is
closely related to the 1-norm [20]. The cutoff is less pronounced, but can still
be seen, when the difference is measured in the 2-norm.

Figure 4 shows a plot of the 1-norm (solid) and the 2-norm (dashed) of
the powers of the matrix A = PT — v;w!, where v, is a right eigenvector
and w; a left eigenvector associated with the largest eigenvalue 1; that is, if
PT = VAV~! where A is a diagonal matrix of eigenvalues with A;; = 1, then
vy is the first column of V and w{ is the first row of V=1, Powers of this matrix
A, applied to the initial state vector, give the differences between the current
and stationary states. The plot is for a problem with d = 50 balls, so the
matrix is of order n = 51. The second largest eigenvalue of the probability
transition matrix is about .9608, and the 2-norm condition number of the
matrix V of eigenvectors is about 107. By step k& = 100, the ratio of norms of
successive powers ||A¥||/||A¥71|| is very close to its asymptotic value of .9608.
Early in the process, however, we see that ||A*||/||A¥~!|| is very close to 1,
especially for the 1-norm.
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Figure 4: Norms of powers of the Ehrenfests’ urn matrix. 1-norm (solid),
2-norm (dashed).

The behavior of the matrix powers in the 2-norm is partially explained by
the polynomial numerical hull of degree k¥ = 11 pictured in Figure 5. Again
the outer curve denotes the boundary of the field of values, the polynomial
numerical hull of degree £ = 11 is shaded, and the eigenvalues, which lie
on the real axis, are marked with asterisks. The field of values and the
polynomial numerical hulls of degree k£ < 10 for A all contain points with
absolute value greater than 1, indicating that || A¥|| cannot be less than 1 for
k < 10. The point ( = 1 is right on the border of the polynomial numerical
hull of degree £ = 11 and is outside the set for £ = 12. In actuality, it can
be seen from Figure 4 that ||A*|| does not drop below 1 until step k = 39,
so the polynomial numerical hulls of various degrees only partially explain
the behavior of the matrix powers in this case. Moreover, the polynomial
numerical hulls plotted here are associated with the 2-norm. Different sets
such as {z € C: |[p(A4)||1 > |p(2)| for all p of degree k or less} must be used
to study the 1-norm behavior of polynomial functions of a matrix.

Example 4. Grcar matriz. The following matrix was introduced by Grcar
[5] and has been studied in connection with pseudospectra by Trefethen [22]
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Ehrenfest urn matrix: n=51, k=11
T

Skttt dek sk sk hsk stk ok koot ko sk ok skkskk ok ok ok ek sk kb ok

I I I I
-0.5 0 0.5 1

Figure 5: Field of values and polynomial numerical hull of degree k for the
Ehrenfests’ urn matrix. n = 51, k£ = 11.

and by Toh and Trefethen [19]:

1 1 1 1
-1 1 1 1
A= 1 )
-1 1 1 1
-1 1 1
-1 1

It is a matrix whose polynomial numerical hulls of various degrees are sig-
nificantly different from either its eigenvalues or its field of values. Using
a matrix of size n = 48, the field of values and eigenvalues are plotted in
Figure 6, while the polynomial numerical hulls of degree k£ = 4, 8, 16, and
32 are plotted in Figure 7. As can be seen from the figures, while the field
of values contains the origin, the polynomial numerical hull of degree 4 does
not, showing that the GMRES algorithm for solving a linear system with
coefficient matrix A will make some (small amount of) progress within the
first 4 steps: min,ep, (o ||P(A)|| < 1.

While the computation of polynomial numerical hulls of various degrees,
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Grcar matrix: n=48. Field of values and eigenvalues

&

9?2&
*

-2 -2

Y 4 T2 0 2 4
k=32
4 4
2 2 N
\ \
\ \
! |
0 0 |
|
/ J
! /
-2 -2 \ s
=
-4 -4
-2 0 2 4 -2 0 2 4

Figure 7: Polynomial numerical hulls of degree k = 4, 8,16, 32 for the Grcar
matrix. n = 48. Dashed curves are the lemniscates ||px(A)|| = |pr(2)|, where
pr is the kth degree Arnoldi polynomial for a random starting vector.
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as in Figure 7, is quite costly, these sets might be approximated by

{zeC: lpu(A)l = [ox(2)]}

for some specific polynomial p; such as that produced in the GMRES or
Arnoldi algorithm. This set necessarily contains the polynomial numeri-
cal hull of degree k. The dashed curves in Figure 7 are the lemniscates
{z € C: ||pe(A)|| = |pr(2)|}, where py is the polynomial produced at step k&
of the Arnoldi algorithm, using a random initial vector. Trefethen has sug-
gested looking at the regions enclosed by such lemniscates as approximations
to certain pseudospectra and we recommend them also as approximations to
the polynomial numerical hull of the given degree. In this case, the approx-
imation is rough, however, and all of the lemniscates up to £ = 32 enclose
the origin.

4 Summary and Applications

The goal of this paper is to convince readers that to study the behavior of
polynomial functions of a matrix, when the polynomials are of moderate de-
gree compared to the minimal polynomial, one should consider polynomial
numerical hulls of various degrees rather than eigenvalues. The applications
include every field in which eigenvalue analysis is used to predict anything
other than asymptotic behavior — stability of difference schemes, conver-
gence of iterative methods, cutoff phenomena in random processes, etc., etc.
In order to understand the growth or stationarity of the norms of powers
of a matrix as illustrated in Figures 2 and 4, one must have a lower bound
for ||p(A)||. Using the Cauchy integral formula, one can easily derive upper
bounds, and if the upper and lower bounds turn out to be close, as they were
for a number of the examples in Section 3, then this tells us that the set Gi(A)
really does determine the behavior of A to a close approximation under the
action of polynomials of degree k or less. One might be able to derive similar
sets in the complex plane that determine the behavior of A under the action
of other classes of functions. Another interesting class might be functions of
the form f(A) =€, 0 <t < T.

The difficulty in computing polynomial numerical hulls of various degrees
remains an obstacle to their use. Since even a rough idea of what these
sets look like can be useful, however, their approximation via the Arnoldi
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algorithm or some other means may prove sufficient in practice to deduce
important information about the behavior of the matrix.

Acknowledgments: The author thanks Nick Trefethen and Mark Embree
for helpful comments on a draft of this paper. She thanks Marko Huhtanen
and an anonymous referee for the references [14, 15] to Nevanlinna’s work on
the sets studied here.
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