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Where in the complex plane does a matrix live?
(A question of L. N. Trefethen)

Translating Matrix Problems into Problems in the Complex Plane



What can eigenvalues do?

• If A is normal (e.g., real symmetric) or near normal (well-conditioned
eigenvectors) then eigenvalues describe behavior in spectral norm per-
fectly or almost perfectly:

‖f (A)‖ ≈ max
λ∈σ(A)

|f (λ)|.

• Even if A is highly nonnormal (e.g., not diagonalizable, or diago-
nalizable but with eigenvectors that are almost linearly dependent),
eigenvalues determine the asymptotic behavior of many functions of
A:

‖Ak‖ → 0 as k → ∞ iff ρ(A) < 1.

‖etA‖ → 0 as t → ∞ iff Re(σ(A)) < 0.



What can eigenvalues NOT do?

• etA: Determines the stability of y′ = Ay.

limt→∞ ‖etA‖ = 0 if and only if the eigenvalues of A have negative real parts.
But eigenvalues alone cannot distinguish:
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• Ak: Determines stability of finite difference schemes; determines the
convergence of stationary iterative methods for linear systems.

limk→∞ ‖Ak‖ = 0 if and only if ρ(A) < 1. But eigenvalues alone cannot
distinguish:
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• Ak: Markov chains.

y0 = initial state; Aky0 = state after k steps. Aky0 → v = eigenvector
corresponding to eigenvalue 1. For k large, convergence rate is determined by
second largest eigenvalue. But eigenvalues cannot distinguish:
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• min p∈Pk
p(0)=1

‖p(A)‖: Residual norm in ideal GMRES.

Any possible convergence behavior of GMRES can be attained with a matrix
having any given eigenvalues. (G., Pták, Strakos̆, ’96)



Given an n by n matrix A, find a set S ⊂ C that can be associated with
A to give more information than the spectrum alone can provide about
the 2-norm of functions of A.

• Field of values or Numerical Range:

W (A) = {〈Aq, q〉 : q ∈ Cn, 〈q, q〉 = 1}.

• ǫ-pseudospectrum:

σǫ(A) = {z ∈ C : z is an eigenvalue of A + E

for some E with ‖E‖ < ǫ}.
• Polynomial numerical hull of degree k:

Hk(A) = {z ∈ C : ‖p(A)‖ ≥ |p(z)| ∀p ∈ Pk}.



Field of Values or Numerical Range

• W (A) is closed if A is finite dimensional (continuous image of
compact unit ball); not necessarily so if A is an operator on infinite
dimensional Hilbert space.

• σ(A) ⊂ W (A).

Proof for eigenvalues: Aq = λq, ‖q‖ = 1 ⇒ 〈Aq, q〉 = λ.

• W (A) is a convex set (Toeplitz-Hausdorf theorem, 1918).

Method of Proof: Reduce to the 2 by 2 case.

• If A is normal then W (A) is the convex hull of σ(A); if A is
nonnormal W (A) contains more.
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• If y′ = Ay then for certain initial data, ‖y(t)‖ initially increases if
W (A) extends into rhp; ‖y(t)‖ decreases monotonically if W (A) lies
in lhp.

Proof:
d

dt
〈y(t),y(t)〉 = 2Re〈y′(t),y(t)〉 = 2Re〈Ay,y〉.

• If 0 /∈ W (A), then

min
p∈P1

p(0)=1

‖p(A)‖ ≤
√

1 − d2/‖A‖2,

where d is the distance from 0 to W (A).



Crouzeix’s Conjecture: For any polynomial p,

‖p(A)‖ ≤ 2 max
z∈W (A)

|p(z)|.

“If true it would be astounding.” (Peter Lax)

• Constant 2 can be attained:

A =

(

0 1
0 0

)

.

W (A) is disk of radius 1/2 about 0. ‖A‖ = 1 = 2 maxz∈D1/2
|z|.

• Another open question: If constant 2 is attained, is W (A) necessarily
a disk? (Yes, for 2 by 2 matrices.)

May suggest a direction for proof.

• For more information and interesting open problems, see:

http://perso.univ-rennes1.fr/michel.crouzeix



Known Results

• Von Neumann’s Inequality (1951):

‖p(A)‖ ≤ max
z∈D‖A‖

|p(z)|.

• Power Inequality (Berger/Pearcy, 1966):

‖Ak‖ ≤ 2 max
z∈W (A)

|zk|.

More precisely, ν(Ak) ≤ ν(A)k, where ν(A) is the numerical
radius: maxz∈W (A) |z|.



• Badea (2004), based on Ando (1973):

‖p(A)‖ ≤ 2 max
z∈Dν(A)

|p(z)|.

• Crouzeix (2004 − >):

The conjecture is true for 2 by 2 matrices. For general n by n
matrices,

‖p(A)‖ ≤ 11.08 max
z∈W (A)

|p(z)|

If A is a 2 by 2 matrix and W (A) is a disk, then best constant is 2; if
W (A) is an ellipse with eccentricity ǫ, then the best constant is

2 exp

(

−
∑

n≥1

(−1)n+1

n

2

1 + ρ4n

)

, where ρ =
1 +

√
1 − ǫ2

ǫ

Method of Proof: Explicitly map W (A) to D̄.



Von Neumann’s Inequality

If ‖A‖ ≤ 1, it has a unitary dilation; e.g.,

B =













A (I − AA∗)1/2 0 . . . 0
0 0 I 0
... ... . . . ...
0 0 I

−(I − A∗A)1/2 A∗ 0 . . . 0













, p(B) =

(

p(A) ∗
∗ ∗

)

.

‖p(A)‖ ≤ ‖p(B)‖ ≤ supz∈D |p(z)|.
For general A, apply to A/‖A‖. If q(z) = p(z/‖A‖), then

‖q(A)‖ = ‖p(A/‖A‖)‖ ≤ sup
z∈D

|p(z)| = sup
z∈D‖A‖

|q(z)|.



Badea’s Result

Ando: If ν(A) ≤ 1, then there is a Hermitian matrix B and a unitary
matrix U such that:

A = 2 cos(B)U sin(B).

Claim: A is similar to a contraction via a similarity transformation with
condition number ≤ 2.

Let g(x) = max{1, 2| cos x|}, and define H = g(B), T = H−1AH . Then

‖H‖ ≤ 2, ‖H−1‖ ≤ 1, ‖ sin(B)H‖ ≤ 1, 2‖H−1 cos(B)‖ ≤ 1.

Thus ‖T‖ ≤ 1. �

By von Neumann’s inequality,

‖p(A)‖ ≤ ‖H‖ ‖p(T )‖ ‖H−1‖ ≤ 2‖p‖L∞(D).



What p maximizes ‖p(A)‖/‖p‖L∞(W (A))? Don’t know, but ...

p(A) is completely determined by the values of p (and perhaps some of
its derivatives) at the eigenvalues of A. Hence conjecture is equivalent
to:

‖p(A)‖ ≤ 2 inf{‖f‖L∞(W (A)) : f (A) = p(A)}

Finding this infimum is a Pick-Nevanlinna interpolation

problem.



Map W (A) conformally to D̄. Infimum is achieved by a function f̃ that
is a scalar multiple of a finite Blaschke product:

f̃ (z) = µ
n−1
∏

k=0

z − αk

1 − ᾱkz
= µ

γ0 + γ1z + . . . + γn−1z
n−1

γ̄n−1 + γ̄n−2z + . . . + γ̄0zn−1

Using second representation, Glader and Lindström showed how to
compute f̃ and ‖f̃‖L∞(D) by solving a simple eigenvalue problem.

Determine µ, γ0, . . . , γn−1 from conditions f̃ (λ̂j) = p(λj), j = 1, . . . , n,

where λ̂j’s are the mapped eigenvalues.



Let V be the Vandermonde matrix for λ̂1, . . . , λ̂n:

V T =











1 λ̂1 . . . λ̂n−1
1

1 λ̂2 . . . λ̂n−1
2

... ... ...

1 λ̂n . . . λ̂n−1
n











.

If γ = (γ0, . . . , γn−1)
T , and Π is the permutation matrix with 1’s on its

skew diagonal, then these conditions are:

V −Tp(Λ)V TΠγ̄ = µγ.

Largest real µ for which this holds for some nonzero vector γ is
‖f̃‖L∞(D). This is a coneigenvalue problem; equate real and
imaginary parts to get a 2n by 2n eigenvalue problem.



Numerical Testing of Crouzeix’s Conjecture

‖p(A)‖
?
≤ 2 inf{‖f‖L∞(W (A)) : f (A) = p(A)}

• Given A, compute eigendecomposition A = SΛS−1, field of values
W (A), conformal mapping g : W (A) → D̄, and g(Λ).

• Try values w1, . . . , wn for p(λ1), . . . , p(λn). Compute
‖p(A)‖ = ‖Sp(Λ)S−1‖, and find

µ ≡ inf{‖f‖L∞(D) : f (g(λj)) = wj, j = 1, . . . , n}
by solving eigenvalue problem.

• Vary w1, . . . , wn to minimize µ/‖p(A)‖. If < 1
2, conjecture is false.

Experiments show that for some problems (e.g. 3 × 3 perturbed Jordan block
with small ξ) need (almost) exact W (A) and g : W (A) → D to obtain
constant 2.


