Where in the complex plane does a matrix live?

(A question of L. N. Trefethen)

Connections Between Matrix Theory and Complex Analysis

What can eigenvalues do?

• If A is **normal** (e.g., real symmetric) or **near normal** (well-conditioned eigenvectors) then eigenvalues describe behavior in spectral norm perfectly or almost perfectly:

$$||f(A)|| \approx \max_{\lambda \in \sigma(A)} |f(\lambda)|.$$

• Even if A is highly **nonnormal** (e.g., not diagonalizable, or diagonalizable but with eigenvectors that are almost linearly dependent), eigenvalues determine the *asymptotic* behavior of many functions of A:

$$\|A^k\| o 0$$
 as $k o \infty$ iff $ho(A)<1.$ $\|e^{tA}\| o 0$ as $t o \infty$ iff $ext{Re}(\sigma(A))<0.$

What can eigenvalues NOT do?

• e^{tA} : Determines the stability of y' = Ay.

 $\lim_{t\to\infty}\|e^{tA}\|=0$ if and only if the eigenvalues of A have negative real parts. But eigenvalues alone cannot distinguish:

• A^k : Determines stability of finite difference schemes; determines the convergence of stationary iterative methods for linear systems.

 $\lim_{k\to\infty}\|A^k\|=0$ if and only if $\rho(A)<1$. But eigenvalues alone cannot distinguish:

• A^k : Markov chains.

 $y_0 = \text{initial state}; \ A^k y_0 = \text{state after } k \text{ steps.} \ A^k y_0 \to v = \text{eigenvector corresponding to eigenvalue 1. For } k \text{ large, convergence rate is determined by second largest eigenvalue.}$ But eigenvalues cannot distinguish:

• $\min_{p \in \mathcal{P}_k} \|p(A)\|$: Residual norm in ideal p(0)=1 GMRES.

Any possible convergence behavior of GMRES can be attained with a matrix having any given eigenvalues. (G., Pták, Strakoš, '96)

Given an n by n matrix A, find a set $S \subset \mathbf{C}$ that can be associated with A to give more information than the spectrum alone can provide about the 2-norm of functions of A.

• Field of values:

$$W(A) = \{ \langle Aq, q \rangle : \langle q, q \rangle = 1 \}.$$

• ϵ -pseudospectrum:

$$\sigma_{\epsilon}(A) = \{z \in \mathbf{C} : z \text{ is an eigenvalue of } A + E$$
 for some E with $\|E\| < \epsilon\}$.

ullet Polynomial numerical hull of degree k:

$$\mathcal{H}_k(A) = \{ z \in \mathbb{C} : ||p(A)|| \ge |p(z)| \ \forall p \in \mathcal{P}_k \}.$$

Find a set S and scalars m and M with M/m of moderate size such that for all polynomials (or analytic functions) p:

 $m \cdot \sup_{z \in S} |p(z)| \le ||p(A)|| \le M \cdot \sup_{z \in S} |p(z)|$.

• $S = \sigma(A)$, m = 1, $M = \kappa(V)$.

If A is normal then m=M=1, but if A is nonnormal then $\kappa(V)$ may be huge. Moreover, if columns of V have norm 1, then $\kappa(V)$ is close to smallest value that can be used for M.

ullet If A is nonnormal, might want S to contain more than the spectrum. BUT...

If S contains more than $\sigma(A)$, must take m=0 since if p is minimal polynomial of A then p(A)=0 but p(z)=0 only if $z\in\sigma(A)$.

How to modify the problem?

 $m \cdot \sup_{z \in S} |p_{r-1}(z)| \le \|p(A)\| \le M \cdot \sup_{z \in S} |p(z)|$

- If degree of minimal polynomial is r, then any $p(A) = p_{r-1}(A)$ for a certain (r-1)st degree polynomial the one that matches p at the eigenvalues, and whose derivatives of order up through t-1 match those of p at an eigenvalue corresponding to a t by t Jordan block.
- The largest set S where above holds with m=1 is called the **polynomial** numerical hull of degree $\mathbf{r}-1$. In general, however, we do not know good values for M ($<<\kappa(V)$).

Given a set S, for each p consider

$$\inf\{\|f\|_{\mathcal{L}^{\infty}(S)}: f(A) = p(A)\}.$$
 (*)

Find scalars m and M such that for all p:

$$m \cdot (*) \le ||p(A)|| \le M \cdot (*).$$

- f(A) = p(A) if $f(z) = p_{r-1}(z) + \chi(z)h(z)$ for some $h \in H^{\infty}(S)$. Here χ is the minimal polynomial (of degree r) and p_{r-1} is the polynomial of degree r-1 satisfying $p_{r-1}(A) = p(A)$.
- (*) is a **Pick-Nevanlinna interpolation problem**.

Given $S \subset \mathbf{C}$, $\lambda_1, \ldots, \lambda_n \in S$, and w_1, \ldots, w_n , find

$$\inf\{\|f\|_{\mathcal{L}^{\infty}(S)}: \ f(\lambda_j) = w_j, \ j = 1, \dots, n\}.$$

• If S is the open unit disk, then infimum is achieved by a function \tilde{f} that is a scalar multiple of a finite **Blaschke product**:

$$\tilde{f}(z) = \mu \prod_{k=0}^{n-1} \frac{z - \alpha_k}{1 - \bar{\alpha}_k z}, \quad |\alpha_k| < 1$$

$$= \mu \frac{\gamma_0 + \gamma_1 z + \dots + \gamma_{n-1} z^{n-1}}{\bar{\gamma}_{n-1} + \bar{\gamma}_{n-2} z + \dots + \bar{\gamma}_0 z^{n-1}}.$$

• Using second representation, Glader and Lindström showed how to compute \tilde{f} and $\|\tilde{f}\|_{\mathcal{L}^{\infty}(\mathcal{D})}$ by solving a simple eigenvalue problem.

Given $S\subset {f C},\; \lambda_1,\ldots,\lambda_n\in S,\; {
m and}\; w_1,\ldots,w_n,$ find $\inf\{\|f\|_{{\cal L}^\infty(S)}:\; f(\lambda_j)=w_j,\; j=1,\ldots,n\}.$

• If S is a simply-connected open set, it can be mapped onto the open unit disk \mathcal{D} via a one-to-one analytic mapping g.

$$\inf\{\|F\|_{\mathcal{L}^{\infty}(S)}: \ F(\lambda_j) = w_j\} =$$

$$\inf\{\|f \circ g\|_{\mathcal{L}^{\infty}(S)}: \ (f \circ g)(\lambda_j) = w_j\} =$$

$$\inf\{\|f\|_{\mathcal{L}^{\infty}(\mathcal{D})}: \ f(g(\lambda_j)) = w_j\}.$$

 Some results also known when S is multiply-connected.

The Field of Values and 2 by 2 Matrices

- Suppose S=W(A). Crouzeix showed that $M_{opt}(A,W(A)) \leq 11.08$ and he conjectures that $M_{opt}(A,W(A)) \leq 2$. (He proved this if A is 2 by 2 or if W(A) is a disk.) In most cases, do not have good estimates for $m_{opt}(A,W(A))$, but...
- If A is a 2 by 2 matrix, since $W(A) = \mathcal{H}_1(A)$, the polynomial numerical hull of degree 1, and since any function of a 2 by 2 matrix A can be written as a first degree polynomial in A,

$$||p(A)|| \ge ||p_1||_{\mathcal{L}^{\infty}(W(A))}$$

 $\ge \inf\{||f||_{\mathcal{L}^{\infty}(W(A))}: f(A) = p(A)\}.$

Hence for 2 by 2 matrices:

$$m_{opt}(A, W(A)) = 1$$
 and $M_{opt}(A, W(A)) \leq 2$.

Example:

$$A = \left(\begin{array}{cc} 0 & 1 \\ -.01 & 0 \end{array}\right)$$

The Unit Disk and Perturbed Jordan Blocks

$$A = \begin{pmatrix} 0 & 1 & & & \\ & \ddots & \ddots & & \\ & & 0 & 1 \\ \nu & & & 0 \end{pmatrix}, \quad \nu \in (0, 1).$$

- The eigenvalues of A are the nth roots of ν : $\lambda_j = \nu^{(1/n)} e^{2\pi i j/n}$.
- For $\nu=1$, A is a normal matrix with eigenvalues uniformly distributed about the unit circle. W(A) is the convex hull of the eigenvalues. $\mathcal{H}_{n-1}(A)$ consists of the eigenvalues and the origin. The ϵ -pseudospectrum consists of disks about the eigenvalues of radius ϵ .

• For $\nu=0$, A is a Jordan block with eigenvalue 0. W(A) is a disk about the origin of radius $\cos(\pi/(n+1))$. $\mathcal{H}_{n-1}(A)$ is a disk of radius $1-\log(2n)/n+\log(\log(2n))/n+o(1/n)$, and this is equal to the ϵ -pseudospectrum for $\epsilon \approx \log(2n)/(2n) - \log(\log(2n))/(2n)$.

So where in C does A live?

$$A = \begin{pmatrix} 0 & 1 & & & \\ & \ddots & \ddots & & \\ & & 0 & 1 \\ \nu & & & 0 \end{pmatrix}, \quad \nu \in (0,1).$$

Theorem. For any polynomial p,

$$\|p(A)\|=\inf\{\|f\|_{\mathcal{L}^\infty(\mathcal{D})}: f(A)=p(A)\}.$$
 Thus $M_{opt}(A,\mathcal{D})=m_{opt}(A,\mathcal{D})=1.$

Proof: $A = V \Lambda V^{-1}$, where V^T is the Vandermonde matrix for the eigenvalues:

$$V^{T} = \begin{pmatrix} 1 & \lambda_1 & \dots & \lambda_1^{n-1} \\ 1 & \lambda_2 & \dots & \lambda_2^{n-1} \\ \vdots & \vdots & & \vdots \\ 1 & \lambda_n & \dots & \lambda_n^{n-1} \end{pmatrix}$$

How do we compute the minimal-norm interpolating function \tilde{f} ?

As noted earlier, it has the form

$$\tilde{f}(z) = \mu \frac{\gamma_0 + \gamma_1 z + \dots + \gamma_{n-1} z^{n-1}}{\bar{\gamma}_{n-1} + \bar{\gamma}_{n-2} z + \dots + \bar{\gamma}_0 z^{n-1}},$$

and satisfies $\tilde{f}(\lambda_j) = p(\lambda_j)$, j = 1, ..., n.

If $\gamma = (\gamma_0, \dots, \gamma_{n-1})^T$, and Π is the permutation matrix with 1's on its skew diagonal, then these conditions are:

$$V^{-T}p(\Lambda)V^T\Pi\bar{\gamma} = (p(A))^T\Pi\bar{\gamma} = \mu\gamma.$$

Glader and Lindström showed that there is a real scalar μ for which this equation has a nonzero solution vector γ and that the largest such μ is $\|\tilde{f}\|_{\mathcal{L}^{\infty}(\mathcal{D})}$.

Since $(p(A))^T\Pi$ is (complex) symmetric, it has an SVD of the form $X\Sigma X^T$. The solutions to above equation are: $\gamma=\mathbf{x}_j$, $\mu=\sigma_j$; and $\gamma=i\mathbf{x}_j$, $\mu=-\sigma_j$.

Example:

$$A = \left(\begin{array}{cc} 0 & 1 \\ -.01 & 0 \end{array}\right)$$

Corollary. If $A = V \Lambda V^{-1}$ where V^T is the Vandermonde matrix for Λ ; i.e., if A is a companion matrix with eigenvalues in \mathcal{D} , then $m_{opt}(A, \mathcal{D}) = 1$.

Proof:

$$V^{-T}p(\Lambda)V^T\Piar{\gamma}=(p(A))^T\Piar{\gamma}=\mu\gamma,$$
 so $\|p(A)\|\geq |\mu|.$

Example: Companion matrix with 5 random eigenvalues in the unit disk. $||A^j||$ and lower bound.

Given an n by n matrix A, we looked for a set $S \subset \mathbf{C}$ and scalars m and M with M/m of moderate size ($<<\kappa(V)$ if $\kappa(V)$ is large) such that for all polynomials p:

$$m \cdot \inf\{\|f\|_{\mathcal{L}^{\infty}(S)} : f(A) = p(A)\} \le \|p(A)\|$$

 $\le M \cdot \inf\{\|f\|_{\mathcal{L}^{\infty}(S)} : f(A) = p(A)\}.$

 In a few exceptional cases (2 by 2 matrices, and perturbed Jordan blocks), we found such a set.

- In general, it seems difficult, perhaps impossible, to find such a set. The problem is that interpolating Blaschke products (like interpolating polynomials) can (but do not always) do wild things between the interpolation points. Hence to get a good value for m, need S to contain little more than $\sigma(A)$. But if $\kappa(V)$ is large, to get a good value for M, need S to contain significantly more than $\sigma(A)$.
- Perhaps the problem should be changed. Limit the class of polynomials. Or look for two different sets $S_m \subset \mathbf{C}$ for lower bounds on $\|p(A)\|$ and $S_M \subset \mathbf{C}$ for upper bounds.

Crouzeix's Conjecture: For any polynomial p,

$$||p(A)|| \le 2 \max_{z \in W(A)} |p(z)|.$$

- "If true it would be astounding." (Peter Lax)
- Need only consider $p = B \circ g$ where g is a conformal mapping from W(A) to $\mathcal D$ and B is a finite Blaschke product. Show $\|B(g(A))\| \leq 2$.

- Crouzeix proved $\|p(A)\| \leq 11.08 \max_{z \in W(A)} |p(z)|, \text{ but proof is } complicated \text{ and does not appear to be extendable to yield smaller constant.}$
- Constant 2 can be attained:

$$A = \left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array} \right).$$

W(A) is disk of radius 1/2 about 0. $\|A\|=1=2\max_{z\in\mathcal{D}_{1/2}}|z|.$

- Another open question: If constant 2 is attained, is W(A) necessarily a disk? (Yes, for 2 by 2 matrices.)
- For more information and interesting open problems, see:

http://perso.univ-rennes1.fr/michel.crouzeix