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Abstract
The polynomial numerical hull of degree k for a square matrix
A is a set designed to give useful information about the norms of
polynomial functions of the matrix; it is defined as

{z€ C: |[p(A)| > |p(z)| for all p of degree k or less}.

While these sets have been computed numerically for a number of
matrices, the computations have not been verified analytically in most
cases.

In this paper we show analytically that the 2-norm polynomial
numerical hulls of degrees 1 through n — 1 for an n by n Jordan
block are disks about the eigenvalue with radii approaching 1 as n —
oo, and we prove a theorem characterizing these radii r;,. In the
special case where k¥ = n — 1, this theorem leads to a known result
in complex approximation theory: For n even, r,_1, is the positive
root of 2r™ +r — 1 = 0, and for n odd, it satisfies a similar formula.
For large n, this means that r,_1, ~ 1 —log(2n)/n + log(log(2n))/n.
These results are used to obtain bounds on the polynomial numerical
hulls of certain degrees for banded triangular Toeplitz matrices and
for block diagonal matrices with triangular Toeplitz blocks.
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1 Introduction

The polynomial numerical hull of degree k for an n by n matrix A was intro-
duced by Nevanlinna in [12, 13] and further studied by Greenbaum in [8, 9].
It is a set designed to give more information than the spectrum alone can
provide about the behavior of the matrix under the action of polynomials.
It is defined as

Ge(A) ={z € C: |lp(A)ll = Ip(2)| Vp € Pr}, (1)

where £ is a positive integer and Py denotes the set of polynomials of degree
k or less.

A few simple properties of these sets are easily observed. The polynomial
numerical hull of any degree contains the spectrum of A since if A is an
eigenvalue and v a corresponding normalized eigenvector of A, then p(A)v =
p(A)v implies |[p(A)|| > |p(N)| for any polynomial p and any matrix norm
compatible with the given vector norm. In this paper, the matrix norm will
always be the one induced by a given vector norm (|| B|| = supj, 1 [|Bwl|),
and the vector norm, unless otherwise stated, will be the 2-norm. For &
greater than or equal to the degree of the minimal polynomial of A, the
polynomial numerical hull of degree k consists precisely of the spectrum since
the minimal polynomial of A has roots only at the eigenvalues but satisfies
lp(A)|| = 0. The polynomial numerical hull of any degree is a closed bounded
set; it is a subset, for instance, of {z € C: |z| < ||A]|}.

The following theorem lists some elementary properties of the 2-norm
polynomial numerical hull of degree k. Some of these can be found in [8] or
[13]:

Theorem 1.
(i) Gk(-) is invariant under unitary similarity transformations.

(ii) If @ is an n by j matrix with orthonormal columns and if AQ = @B for
some j by j matrix B, then G(B) C Gi(A).

(iii) For scalars a, f € C, Gi(al + BA) = a+ BGk(A).

(iv) If F(A) denotes the field of values (F(A) = {¢*Aq : ¢*q = 1}) and
o(A) the spectrum, then F(A) = Gi(A) D G2(A) D ... D Gn(A) =



Gm+1(A) = ... = 0(A), where m is the degree of the minimal polyno-
mial of A.

(v) Let pcog(S) denote the polynomially convex hull of degree k for a com-
pact set S C C:

peog(S) ={¢ € C: |p(Q)| < max|p(2)| Vp € Py} (2)

If Gi(A) D S, then Gx(A) D pco(S). If, for all p € Py, |[p(4)| =
maXees |p(2)‘, then gk(A) = pCOk(S)-

(vi) If A is a block diagonal matrix:

B,
A: R
B,

then 6.(4) — oo (Ql g1(Bi)) — pco, (g Q1(Bi)> :

where co(-) denotes the convex hull. For k& > 1,

Gr(A) D pco, <O gk(Bi)) :

=1

Proof:

(i) This follows from the invariance of the 2-norm under unitary similar-
ity transformations: If () is a unitary matrix and p any polynomial,
then p(Q*AQ) = Q"p(A)Q = [p(Q"AQ)|| = [[p(A)|| = Gr(Q"AQ) =
Gr(A).

(ii) If the columns of @ form an orthonormal basis for a j dimensional in-
variant subspace of A; i.e., if AQ = @B for some j by 7 matrix B, then
for any polynomial p we have p(A)Q = Qp(B), or, p(B) = Q*p(A)Q.
It follows that ||p(B)|| < ||p(A)|| and hence that G¢(B) C Gi(A) for
any k > 1.



(iii) If 5 = 0, the result Gy(al) = {a} is obvious, so assume 3 # 0. For
any polynomial p € Py, define ¢ € Py by q(a + 52) = p(2), or, q(2) =
p((z — «)/B). Clearly, every q € Py can be written in this form for
some p € Py, and then p(A) = q(al + A). It follows that ( € Gx(A)
if and only if ||p(A4)|| > [p({)| Vp € Py if and only if ||g(al + BA)|| >
lg(a+ BC)| Vq € Py if and only if a + 8¢ € G (al + BA).

(iv) For a proof that G,(A) = F(A), see [8] or [12]. The inclusions G;(A) D
Gj+1(A) are clear from definition (1), and it has already been noted
that for j > m, G;(A) = o(A4).

(v) If Gx(A) D S, then it is clear from definition (1) that Gx(A) D pcog(S).
If for all p € Py, ||p(4)]| = max,es [p(2)], then Gx(A) contains S and
hence pco,(S). On the other hand, if { ¢ pco,(S), then there is a
polynomial p € Py such that [p({)| > max,cs|p(z)] = ||p(A4)]], so

¢ ¢ Gr(A). Therefore Gi(A) = pcog(S).

(vi) Since Gi(A) = F(A), the first statement here is a known property
of the field of values [10, p. 12], and it follows from the convexity
of that set. In general, we have ||p(A4)| = max;=1,. ¢|/p(B;)| and so
Gr(A) D UL, Gx(B;) and by (v) it contains also the polynomially convex
hull of degree k for this union of sets. O

In [11] and [8] a number of numerical examples were presented in which
the 2-norm polynomial numerical hulls of various degrees for different ma-
trices were computed. In particular, it was demonstrated numerically in [8]
that the 2-norm polynomial numerical hulls of degrees 1 through n—1 for an
n by n Jordan block resemble disks about the eigenvalue of radius slightly
less than 1. In this paper we establish this result analytically. The problem
of determining the radius of the polynomial numerical hull of degree n — 1
for an n by n Jordan block turns out to be equivalent to a classical problem
in complex approximation theory, closely related to the Carathéodory-Fejér
interpolation problem [2, 5] and explicitly solved by Schur and Szegd [15]
and then rediscovered with a different proof by Goluzin [6], [7, Theorem 6,
pp. 522-523]. Specifically, the result states that if n is even then this radius
is the positive root of

2r"+r—1=0,



while if n is odd, the radius is the largest value of r satisfying

[1 —cos(d/(n—1))] + [l —cos((m —d)/n)]
T+r

1—7r—2r" 420" >0 Vd.
This latter condition is most stringent when d/(n—1) ~ 0 and (7 —d)/n = 0,
and then it is almost the same as the first. In either case, for large n,
r = 1 —log(2n)/n + log(log(2n))/n. In this paper, we prove a somewhat
more general result that characterizes the radii of the polynomial numerical
hulls of all degrees £ < n and leads immediately to the result for K =n — 1.
In section 3, the results for Jordan blocks are used to obtain bounds on the
polynomial numerical hulls of certain degrees for banded triangular Toeplitz
matrices and for block diagonal matrices whose blocks are triangular Toeplitz
matrices. In section 4, some comparisons are made with e-pseudospectra.

2 Main Theorems

Let A be an n by n Jordan block with eigenvalue 0:

A=| (3)
L
0

This is the only Jordan block that we need consider since by Theorem 1
(iii) the polynomial numerical hulls of a Jordan block with eigenvalue A are
just those of this matrix, shifted by A\. More generally, knowing Gi(A), we
can use (iii) to determine the polynomial numerical hull of degree k for any
bidiagonal Toeplitz matrix:

AB

g
A

It was noted in Theorem 1 (iv) that the polynomial numerical hull of
degree 1 is just the field of values. The field of values of a Jordan block is
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known [10, p. 25,45]. For A of the form (3), the field of values is a disk about
the origin of radius p(A+ AT) /2, where p(-) denotes the spectral radius. The
eigenvalues of (A + AT)/2 are cos(jm/(n+ 1)), 5 =1,...,n, so the spectral
radius is cos(m/(n+1)), which, for large n, is approximately 1—1 (7 /(n+1))2.

Lemma 2. Let A be an n by n Jordan block with eigenvalue 0. For any
k < n, the polynomial numerical hull of degree k for A is a disk about the
origin of radius 74, < 1.

Proof: First note that since Gx(A) C G1(A), it is contained in the disk
about the origin of radius cos(7/(n + 1)) < 1.

The result follows from the fact that for any angle 6, the Jordan block A is
similar to e A, via the unitary similarity transformation A = D(e? A)D~!,
where D = diag(1,¢e¥,...,e{™ D% Tt follows from Theorem 1 (i,iii) that
Gr(A) = Gr(e?A) = e?Gr(A). This means that if G,(A) contains any point
¢ with |¢| > 0, then it contains the circle {|¢[e? : 0 < 6 < 27}, and then by
the maximum principle it must contain the disk {z: |z| <|[(|}. O

Let p(z) = Z?:o ¢z’ be an arbitrary polynomial of degree k or less. If
A is the n by n matrix in (3), then p(A) is the upper triangular Toeplitz

matrix:
Cop ... Cg 0 ... 0

0

Ck

Co

Theorem 3. (Carathéodory-Fejér) [2, 5] The matrix 7, in (4) is a
contraction (i.e., || T¢|| < 1) if and only if there is a function h(z) € H* such
that

k
1Y ¢;27 4+ 2"h(2)]| < 1.
=0

Here H* denotes the Hardy space of bounded analytic functions in the open
unit disk D, with || f|lec = sup, ;1 [f(2)]-

Since the matrix T,./||T;|| is always a contraction, the Carathéodory-Fejér
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theorem tells us that there is always a function analytic in the unit disk and
bounded in absolute value by 1 there for which Zfzo(cj /||T.||)2? are the first
k terms in the power series expansion; that is, there is a function h € H*®
such that || ¥5_; ¢;z7 + 2"h(2)|l < ||Te/|- On the other hand, if, for some
he H*™ | Z?:o ¢j2? + 2"h(z)||o Were strictly less than ||T.||, it would imply
that 7T, divided by this smaller number was a contraction, which is not the
case. Therefore an equivalent statement of the Carathéodory-Fejér theorem
is:
k .
ITell = min [ ¢;z” + 2"h(2) oo (5)
heH® "

Our problem is to find the radius 4, of the disk in which the kth partial
sum Zf:o ¢;jz’ is bounded in absolute value by ||T¢||. For k = n — 1, this
problem was solved by Schur and Szegé [15] and then rediscovered with a
different proof by Goluzin [6], [7, Theorem 6, pp. 522-523]. Here we present
a somewhat more general result that characterizes the radii r4,, ¥k <n —1,
and leads to the result of Schur and Szego for £k = n — 1. We could not find
a way to derive the more general result with the methods of [6], [7], or [15].

Theorem 4. For given 7 € (0,1) and k <n — 1, let
k . .
K(z) =) 12!, zedD. (6)
=0

Then r < 7, if and only if there exists a polynomial ¢ of degree less than
n — k — 1 such that

R (K(z) - % + zk+1q(z)) >0, VzedD. (7)

Proof: Let I ={j € Z: k+1<j <n-—1} let C denote the space of
continuous functions on the unit circle, and let

X={feC: f(j)=0 ifeither j<0 or jeI}.

Here f (7) denotes the Fourier coefficient, so that X consists of all functions
of the form f(z) = p(z) + 2"h(z), where p € P, and h € H*®. By the F. and
M. Riesz theorem

X+t={geL': §g(/)=0 ifboth £<0 and — (¢ I}.
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Define a linear functional ¢ on X by

27 I
6 =5 [ Fe K@ do. Q
7 Jo
Note that if f(z) = p(z) + 2"h(z), where p € P, and h € H*, then ¢(f) =
p(r). Since by (5) we have, for any p € Py, ||p(A)| = mingep~ ||p(z) +
2"h(z)||, and by the definition of ¢ we have |p(r)| = |¢(p(z) + z"h(z))| for
any h € H®, we will have |¢(f)| < ||fllec Vf € X (i-e., ||¢|| < 1) if and only
if |p(r)| < |[p(A)]| for all p € Pj. This is the condition that r be in Gi(A);
i.e., that 7 < p.
For f € X,

B = o

= V K(e) + g(e")

s|mu£gw+mm

27
f(e"K(e) do)

Vge Xt

Since ¢(1) = 1, it follows that ||¢]| > 1. If ||| = 1, then by compactness,
there exists g € X+ such that

L=l = K + gl =5 [ 1+ (K + g(e”) db.

This implies that K(z) + g(z) > 0 for all z € dD. Looking at the Fourier
coefficents of K(z) + g(z), we conclude that g(z) = K(z) — 1 + 2F*lq(2) +
zk+1q(z), where ¢ is a polynomial of degree less than n—k —1. The condition
K(z) 4+ g(z) > 0 is then equivalent to that in (7). Conversely, if (7) holds,
then there is a function g(z) of the form g(z) = K(z)—1+2F1q(2)+2*+1q(2),
where deg(q) < n —k — 1, such that K(z) + g(z) > 0 for all z € 9D. In this
case, for any f € X,

— 1 2
BN < [ f ool K + gl = ||f||oo§/0 (K(e?) +g(e")) df = || flloo,

and ||¢|| =1. O

Taking k = n — 1 and replacing z by € in (7), one can find an explicit
characterization of the largest r for which the left-hand side of (7) is greater
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than or equal to 0 for all #. Summing the geometric series and using some
algebra we can write:

n—1 [
P | re™ —1
R igd — ) = R—- | -
(jzore 2) <7°ew—1 )

DO |

1 ,r,neme -1 Tne—mﬂ -1 1
- 5[7‘61‘9—1 re’9—1]_§
_ 2r™tcos((n —1)0) — 2r" cos(nf) + 1 — 72
- 2|re? — 1J2 ’
and so the condition becomes
2r"*lcos((n — 1)0) — 2r™ cos(nf) —r* +1 >0 V0. (9)

When 7 is even, the left-hand side of (9) is minimal when # = 7, and so
we need:
1—r?=2r" = 2r"" = (14 7)(1 —7r —2r") > 0.

The factor (1 + r) is always positive and the factor (1 —r — 2r™) is positive
for r = 0 and is a decreasing function of r, so the solution to our problem is
the positive root of

2r"+r—1=0. (10)

For n odd, equation (10) is a sufficient condition on r to make the left-
hand side of (9) nonnegative, but one may be able to find a slightly larger
value of r for which this holds. Writing € in the form 6 = (n + 1)7/n +
d/(n(n — 1)) for some d, inequality (9) becomes

T—d
n

—d d
—2r"* cos <7T ) — 2r™ cos (—1) —7r24+1>0.

n

d
2r"* cos (mr— )—QT"COS ((n+1)7r+n_1>—r2+1:

Dividing by (1 + ), as was done in the case of even n, this becomes

[1 —cos(d/(n—1))]+r[1l —cos((m —d)/n)]

1—r—2r"4+2r"
1+7r

>0 Vd. (11)



This condition is most stringent when d/(n —1) =~ 0 and (7 — d)/n =~ 0, and
then it is almost the same as (10). For example, takingd = (n—1)7/(2n—1),
so that d/(n — 1) = (7w — d)/n, we find the necessary condition:

1—r—2r"cos(m/(2n — 1)) > 0. (12)

This establishes the theorem of Schur and Szego!:

Corollary 5. The polynomial numerical hull of degree n — 1 for the n
by n Jordan block (3) is a disk about the origin of radius 7,_y, where: for
n even, T,_1,, is the positive root of

2r"+r—1=0,

and for n odd, 7,_1, is greater than or equal to the positive root of this
equation and is the largest value of r that satisfies (11).

It remains to say something about how the roots of equation (10) behave
for n large. This result also can be found in [15].

Theorem 6. For large n,

log(2n) N log(log(2n))  en

Tn—1n = 1- n n za (13)
where ¢, > 0 and lim,,_, ¢, = 0.
Proof: First assume that n is even. We will show that if r = 1 —

log(2n)/n + log(log(2n))/n then 2™ + r — 1 is positive for sufficiently large
n, while if r = 1 —1log(2n)/n+1log(log(2n))/n — ¢/n, for some constant ¢ > 0,
then 2r™ + r — 1 is negative for sufficiently large n. It will follow that the
root r,_1, lies between these two values when n is sufficiently large and so
satisfies (13).

First let 7 = 1 — log(2n)/n + log(log(2n))/n. Then

1—7r 1 2
2r"+r—-1>0 <= nlogr > log (T) <= nlog (;) < log (1 7“)
1Schur and Szegd [15] and later Goluzin [6], [7, Theorem 6, pp. 522-523] proved that if r
is as described in Corollary 5, then for any f € H* with || f||cc < 1, if f(2) = p(2) +2"h(2),
where p € P,,_1, then |p(z)| < 1 in the disk of radius r. They did not explicitly combine
this with Theorem 3 to obtain information about the norm of the Toeplitz matrix.
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. 1 -1 2n (14)
0 0 .
nlog 1 _ lognr) | log(log(2n)) & log(2n) — log(log(2n))

n n

We will use the expansion

1 ( 1 ) NN 2] <1
0O =T — — T
8\1-2 R ’ ’

and the resulting inequalities

1
z < log (1 ) <z +x? for z > 0 and sufficiently small. (15)

- X

Let y = log(2n) —log(log(2n)). It follows from (15) that, for sufficiently large
n, the left-hand side of (14) is less than

1 2
y+_y7
n

while the right-hand side satisfies

2n/log(2n) _ o 1
8 (1 = 1og(log(2n>>/log(2n>> —urlos (1 = 1og(log(2n>>/log(2n>> g
log(log(2n))
log(2n)

Hence inequality (14

~—

will hold provided

log(log(2n))

(log(2n) — log(log(2n)))” < log(2n)

S|

1o
n

Since the 1/n term on the left dominates all of the log terms, this inequality
will hold for n sufficiently large.
Now suppose r = 1 —log(2n)/n +log(log(2n))/n — ¢/n for some constant

¢ > 0. Using the inequality
n
(-2 sem
n

which holds for all x and n > 1, we find that

log7(12n) (e —1) + log(log(jn)) —c

2r*+r—1<

11



For any ¢ > 0, the right-hand side is negative for n sufficiently large. This
completes the proof of (13) when n is even.

For n odd, the radius r,_1 , is greater than or equal to the positive root of
(10) so, by the above arguments, it is greater than or equal to 1—log(2n)/n+
log(log(2n))/n — ¢/n for any constant ¢ > 0. It must satisfy inequality (12),
however, which is equivalent to the inequality

nlog (%) > log (%) —log (ﬁ) = log (%) —0(n™%). (16)

2n—

It was shown above that if r = 1 — log(2n)/n + log(log(2n))/n, then for n

sufficiently large
og (7)< o (=)
og | — 0
n 10g , g 1—r )

and the difference is at least

log (12 )~ () > <A EED) L log(2n) ~ logllog(2m)))* >> O(n ™)

Hence inequality (16) is not satisfied, so r,,_1 ,, must be less than 1—log(2n)/n+
log(log(2n))/n. O

Theorem 4 can be used to derive additional information about the radii
Tkm, k < m —1, as well. For example, we can show that for any £ and n,
Ten < /Tlk/2,[(n+1)/2; Where [-] denotes the integer part. To see this, let
H(z) = K(2) — 1/2 + 2*"1¢(2) be the function in (7). If the real part of
H(z) is nonnegative for all z € 0D, then the same holds for the real part of
(H(z) + H(—2))/2, and

H(z) +2H(—Z) _ % 2o g 2R 2R 0k 222,
where ¢ is a polynomial of degree less than (n—2[k/2] —2)/2. The condition
that this function have nonnegative real part for all 22 € D or, equivalently,
for all z € 0D, is precisely the condition from Theorem 4 that r? be less than

or equal to 7 /2],[(n+1)/2)"

7’2 S T[k/Q],[(n+1)/Q] if and only if

12



1
R (5 + (M2 + (r?)222 + ...+ (r)R/2kA 4 z[k/2]+1(j(z)> >0 VzedD,

for some ¢ of degree less than [(n + 1)/2] — [k/2] — 1.

In the special case where Kk = n — 2, and n = 2m, where m is even, we
obtain an equality: 7,2, = VTm—1,m- To see this, note that Theorem 4
states that r < r,_o, if and only if there is a constant ¢ such that

1
R (5 +rz4+ril 4+ 4 cz"_l) >0 VzeoD. (17)

Summing the geometric series in (17) and taking its real part gives the
equivalent conditions:

o1 1— ,r.2m—122m—1 1
LSS D
c R(z )+§R< T 2_0 Vz € 0D,
or,
2 L oLy om
9(8) = ccos((2m — 1)0)(1 — 2r cos  + 12) — [—5 o
r?™ 1 (cos((2m — 1)8) — r(1 + cos((2m — 2)0))) > 0 V6. (18)

Forr = \/Trm_1m, and m even, the term in brackets is 0, and then g(7/2) = 0.
In order that g(#) be nonnegative it must therefore be the case that ¢'(7/2) =
0, and this leads to a formula for c:

,r.2m—1

c=—.
14172

Now we must show that inequality (18) holds for all #, when r = | /71, "1.m
and c is given by (19). The needed inequality can be written as:

(19)

cos((2m—1)0)(1—2r cos f+1*)—cos((2m—1)8)+r-+r cos((2m—2)0) > 0,

1472
and making the substitution cos((2m—2)f) = cos((2m—1)8) cos(#)-+sin((2m—
1)) sin f and doing some algebra, this reduces to:
(14+7%) + (1 4+ r*)sin((2m — 1)8) sinf — (1 — r?) cos((2m — 1)8) cos § > 0,
or,
1+ 7% — cos(2mf) + r? cos((2m — 2)0) > 0,
which clearly holds for all 6.
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3 Generalizations

3.1 Banded Triangular Toeplitz Matrices
Let T be the n by n banded triangular Toeplitz matrix:
to ... T

T = T A tb .
to
whose symbolis q(z) = Y%_,t;27. Note that T = g(A) where A is the Jordan

block in (3). Consider any polynomial p of degree k or less, where kb < n.
We have p(T) = p(q(A)) and so

(D) = llp(g(A)I = |p(g(2))] Yz € Grn(A).

It follows that the polynomial numerical hull of degree k for T contains the
image under ¢ of the polynomial numerical hull of degree kb for A; that is, it
contains the image under ¢ of the closed disk about the origin of radius 7y,
which, for n large and kb < n, is most of the unit disk. By Theorem 1 (v),
it also contains pcoy(q(Gs(A))).

The norm of an infinite triangular Toeplitz matrix is the maximum value
of its symbol in the closed unit disk D. See, for example, [1]. Let T, denote
the infinite triangular Toeplitz matrix whose upper left n by n block is 7" and
whose other diagonals are 0. For any polynomial p, the matrix p(T) is again
Toeplitz and its symbol is just p(g(z)). Hence |[p(Tw)|| = max,cp [p(¢(2))| =
max,c,p) [P(2)]. It follows from Theorem 1 (v) that G;(T) = pco,(¢(D)).
Now p(T) can be written as I% ., p(Teo)looxn , Where the columns of Inxy
are the first n unit vectors in ¢2. It follows that ||p(T)|| < ||p(Tw)|| Vp € Py
and so0 Gi(T') C Gr(Two)-

We have shown that when kb < n the polynomial numerical hull of degree
k for T lies between the polynomially convex hull of degree k for: the image
under g of the closed disk about the origin of radius 74, and the image under
q of the closed unit disk.

An example is shown in Figure 1. Here 7" is a Toeplitz matrix of order
n = 50 with —1’s on its first superdiagonal and 1’s on its fourth superdiagonal
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Symbol: -z + 7 n=50; k=12
T T

I I
-2 25

Figure 1: Image of the unit circle (solid) and of the circle of radius .934
(dashed) under the mapping g(z) = —z + 2*. Region with dots is the nu-
merically computed polynomial numerical hull of degree 12 for the 50 by 50
Toeplitz matrix with symbol g.

so that ¢(z) = —z+2z*. The outer solid curve in the figure is the image under ¢
of the unit circle and the inner dashed curve is the image under q of the circle
of radius 7,—1,, ~ .934. The polynomial numerical hulls of degrees 1 through
12 for this matrix must contain pco,, of the trefoil-shaped region enclosed by
the dashed curve, and they must be contained in pco, of the trefoil-shaped
region enclosed by the solid curve. The dots in the figure represent points in
the numerically computed polynomial numerical hull of degree 12 and can
be seen to satisfy these inclusions.
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3.2 Block Diagonal Matrices with Triangular Toeplitz
Blocks

Let A be a matrix in Jordan form or, more generally, a block diagonal matrix
with triangular Toeplitz blocks:

T
A: ,
T,

where each block T} is of dimension n; and has symbol ¢;(z). Theorem 1 (vi)
gives an exact expression for G;(A) as the convex hull of Uf_, G (T;), but for
k > 1 it states only that

Gi(4) > peo, (O (1)) (20)

i=1

In general, this is not an equality.

It was shown in the previous subsection that Gi(7;) contains the image
under g¢; of a disk about the origin of radius rgs, »;, where b; is the bandwidth
of T;. If kb; > n;, then we interpret this radius to be 0 and the image under g¢;
of the origin to be the eigenvalue of T;. Then expression (20) can be replaced
by:

¢
Gu(4) > peo, (Ul € 5 1o < 1)) o)
i=1

We can obtain an outer bound on Gi(A) by using the fact that for any
polynomial p we have ||p(T;)|| < ||p(Ti0)||, Wwhere T; » is the infinite trian-
gular Toeplitz matrix whose upper left n; by n; block is 7; and whose other
diagonals are 0. The norm of a polynomial function of this infinite Toeplitz
matrix is ||p(7;e0)|| = max,eq, o) [P(2)], as was shown in the previous subsec-
tion. Since ||p(A)|| satisfies:

Ip(A)ll = max lIp(T)l] < max lIp(Tico)ll = | max lp(2)]

it follows that

Gu(A) € peoy (O #(D)), (22)

=1
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because if ¢ & pco, (UL, qi(D)), then there is a polynomial p € Py such that

> > |lp(A4)]],
1p(¢)] zeu?f;f(ﬁ) ip(2)] > [Ip(A)]|

s0 ¢ ¢ Gi(A).

The inner and outer bounds (21) and (22) are equal when the blocks are
1 by 1 (i.e.,, when A is a diagonal matrix), and in that case expression (20)
is an equality. They are close when the block sizes n; are large and each
kb; < n;, since in that case 7y, ; is close to 1. They may differ significantly
if some kb; > n; and n; > 1.

A very simple example is a 3 by 3 matrix with one Jordan block of size 2
and another of size 1:

A:(Y(;l %) le(g (1)) T, = (1). (23)

The polynomial numerical hull of degree 1 for this matrix is co(G;(77) U
Gi(T3)) = co({z € C: |z| < 1} U{1}). The polynomial numerical hull of
degree 3 is just the eigenvalues {0,1}. By Theorem 1 (vi) or expression (21),
the polynomial numerical hull of degree 2 contains pco,(Ga(71) U Go(T)) =
{0,1}, but, in fact, it contains more than this. Expression (22) says that it
is contained in pco,(D U {1}) = D. It can be shown with some algebra that
the polynomial numerical hull of degree 2 actually consists of the segment of
the real axis [—1/3,1].

4 Comparison with Pseudospectra

The e-pseudospectrum is another type of set that can be associated with a
matrix to give more information than the spectrum alone can provide [4]. It
is defined as

A(A)={ze€C: ||[(zI =AY >},

and an equivalent definition is
A(A) ={z € C: zis an eigenvalue of A+ E for some E with || E|| < €}.

The pseudospectra of a matrix describe how the eigenvalues change under
perturbations to the matrix of various sizes.
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It is natural to think that there would be some relation between these sets
and the polynomial numerical hulls of various degrees. If a small change in
the matrix results in much larger changes in the eigenvalues, then probably
eigenvalues do not determine the behavior of polynomial functions of the
matrix, and the polynomial numerical hulls of various degrees will contain
far more than just the polynomially convex hull of the given degree for the
eigenvalues. Numerical computations in [8] show a striking resemblance for
certain matrices between the polynomial numerical hull of degree £ and pco,,
of the e-pseudospectrum, for properly matched values of £ and €. The reasons
for this close resemblance are still not fully understood.

For Jordan blocks it turns out that for each k there is an € such that the
polynomial numerical hull of degree £ is identical to the e-pseudospectrum;
that is, they are both disks about the eigenvalue and, for a certain e, their
radii are equal. Bounds on the pseudospectra of Jordan blocks and, more
generally, of Toeplitz matrices were derived analytically in [14]. There it
was shown that the e-pseudospectrum of an n by n Jordan block contains
the disk about the eigenvalue of radius €'/” and is contained in the disk
about the eigenvalue of radius 1 + e. Numerical experiments there suggest
that the lower bound is typically much sharper than the upper bound. To
determine the approximate value of € that corresponds to the polynomial
numerical hull of degree n — 1 for an n by n Jordan block, then, we can
set €/ equal to 7,_,. Substituting €!/" for r in the first term of (10) and
Tn—1n & 1 —log(2n)/n + log(log(2n))/n in the second term, we obtain the
approximation

_log(2n) log(log(2n))
T Ton T 2n '
The polynomial numerical hulls of lower degrees correspond to e-pseudospectra
with larger values of e.
There is a similar correspondence for banded triangular Toeplitz matrices.
It was shown in [14] that the e-pseudospectrum of such a matrix contains the
image, under the symbol, of the disk of radius (¢/c)'/™ for a certain constant
c that can be taken to be the sum of absolute values of the entries in the first
row of the matrix. It is contained in the image, under the symbol, of the
unit disk, plus a disk of radius e. Compare this to the bounds of section 3.1
on the polynomial numerical hulls of certain degrees for banded triangular
Toeplitz matrices. It remains to be seen whether these results, like those
for pseudospectra, can be extended to more general Toeplitz matrices and to
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polynomial numerical hulls of higher degree.

A difference between pseudospectra and polynomial numerical hulls can
be seen in the case of block diagonal matrices. The e-pseudospectrum of a
block diagonal matrix is just the union of the e-pseudospectra of the blocks,
but it was seen in the example of section 3.2 that this is not necessarily so for
the polynomial numerical hull of degree k. The polynomial numerical hull of
degree k contains pco, of the union of the hulls of degree k£ for the blocks,
but it may contain more. The polynomial numerical hull of degree 2 for the
3 by 3 matrix in (23) bears little resemblance to any e-pseudospectrum of the
matrix. The precise implications of these similarities and differences remain
to be explored.
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