Assignment 1. Due Friday, Apr. 10.

Reading: Section on "Applications" in 555 Notes. p. 1-10 in 556 Notes.

- 1. Consider an insulated rod so that no heat flows out the ends of the rod.
 - (a) Convince yourself that this gives rise to the problem: DE: $u_t = u_{xx}$, $0 \le x \le \pi$, $t \ge 0$; IC: u(x,0) = f(x), $0 \le x \le \pi$; BC: $u_x(0,t) = u_x(\pi,t) = 0$, $t \ge 0$.
 - (b) Separate variables to find the fundamental modes u(x,t).
 - (c) Show that the resulting initial states form a complete orthonormal system in $L^2(0,\pi)$. (The associated series are Fourier cosine series.)
- 2. Consider the Dirichlet problem for the Laplacian $\Delta = \partial_x^2 + \partial_y^2$ on the unit disk $D = \{(x,y): x^2 + y^2 \leq 1\}$; i.e., given f on $\partial D = S^1$, find u on D satisfying $\Delta u = 0$, $u|_{\partial D} = f$.
 - (a) Write \triangle in polar coordinates (r, θ) and separate variables to find solutions of the form $u(r, \theta) = v(r)w(\theta)$. (Note: u should be bounded near the origin. To solve the equation for v, look up Euler equations in an ODE book.)
 - (b) Suppose $f \in L^2(S^1)$. Write f in a Fourier series and derive a series for u. Show that this series converges for r < 1 to a C^2 solution of $\Delta u = 0$ which satisfies the BC in the sense that $||u(r,\cdot) f(\cdot)||_{L^2(S^1)} \to 0$ as $r \to 1$.
- 3. Do problems 1 and 2 on Problem Set 1 in the 556 Notes.