Assignment 7. Due Friday, Mar. 13.

Reading: Finish Course Notes for this quarter.

- 1. (a) Let $(V, \|\cdot\|)$ be a finite dimensional normed vector space, let $C \subset V$ be a closed nonempty subset, and let $x \in V$. Show that there is a closest point in C to x. Show, however, that the closest point in C need not be unique, even if C is convex.
 - (b) Define $\ell_0^{\infty} = \{(x_1, x_2, \dots) \in \ell^{\infty} : \lim_{n \to \infty} x_n = 0\}$. Show that ℓ_0^{∞} is a closed subspace of ℓ^{∞} , so is itself a Banach space. Let $L = \{(x_1, x_2, \dots) \in \ell_0^{\infty} : \sum_{n=1}^{\infty} 2^{-n} x_n = 1\}$. Show that L is a closed hyperplane in ℓ_0^{∞} . Show, however, that there is no element of L of smallest norm; i.e., there is no closest point in ℓ to the origin.
- 2. Let $\{p_n(x)\}$ be obtained from $\{x^n: n=0,1,\ldots\}$ by Gram-Schmidt orthogonalization in $L^2[-1,1]$. $[\{\sqrt{\frac{2}{2n+1}}p_n\}$ are called the Legendre polynomials.]
 - (a) Show that $\{p_n\}$ is a complete orthonormal set. [Hint: Use the Weierstrass Approximation Theorem.]
 - **(b)** Compute p_0 , p_1 , and p_2 .
 - (c) Use (a), (b), and Hilbert space theory to find constants $a, b, c \in \mathbf{R}$ for which $\int_{-1}^{1} |x^3 (a + bx + cx^2)|^2 dx$ is minimized.
- 3. Let $\lambda \in \mathbf{C}$. Show that if there is a nonzero solution of $v'' = -\lambda v$ which is 2π -periodic, then $\lambda = n^2$ for some $n \in \{0, 1, 2, \ldots\}$.
- 4. Apply Parseval's relation to the function f(x) = x on $(-\pi, \pi)$ to evaluate $\sum_{n=1}^{\infty} \frac{1}{n^2}$.
- 5. (a) Show that $\{\sqrt{\frac{2}{\pi}}\sin(nx): n=1,2,\ldots\}$ is a complete orthonormal system in $L^2(0,\pi)$. The rest of this problem analyzes the Fourier series solution of the vibrating string problem:

DE:
$$u_{tt} = u_{xx}$$
, $0 \le x \le \pi$, $t \ge 0$,
IC: $u(x, 0) = f(x)$, $u_t(x, 0) = 0$, $0 \le x \le \pi$,
BC: $u(0, t) = u(\pi, t) = 0$, $t \ge 0$.

- (b) Show that if $f \in C^1[0,\pi]$ satisfies $f(0) = f(\pi) = 0$, then the expansion of f in terms of the orthonormal basis in (a) converges uniformly to f on $[0,\pi]$. (This is called the Fourier sine series.)
- (c) Show directly that if $f \in C^2[0,\pi]$, then the series for u obtained by superposing fundamental modes converges uniformly on $[0,\pi] \times \mathbf{R}$ to a continuous function u(x,t) which satisfies u(x,0) = f(x).

(d) Show that u from part (c) agrees with D'Alembert's solution of this IBVP, and hence show that $u \in C^2([0,\pi] \times \mathbf{R})$ and that u satisfies the wave equation, the IC, and the BC. (Observe that there are difficulties in trying to justify term by term differentiation of the series for u to check that u satisfies the wave equation. Find conditions on f (smoothness, values of f, f', etc. at 0, π) which would justify this approach.)