Assignment 7. Due Friday, Mar. 6.

Reading: Course Notes, finish chapter on Lebesgue integration, Jones, chs. 2, 5, 6, 8.

- 1. Recall that $L^p(\mathbf{R}^n)$ consists of equivalence classes of functions equal a.e.
 - (a) Show that any such equivalence class can contain at most one continuous function (so it makes sense to say that an element of $L^p(\mathbf{R}^n)$ is continuous.)
 - (b) Show that if $f \in L^{\infty}(\mathbf{R}^n)$ and f is continuous, then $||f||_{\infty} = \sup_{x \in \mathbf{R}^n} |f(x)|$.
- 2. Find a continuous function f on **R** so that $f \in L^1(\mathbf{R})$ but $f \notin L^{\infty}(\mathbf{R})$.
- 3. True or False (Give proof or counterexample). Suppose $x_n, y_n, x, y \in H$, a Hilbert space.
 - (a) If $x_n \to x$ weakly and $y_n \to y$ strongly, then $\langle x_n, y_n \rangle \to \langle x, y \rangle$.
 - (b) If $x_n \to x$ weakly and $y_n \to y$ weakly, then $\langle x_n, y_n \rangle \to \langle x, y \rangle$.