Math 555, Winter 2009
Assignment 3. Due Friday, Jan. 30.

Reading: Coddington and Levinson, Ch. 1 (any parts you have not yet read).
Course Notes, through p. 34.

1. Let n =1, F = R. Let f(u) be a positive continuous function on [ug, 00). Consider
the IVP: o' = f(u), u(0) = uy.

(a) Use the inverse function theorem to give a rigorous justification of the method of
“separation of variables” to solve this problem by proving that the equation
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determines a C' function u(t) which is the unique solution of the IVP for ¢ > 0.
(b) Show that the solution to this IVP exists for all time ¢ > 0 if and only if
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2. Let n =1, F = R. Suppose U : R — R is C'. If we interpret U(z) as the potential
energy of a particle at position z, then —%U(m) is the force acting on the particle.

Assuming the particle has mass 1, Newton’s equation of motion is 2" (t) = —-2U(x(t)).

(a) Show how to write this equation as a first-order system.

(b) The kinetic energy of the particle is 1(')?, so the total energy is E(t) = £(2'(¢))*+
U(z(t)). Show that if x solves Newton’s equation then F(t) is constant; i.e., energy
is conserved.

(c) Suppose that U is bounded from below; i.e., there exists a constant C' € R such
that U(z) > C for all z € R. Prove that every solution of Newton’s equation
exists for all time ¢ € (—o0, +00).

(d) Show that if U(x) = —a?, then the solution of Newton’s equation satisfying the
initial conditions z(0) = 0, z'(0) = 1 blows up in finite time.

3. Extend the ‘Fundamental Estimate’ on p. 26 in the Notes to the case of piecewise C*
e-approximate solutions. That is, define z(¢) to be an e-approximate solution of the
differential equation =’ = f(t,z) on some interval I if (1) x € C' on I, except possibly
for a finite set of points S in I, where the right and left limits of z'(¢) exist but are not
equal, and (2) x(t) satisfies |2'(t) — f(t,2(t))| < efor t € I\ S. With this definition,
prove the following:

Let f(t,x) be in (C, Lip) on a domain D, with Lipschitz constant L. Suppose z1(t) is
an e;-approximate solution and (%) is an ey;-approximate solution of the differential



equation ' = f(¢,x) on some interval I with t, € I and {(¢,2(t)) : t € I}
Assume also that {(¢,z;(t)) : t € I} C D, i = 1,2, and that |z,(t) — z2(t0)]
Then for ¢t € I,

21(8) = a(0)] < ebltl 4 LT (et 1)

. (1994 prelim, problem 6) Fix 7" > 0. Let ao : [0,7] — R be continuous, ay(t) > 0 for
all ¢ € [0,T]. Also assume that a;(¢) is continuous. Assume there exists a continuously
differentiable z : [0,7] — R satisfying the ODE:

7' (t) = ao(t) - (x(t))* +ar(t) - x(t), 0<t<T.

Show that if 2(0) > 0, then

T t
/ (ao(t) e o dS) dt < (2(0)) .
0
Hint: Consider first the case a1(t) = 0,0 <t <T.
. (1996 prelim, problem 8) For any A € C"*", let

I+hA| -1
,LLh(A) = % for h > 0,

where || - || is the matrix 2-norm.

(a) Show that pp(A) decreases monotonically as h \, 0. Hint: You may use the fact
that the 2-norm is strictly convex, so f(h) = ||I + hA|| is a convex function.

(b) Show that up(A) > —||A]| for all A > 0.
From (a) and (b) we can conclude that

p(A) = Jim 1o, (A)

exists and is finite for all A € C**".

wu(A) is called the logarithmic norm of A.

(c) Let y(t) satisfy y'(t) = A(t)y(t) with y(0) = yo € C", where A(t) : R — C™" is
continuously differentiable. Show that

Ol < wAWD) - Iyl

Hence, in particular, if x(A(t)) < 0 for all £ > 0, then solutions to the initial value
problem remain bounded,

|y < llyol| for all £ > 0.

Hint: Use a Taylor expansion of .



