Assignment 2. Due Friday, Jan. 25.

Reading: Course Notes, through p. 19. Coddington and Levinson, Ch. 1, secs. 7–8.

The first two problems are uniqueness theorems with weaker hypotheses than the Lipschitz condition.

- 1. One-sided uniqueness theorem $(n = 1, \mathbf{F} = \mathbf{R})$
 - (a) A real-valued function f(t, u) is said to satisfy a *one-sided* Lipschitz condition in u if there is a constant L such that $(\forall u_1, u_2, t \in \mathbf{R})$

$$u_2 > u_1 \Rightarrow f(t, u_2) - f(t, u_1) \le L(u_2 - u_1).$$

Show that if f is continuous in t and u and satisfies a one-sided Lipschitz condition in u, then there is at most one solution of the IVP u' = f(t, u), $u(t_0) = 0$, for $t \ge t_0$.

- (b) Let f(t, u) be real-valued, continuous in t and u, and decreasing (not necessarily strictly) in u for each t; i.e., $u_2 > u_1 \Rightarrow f(t, u_2) \leq f(t, u_1)$. Show that if u(t) and v(t) are both solutions of u' = f(t, u), then $|u(t) v(t)| \leq |u(s) v(s)|$ for $t \geq s$. Deduce uniqueness for the IVP u' = f(t, u), $u(t_0) = 0$ for $t \geq t_0$. Show, however, that uniqueness may fail for $t < t_0$.
- 2. Let f(t,x) be continuous of $[0,a] \times \mathbf{R}^n$ (mapping into \mathbf{R}^n) and satisfy the generalized Lipschitz condition

$$|f(t,x) - f(t,y)| \le \kappa(t)|x - y| \quad (\forall t \in [0,a]) \quad (\forall x, y \in \mathbf{R}^n),$$

where $\kappa(t) \geq 0$ and κ is continuous on (0, a] but possibly unbounded near t = 0. Show that if $\int_0^a \kappa(t) dt < \infty$, then the IVP x' = f(t, x), $x(0) = x_0$, has at most one solution on [0, a].

3. Integral Forms of Gronwall's Inequality: Let φ , ψ , and α be real-valued continuous functions on the interval I = [a, b]. Suppose $\alpha \geq 0$ on I and

$$\varphi(t) \le \psi(t) + \int_a^t \alpha(s)\varphi(s) \, ds \quad (\forall t \in I).$$

(a) Show that for each $t \in I$,

$$\varphi(t) \le \psi(t) + \int_a^t \exp\left(\int_s^t \alpha(r) dr\right) \alpha(s) \psi(s) ds.$$

(Hint: Let $u(t) = \int_a^t \alpha(s)\varphi(s) ds$ and show that $u' - \alpha u \leq \alpha \psi$.)

- **(b)** Suppose $\psi(t) \equiv c$ is constant. Show that for each $t \in I$, $\varphi(t) \leq c \exp\left(\int_a^t \alpha(s) \, ds\right)$.
- 4. Let n = 1, $\mathbf{F} = \mathbf{R}$. Suppose f(t, u) satisfies a Lipschitz condition for $t \geq t_0$. Suppose that u(t) satisfies the differential inequality $u' \leq f(t, u)$ for $t \geq t_0$ and v(t) satisfies v' = f(t, v) for $t \geq t_0$. Suppose $u(t_0) < v(t_0)$. Prove that u(t) < v(t) for $t \geq t_0$.
- 5. Show that if there are two distinct solutions of u' = f(t, u) $(n = 1, \mathbf{F} = \mathbf{R})$ satisfying the same initial condition at t_0 , then there are infinitely many.
- 6. (2001 prelim, problem 4) Consider the equation of harmonic motion:

$$u'' = -ku$$
, $u(t_0) = u_0$, $u'(t_0) = v_0$.

Here u(t) represents the distance from equilibrium and k > 0 is a spring constant.

- (a) Write this as a system of two first-order differential equations, and show that the right-hand side of your system satisfies a Lipschitz condition on \mathbb{R}^2 . Determine the (smallest possible) Lipschitz constant for the 2-norm.
- (b) Use Gronwall's inequality to derive a bound on the 2-norm of the difference between u(t) and $\tilde{u}(t)$, $t \geq t_0$, where $\tilde{u}(t)$ satisfies the differential equation with initial conditions $\tilde{u}(t_0) = u_0 + \epsilon$, $\tilde{u}'(t_0) = v_0 + \delta$.