Periodic Functions/Functions on a Torus/Fourier Series

Let $\{e_j : 1 \leq j \leq n\}$ be the standard basis in \mathbb{R}^n : We say $f : \mathbb{R}^n \to \mathbb{C}$ is 2π -periodic in each variable if

$$f(x + 2\pi e_j) = f(x)$$
 $\forall x \in \mathbb{R}^n, 1 \le j \le n.$

We can identify 2π -periodic functions with functions on a torus. Let $S^1=\{e^{i\theta}:\theta\in\mathbb{R}\}\subset\mathbb{C}$, and $T^n=S^1\times\cdots\times S^1\subset\mathbb{C}^n$. To each function $\widetilde{\phi}:T^n\to\mathbb{C}$ we can identify a 2π -periodic function $\phi:\mathbb{R}^n\to\mathbb{C}$ by $\phi(x_1,\ldots,x_n)=\widetilde{\phi}(e^{ix_1},\ldots,e^{ix_n})$. Conversely, each 2π -periodic function $\phi:\mathbb{R}^n\to\mathbb{C}$ induces a unique $\widetilde{\phi}:T^n\to\mathbb{C}$ for which $\widetilde{\phi}(e^{ix_1},\ldots,e^{ix_n})=\phi(x_1,\ldots,x_n)$. If $\phi:\mathbb{R}^n\to\mathbb{C}$ is 2π -periodic, ϕ is uniquely determined by its values $\phi(x)$ for $x\in[-\pi,\pi)^n$ or for $x\in[0,2\pi)^n$. Let $\nu_n=\frac{1}{(2\pi)^n}m_n$, where m_n is n-dimensional Lebesgue measure. Then ν_n induces a measure $\widetilde{\nu}_n$ on T^n for which

$$\int_{T^n} \widetilde{\phi} d\widetilde{\nu}_n = \int_{[0,2\pi]^n} \phi dv_n.$$

From here on, we blur the distinction between ϕ and $\widetilde{\phi}$ and between ν_n and $\widetilde{\nu}_n$, and we will abuse these notations. Note: $\nu_n(T^n) = \nu_n([0, 2\pi]^n) = 1$. Let $L^p(T^n)$ denote $L^p([0, 2\pi]^n)$ with measure ν_n $(1 \le p \le \infty)$. $L^2(T^n)$ is a Hilbert space with inner product

$$(\phi, \psi) = \int_{T^n} \phi \bar{\psi} d\nu_n = \int_{[0, 2\pi]^n} \phi \bar{\psi} d\nu_n.$$

Theorem. $\{e^{ix\cdot\xi}:\xi\in\mathbb{Z}^n\}$ is an orthonormal system in $L^2(T^n)$.

Proof.
$$(e^{ix\cdot\xi}, e^{ix\cdot\eta}) = \int_{[0,2\pi]^n} e^{ix\cdot(\xi-\eta)} d\nu_n = \begin{cases} 1, & \xi = \eta \\ 0, & \xi \neq \eta \end{cases}$$
.

Definition. A trigonometric polynomial is a finite linear combination of $\{e^{ix\cdot\xi}:\xi\in\mathbb{Z}^n\}$. (Note: since $\{e^{ix\cdot\xi},e^{-ix\cdot\xi}\}$ and $\{\cos(x\cdot\xi),\sin(x\cdot\xi)\}$ span the same two-dimensional subspace, we could use sines and cosines as our basis functions.)

Definition. $C(T^n)$ is the space of all continuous 2π -periodic functions $\phi: \mathbb{R}^n \to \mathbb{C}$. Note that $C(T^n) \subsetneq C([0, 2\pi]^n)$.

We will use the uniform norm $\|\phi\|_u = \sup_x |\phi(x)|$ on $C(T^n)$. $C^k(T^n)$ (for $k \geq 0, k \in \mathbb{Z}$) is the space of all C^k 2π -periodic functions $\phi : \mathbb{R}^n \to \mathbb{C}$. Again $C^k(T^n) \subsetneq C^k([0, 2\pi]^n)$. We will use the norm $\|\phi\|_{C^k} = \sum_{|\alpha| < k} \|\partial^{\alpha}\phi\|_u$.

Fourier Coefficients

For $f \in L^1(T^n)$, define $\widehat{f}(\xi) = \int_{T^n} e^{-ix\cdot\xi} f(x) d\nu_n(x)$ for $\xi \in \mathbb{Z}^n$. Then for $f \in L^2(T^n)$, $\widehat{f}(\xi) = (f, e^{ix\cdot\xi})$. (Note that $||f||_1 \le ||f||_2$ since $\nu(T^n) = 1$.)

The Fourier series of f is the formal series $\sum_{\xi \in \mathbb{Z}^n} \widehat{f}(\xi) e^{ix \cdot \xi}$. We will study in what sense this series converges to f.

Lemma. Let $a_k = \int_{T^n} \left(\prod_{j=1}^n \frac{1+\cos x_j}{2} \right)^k d\nu_n(x)$ (note: $0 \leq \text{integrand} \leq 1$). Then $a_k \geq \left(\frac{2}{\pi(k+1)} \right)^n$. Define $q_k(x) = \frac{1}{a_k} \left(\prod_{j=1}^n \frac{1+\cos x_j}{2} \right)^k$. Then

- (1) q_k is a trigonometric polynomial (of degree nk)
- $(2) q_k(x) \ge 0$
- $(3) \int_{T^n} q_k(x) d\nu_n(x) = 1$
- (4) If $\eta_k(\delta) = \max\{q_k(x) : x \in [-\pi, \pi]^n \setminus (-\delta, \delta)^n\}$ then $\lim_{k \to \infty} \eta_k(\delta) = 0$ (for such x, $q_k(x) \le \frac{1}{a_k} \left(\frac{1+\cos\delta}{2}\right)^k \le \left(\frac{\pi(k+1)}{2}\right)^2 \left(\frac{1+\cos\delta}{2}\right)^k \to 0$ as $k \to \infty$).

Theorem. Given $f \in C(T^n)$, let

$$p_k(x) = (f * q_k)(x) = \int_{T^n} f(x - y)q_k(y)d\nu_n(y).$$

Then p_k is a trig polynomial, and $||p_k - f||_u \to 0$ as $k \to \infty$.

Proof. Since $\widehat{q}_k(\xi) = 0$ for $|\xi|$ sufficiently large,

$$p_k(x) = \int_{T^n} f(y)q_k(x-y)d\nu_n(y) = \int_{T^n} f(y) \sum_{\xi} \widehat{q}_k(\xi)e^{i(x-y)\cdot\xi}d\nu_n(y)$$
$$= \sum_{\xi} \widehat{f}(\xi)\widehat{q}_k(\xi)e^{ix\cdot\xi}$$

is a trig. poly. Given $\varepsilon > 0$, choose δ (by the uniform continuity of f) \ni

$$|x - w|_{\infty} < \delta \Rightarrow |f(x) - f(w)| < \varepsilon.$$

Then $p_k(x) - f(x) = \int_{T^n} (f(x-y) - f(x))q_k(y)d\nu_n(y)$

$$|p_{k}(x) - f(x)| \leq \int_{T^{n}} |f(x - y) - f(x)| q_{k}(y) d\nu_{n}(y) = I_{1} + I_{2}$$

$$(-\delta, \delta)^{n} \qquad [-\pi, \pi]^{n} \setminus (-\delta, \delta)^{n}$$

$$I_{1} \leq \int_{(-\delta, \delta)^{n}} \varepsilon q_{k}(y) d\nu_{n}(y) \leq \varepsilon$$

$$I_{2} \leq \int_{[-\pi,\pi]^{n}\setminus(-\delta,\delta)^{n}} 2\|f\|_{u}\eta_{k}(\delta)d\nu_{n} \leq 2\|f\|_{u}\eta_{k}(\delta) < \varepsilon$$

for k suff. large.

Corollary 1 Trig polynomials are dense in $C(T^n)$.

Remark. Sequences q_k with properties (1), (2), (3), (4) are called summability kernels. In \mathbb{R}^1 , another such kernel is the Féjer kernel $q_k(x) = \frac{1}{k+1} \frac{\sin^2\left(\frac{k+1}{2}x\right)}{\sin^2\left(\frac{1}{2}x\right)} = \sum_{\xi=-k}^k \left(1 - \frac{|\xi|}{k+1}\right) e^{ix\xi}$. If we define $S_k(f) = \sum_{\xi=-k}^k \widehat{f}(\xi)e^{ix\cdot\xi}$ and $\sigma_k(f) = \frac{1}{k+1}(S_0(f) + \cdots + S_k(f)) = f * q_k$ then for $f \in C(T)$, $\sigma_k(f) \to f$ uniformly (same proof as above). (This is the classical result that the Fourier series of an $f \in C(T)$ is Cesàro summable to f.)

Corollary 2 Trig polynomials are dense in $L^2(T^n)$.

Proof. Given $f \in L^2(T^n)$ and $\varepsilon > 0$, $\exists g \in C(T^n) \ni ||f - g||_2 < \frac{\varepsilon}{2}$. \exists trig. poly $p \ni ||p - g||_u < \frac{\varepsilon}{2}$, so since $\nu_n(T^n) = 1$,

$$||f - p||_2 \le ||f - g||_2 + ||g - p||_2 \le ||f - g||_2 + ||g - p||_u < \varepsilon.$$

Corollary 3 $\{e^{ix\cdot\xi}: \xi \in \mathbb{Z}^n\}$ is a complete orthonormal system in $L^2(T^n)$. Hence if $f \in L^2(T^n)$, the Fourier series of f (any arrangement) converges to f in L^2 . Also, the map $\mathcal{F}: L^2(T^n) \to l^2(\mathbb{Z}^n)$ given by $f \mapsto \widehat{f}$ is a Hilbert space isomorphism.

Theorem. If $f \in L^1(T^n)$, then $p_k \to f$ in $L^1(T^n)$ (where $p_k = f * q_k$ and q_k is given on the previous page).

Proof. The proof is similar to the proof of the Theorem above, except we use continuity of translation in L^1 instead of uniform continuity. Given $\varepsilon > 0$, choose $\delta \ni ||f(x-\alpha)-f(x)||_1 < \varepsilon$ whenever $|\alpha|_{\infty} < \delta$. By Fubini,

$$\int_{T^n} |p_k(x) - f(x)| d\nu_n(x) \leq \int_{T^n} \left[q_k(y) \int_{T^n} |f(x - y) - f(x)| d\nu_n(x) \right] d\nu_n(y)$$

$$= I_1 \longrightarrow (-\delta, \delta)^n + I_2 \longrightarrow [-\pi, \pi]^n \setminus (-\delta, \delta)^n$$

$$I_1 \leq \int q_k(y)\varepsilon d\nu_n(y) = \varepsilon$$
 . \square $I_2 \leq 2\|f\|_1\eta_k(\delta) \to 0 \text{ as } k \to \infty$

Corollary. (Uniqueness Theorem). If $f \in L^1(T^n)$ and $(\forall \xi \in \mathbb{Z}^n) \widehat{f}(\xi) = 0$, then f = 0 a.e. (Thus if $f, g \in L^1(T^n)$ and $\widehat{f} \equiv \widehat{g}$, then f = g a.e.)

Proof. If
$$\widehat{f} \equiv 0$$
, then $p_k(x) = \sum_{\xi} \widehat{f}(\xi) \widehat{q}_k(\xi) e^{ix \cdot \xi} = 0$, and $p_k \to f$ in L^1 .

Theorem. (Riemann-Lebesgue Lemma). If $f \in L^1(T^n)$, then $\widehat{f}(\xi) \to 0$ as $|\xi| \to \infty$.

Proof. View
$$f$$
 as $f(x)\chi_{[-\pi,\pi]^n}(x) \in L^1(\mathbb{R}^n)$.

Absolutely Convergent Fourier Series

Suppose $f \in L^1(T^n)$ and $\widehat{f} \in l^1(\mathbb{Z}^n)$. Then the Fourier series of f converges absolutely and uniformly to a $g \in C(T^n)$, and g = f a.e.

Proof. Let $g(x) = \sum_{\xi \in \mathbb{Z}^n} \widehat{f}(\xi) e^{ix \cdot \xi}$ (converges uniformly and absolutely). Then $g \in C(T^n)$. By the Dominated Convergence Theorem,

$$\widehat{g}(\xi) = \int_{T^n} e^{-ix\cdot\xi} \left(\sum_{\eta \in \mathbb{Z}^n} \widehat{f}(\eta) e^{ix\cdot\eta} \right) d\nu_n(x)$$
$$= \sum_{\eta \in \mathbb{Z}^n} \widehat{f}(\eta) \int_{T^n} e^{-ix\cdot\xi} e^{ix\cdot\eta} d\nu_n(x) = \widehat{f}(\xi).$$

So g = f a.e.

Decay of Fourier Coefficients \leftrightarrow Smoothness of f

Lemma. Suppose $\alpha(\xi) \in l^1(\mathbb{Z}^n)$ and $(i\xi_j)\alpha(\xi) \in l^1(\mathbb{Z}^n)$. Let $f = \sum_{\xi} \alpha(\xi)e^{ix\cdot\xi}$, $g = \sum_{\xi} (i\xi_j)\alpha(\xi)e^{ix\cdot\xi}$. Then $f,g \in C(T)$, $\frac{\partial f}{\partial x_j}$ exists everywhere, and $\frac{\partial f}{\partial x_j} = g$.

Proof. The two series of continuous functions converge absolutely and uniformly to f and g, respectively. Since $\frac{\partial}{\partial x_j}(\alpha(\xi)e^{ix\cdot\xi})=i\xi_j\alpha(\xi)e^{ix\cdot\xi}$, the result follows from a standard theorem in analysis.

Theorem. Suppose $f \in L^1(T^n)$ and $(1 + |\xi|^m)\widehat{f}(\xi) \in l^1(\mathbb{Z}^n)$ for some integer $m \geq 0$. Then the Fourier series of f converges absolutely and uniformly to a $g \in C^m(T^n)$, and f = g a.e.

Proof. Just must show $g \in C^m(T^n)$. For each ν with $|\nu| \leq m$, $(i\xi)^{\nu} \widetilde{f}(\xi) \in l^1(\mathbb{Z}^n)$, so $\sum_{\xi} (i\xi)^{\nu} \widetilde{f}(\xi) e^{ix\cdot\xi}$ converges abs. unif. to some $g_{\nu} \in C(T^n)$. By the Lemma and induction, $g_{\nu} = \partial^{\nu} g$.

Theorem. Suppose $f \in C^m(T^n)$.

- (a) For $|\nu| \leq m$, $\widehat{\partial_x^{\nu} f}(\xi) = (i\xi)^{\nu} \widehat{f}(\xi)$
- (b) So $(1+|\xi|^2)^{\frac{m}{2}}\widehat{f}(\xi)$ (or $(1+|\xi|^m)\widehat{f}(\xi)$ or $(1+|\xi|)^m\widehat{f}(\xi)$) $\in l^2(\mathbb{Z}^n)$
- (c) Hence if $k < m \frac{n}{2}$, then $(1 + |\xi|^2)^{\frac{k}{2}} |\widehat{f}(\xi)| \in l^1(\mathbb{Z}^n)$ and $\exists C_k \ni |\widehat{f}(\xi)| \le C_k |\xi|^{-k}$.

Proof.

(a) Integration by parts — e.g., let $\widetilde{x} = (x_2, \dots, x_n)$, so $x = (x_1, \widetilde{x})$

$$\widehat{\frac{\partial f}{\partial x_1}}(\xi) = \int_{T^{n-1}} d\nu_{n-1}(\widetilde{x}) \int_T d\nu_1(x_1) e^{-ix \cdot \xi} \frac{\partial f}{\partial x_1}(x)
= \int_{T^{n-1}} d\nu_{n-1}(\widetilde{x}) (i\xi_1) \int_T d\nu_1(x_1) e^{-ix \cdot \xi} f(x)
= (i\xi_1) \widehat{f}(\xi).$$

- (b) Choosing $\nu = 0$ and $\nu = me_j$ for j = 1, ..., n, we get $(1 + |\xi_1|^m + \cdots + |\xi_n|^m)|\widehat{f}(\xi)| \in l^2(\mathbb{Z}^n)$, (b) follows.
- (c) Suppose $k < m \frac{n}{2}$. By Cauchy-Schwarz, $\left(\frac{k}{2} = \frac{k-m}{2} + \frac{m}{2}\right)$

$$\sum_{\xi} (1 + |\xi|^2)^{\frac{k}{2}} |\widehat{f}(\xi)| \le \underbrace{\left(\sum_{\infty \text{ since } 2(k-m)<-n} (1 + |\xi|^2)^{k-m}\right)^{\frac{1}{2}}}_{<\infty} \underbrace{\left(\sum_{\infty \text{ since } 2(k-m)<-n} (1 + |\xi|^2)^m |\widehat{f}(\xi)|^2\right)^{\frac{1}{2}}}_{<\infty} \equiv C_k.$$

For each $\xi \in \mathbb{Z}^n$, $(1+|\xi|^2)^{\frac{k}{2}}|\widehat{f}(\xi)| \leq C_k$, so $|\widehat{f}(\xi)| \leq C_k|\xi|^{-k}$.

The Hausdorff-Young Inequality. Suppose $1 \le p \le 2$ and $\frac{1}{p} + \frac{1}{q} = 1$. If $f \in L^p(T^n)$, then $\widehat{f} \in l^q(\mathbb{Z}^n)$, and $\|\widehat{f}\|_q \le \|f\|_p$.

Proof. For $f \in L^1(T^n)$, $\|\widehat{f}\|_{\infty} \leq \|f\|_1$ and for $f \in L^2(T^n)$, $\|\widehat{f}\|_2 = \|f\|_2$. By the Riesz-Thorin interpolation theorem, $\|\widehat{f}\|_q \leq \|f\|_p$.

Other decay estimates for $f \in L^1(T)$. (See Katznelson, Intro to Harmonic Analysis, pp. 24–25.)

- (1) If $f \in L^1(T)$, then $\widehat{f}(\xi) = o(1)$ (i.e., $\widehat{f}(\xi) \to 0$).
- (2) If f is absolutely continuous (i.e, $f' \in L^1$, etc.), then $\widehat{f}(\xi) = o\left(\frac{1}{|\xi|}\right)$ (i.e., $|\xi|\widehat{f}(\xi) \to 0$).
- (3) If $f \in BV(T)$, then $\widehat{f}(\xi) = \mathcal{O}\left(\frac{1}{|\xi|}\right)$ (in fact $|\widehat{f}(\xi)| \leq \frac{\operatorname{Var}(f)}{2\pi|\xi|}$).

Application: Vibrating Strings

Consider an infinite oscillating string. Assume that the x-axis is the equilibrium position of the string and that the tension in the string at rest in equilibrium is τ . Let u(x,t) denote the displacement at x at time t. Then the wave equation (in one space dimension) governs the motion.

"snap shot" at time t:

Derivation (for small displacements). We make the following simplifying assumptions:

- the displacement of the string from equilibrium (and its slope) are small;
- each point on the string moves only in the vertical direction;
- the tension force T(x,t) in the string (i.e., the (vector) force which the part of the string to the right of x exerts on the part to the left of x, at time t) is tangential to the string and has magnitude proportional to the local stretching factor $\sqrt{1+u_x^2}$.

Since $u_x = 0$ in equilibrium, the constant of proportionality is the equilibrium tension τ . Thus the magnitude of T(x,t) is $\tau \sqrt{1 + u_x(x,t)^2}$, and the vertical component of T(x,t) is τu_x . Now consider the part of the string between x and $x + \Delta x$. The vertical component of Newton's second law (F = ma, T)

force = mass \cdot acceleration) applied to this part of the string is

$$\frac{\text{force}}{\tau u_x(x + \Delta x, t) - \tau u_x(x, t)} = \underbrace{\frac{\text{mass accel}}{\rho \Delta x} \underbrace{\frac{\tau(x + \Delta x, t)}{u_{tt}(x, t)}}_{x},$$

where ρ is the density (mass per unit length; assumed constant). Dividing by Δx and taking the limit as $\Delta x \to 0$, we obtain

$$\tau u_{xx} = \rho u_{tt}$$
.

Normalizing units so that $\rho = \tau$, we obtain the wave equation (in one space dimension):

$$u_{tt} = u_{xx}$$
.

Solutions of $u_{tt} = u_{xx}$

Change variables. Let y=x+t, z=x-t (so $x=\frac{y+z}{2}$, $t=\frac{y-z}{2}$). Then $\frac{\partial}{\partial y}=\frac{\partial x}{\partial y}\frac{\partial}{\partial x}+\frac{\partial t}{\partial y}\frac{\partial}{\partial t}=\frac{1}{2}\left(\frac{\partial}{\partial x}+\frac{\partial}{\partial t}\right)$ and $\frac{\partial}{\partial z}=\frac{\partial x}{\partial z}\frac{\partial}{\partial x}+\frac{\partial t}{\partial z}\frac{\partial}{\partial t}=\frac{1}{2}\left(\frac{\partial}{\partial x}-\frac{\partial}{\partial t}\right)$, so $u_y=\frac{1}{2}(u_x+u_t)$ and $u_{yz}=\frac{1}{2}\left(\frac{\partial}{\partial x}-\frac{\partial}{\partial t}\right)\frac{1}{2}(u_x+u_t)=\frac{1}{4}(u_{xx}-u_{tt})$. In the new coordinates, the wave equation becomes simply $u_{yz}=0$. Thus u_y is independent of z, i.e., $u_y=\widetilde{f}(y)$. Integrating in y for each fixed z, we get u=f(y)+g(z) (where $f(y)=\int \widetilde{f}(y)dy$). So any solution of the wave equation $u_{tt}=u_{xx}$ is of the form

$$(*) u(x,t) = f(x+t) + g(x-t).$$

Physically, this is a superposition of left-going and right-going waves:

Observation. The derivation above shows that any C^2 function of x and t satisfying the wave equation is of the form (*). Conversely, if f and g are C^2 functions of one variable, it is easily checked that u(x,t) = f(x+t) + g(x-t) is a C^2 solution of the wave equation. But if f and g are only continuous, f(x+t) + g(x-t) still makes sense; in what sense is this a solution of $u_{tt} = u_{xx}$? (It is true in the sense of distributions.)

Initial-Value Problem (IVP) (or the *Cauchy Problem*). Thinking only in terms of ODEs in time t (overlooking that $\frac{\partial^2}{\partial x^2}$ is not a bounded linear operator) we "should" be able to determine u(x,t) for $x \in \mathbb{R}$ and $t \geq 0$ if we are given initial values u(x,0) and $u_t(x,0)$ for $x \in \mathbb{R}$ (we need u and u_t at t = 0 since the equation is second-order in t).

D'Alembert's Formula (for the Cauchy Problem for $u_{tt} = u_{xx}$). Consider the IVP: DE $u_{tt} = u_{xx}$ ($x \in \mathbb{R}, t \geq 0$)

$$IC \begin{cases} u(x,0) = f(x) & (x \in \mathbb{R}) \\ u_t(x,0) = g(x) & (x \in \mathbb{R}) \end{cases}$$
 (note: not the same f, g as above)

(To obtain a C^2 solution u(x, t), it will suffice for $f \in C^2(\mathbb{R})$, $g \in C^1(\mathbb{R})$.) We will separately analyze the cases $g \equiv 0$ and $f \equiv 0$, and then use superposition.

Case 1. $g \equiv 0$ IC $\begin{cases} u(x,0) &= f(x) \\ u_t(x,0) &= 0 \end{cases}$ $(x \in \mathbb{R})$. We have $u(x,t) = w_1(x+t) + w_2(x-t)$ for some $w_1, w_2 \in C^2(\mathbb{R})$. By the IC, $w_1(x) + w_2(x) = u(x,0) = f(x)$ (so w_1 and w_2 differ $w_1'(x) - w_2'(x) = u_t(x,0) = 0$ by a constant). One solution is $w_1(x) = w_2(x) = \frac{1}{2}f(x)$.

Remark. For a solution u(x,t) of $u_{tt} = u_{xx}$, w_1 and w_2 are uniquely determined up to a constant (if $w_1(x+t) + w_2(x-t) = v_1(x+t) + v_2(x-t)$, then $w_1(x+t) - v_1(x+t) = v_2(x-t) - w_2(x-t)$ is independent of both y = x+t and z = x-t, and is thus a constant).

So any other solution is $\begin{cases} w_1(x) &= \frac{1}{2}f(x)+c\\ w_2(x) &= \frac{1}{2}f(x)-c \end{cases}$ for some constant c. So the solution to Case 1 is $u(x,t) = \frac{1}{2}f(x+t) + \frac{1}{2}f(x-t).$

Case 2. $f \equiv 0$ IC $\begin{cases} u(x,0) = 0 \\ u_t(x,0) = g(x) \end{cases}$ $(x \in \mathbb{R})$. Again, $u(x,t) = w_1(x+t) + w_2(x-t)$ for some $w_1, w_2 \in C^2(\mathbb{R})$. By the IC, $\begin{cases} w_1(x) + w_2(x) = 0 \\ w_1'(x) - w_2'(x) = g(x) \end{cases} \Rightarrow \begin{cases} w_2 = -w_1 \\ w_1' = \frac{1}{2}g \end{cases} \Rightarrow w_1 = \frac{1}{2} \int g$. So the solution to Case 2 is

$$u(x,t) = \left(\frac{1}{2} \int g\right) \Big|_{x=t}^{x+t} = \frac{1}{2} \int_{x-t}^{x+t} g(s) ds.$$

Adding Cases 1 and 2, the solution of the IVP with IC $\begin{cases} u(x,0) = f(x) \\ u_t(x,0) = g(x) \end{cases}$ is:

$$u(x,t) = \frac{1}{2}f(x+t) + \frac{1}{2}f(x-t) + \frac{1}{2}\int_{x-t}^{x+t} g(s)ds$$
 d'Alembert's formula

Remarks.

- (1) d'Alembert's formula gives an explicit demonstration of the *finite* domain of dependence of the solution of this IVP on the initial data (a general property of hyperbolic PDEs): for a fixed $x \in \mathbb{R}$ and fixed t > 0, u(x,t) depends only on f(x+t), f(x-t), and $\{g(s): x - t < s < x + t\}.$
- (2) d'Alembert's formula also provides a solution for negative t as well: $u_{tt} = u_{xx}$ ($x \in \mathbb{R}, t \leq 0$), $\begin{cases} u(x,0) = f(x) \\ u_t(x,0) = g(x) \end{cases}$ ("final" conditions); like ODEs, hyperbolic PDEs in general can be advanced either in the +t direction or the -t direction.

Initial-Boundary Value Problem (IBVP)

Consider now a finite string $(0 \le x \le \pi)$ fixed at both ends, so $u(0,t) = u(\pi,t) \equiv 0$. Suppose the initial displacement is u(x,0) = f(x) $(0 \le x \le \pi)$ (where $f(0) = f(\pi) = 0$), and for simplicity suppose the initial velocity is $u_t(x,0)=0$ $(0 \le x \le \pi)$. This models a "plucked" violin string (moved to position u(x,0) = f(x) at time t = 0, and then released with initial velocity $u_t(x,0)=0$). We obtain an IBVP with both initial conditions (IC) and boundary conditions (BC):

We will solve this IBVP in two ways: (1) by d'Alembert's formula, and (2) by Fourier series.

Solution ① (d'Alembert). Find functions w_1, w_2 defined on \mathbb{R} so that $u(x,t) = w_1(x+t) + w_2(x+t)$ $w_2(x-t)$ satisfies the IC and BC. The BC u(0,t)=0 for $t\geq 0$ gives $0=w_1(t)+w_2(-t)$ for $t \geq 0$, or $w_2(t) = -w_1(-t)$ for $t \leq 0$. [Note that to define u(x,t) in the region $0 \leq x \leq \pi$, $t \geq 0$, we only need to give $w_1(s)$ for $s \geq 0$ and $w_2(s)$ for $s \leq \pi$. To simplify our calculations, we will find w_1 and w_2 defined on all of \mathbb{R} , so that u(x,t) satisfies the BC for $t \leq 0$ too. So we ask $w_2(t) = -w_1(-t) (\forall t \in \mathbb{R})$. Next, the BC $u(\pi, t) = 0$ (now $\forall t \in \mathbb{R}$) gives 0 = $w_1(\pi+t)+w_2(\pi-t)$, so $w_1(\pi+t)=-w_2(\pi-t)=w_1(t-\pi)$, i.e., $w_1(t+2\pi)=w_1(t)(\forall t\in\mathbb{R})$. So w_1 is 2π -periodic, and thus $w_2(t) = -w_1(-t)$ is also 2π -periodic. The IC $u_t(x,0) = 0$ $(0 \le x \le \pi)$ gives $0 = w_1'(x) - w_2'(x) = w_1'(x) - w_1'(-x)$ for $0 \le x \le \pi$, i.e., $w_1'(-x) = w_1'(x)$ for $0 \le x \le \pi$; since w'_1 is 2π -periodic, we conclude that w'_1 is an even function on \mathbb{R} . We may assume $w_1(0) = 0$ (if not, replace w_1 by $w_1(s) - w_1(0)$ and replace w_2 by $w_2(s) + w_1(0)$). Then $w_1(-x) = \int_0^{-x} w_1'(s) ds = -\int_0^x w_1'(-s) ds = -\int_0^x w_1'(s) ds = -w_1(x) (\forall x \in \mathbb{R})$, so w_1 is an odd function on \mathbb{R} ; moreover $w_2=w_1$ since $w_2(t)=-w_1(-t)$. Finally, the IC u(x,0)=f(x) $(0\leq x\leq \pi)$ gives $f(x)=w_1(x)+w_2(x)=2w_1(x)$, i.e., $w_1(x)=\frac{1}{2}f(x)$ for $0\leq x\leq \pi$. This completes the determination of w_1 : it is the 2π -periodic, odd function on \mathbb{R} which agrees with $\frac{1}{2}f$ on $[0,\pi]$. So d'Alembert's solution can be summarized as follows: define $\widetilde{f}(x)=f(x)$ for $0\leq x\leq \pi$, $\widetilde{f}(x)=-f(-x)$ for $-\pi\leq x\leq 0$ (the odd extension of f from $[0,\pi]$ to $[-\pi,\pi]$), and then extend \widetilde{f} to be 2π -periodic on \mathbb{R} . [Note: if $f(0)=f(\pi)=0$ and $f\in C^1[0,\pi]$, then $\widetilde{f}\in C^1(\mathbb{R})$; if in addition $f\in C^2[0,\pi]$ and $f''(0)=f''(\pi)=0$, then $\widetilde{f}\in C^2(\mathbb{R})$.] We obtain d'Alembert's formula for the solution of this IBVP:

$$u(x,t) = \frac{1}{2} \left(\widetilde{f}(x+t) + \widetilde{f}(x-t) \right)$$

(remember, this is the special case where $u_t(x,0) = 0$ $(0 \le x \le \pi)$).

Solution ② (Fourier series). We use separation of variables. We want to find simple harmonics of the string, that is, solutions of the form u(x,t) = v(x)w(t) (often called fundamental modes). Using ' to mean $\frac{d}{dx}$ for v, and also $\frac{d}{dt}$ for w, the DE $u_{tt} = u_{xx}$ becomes v(x)w''(t) = v''(x)w(t), or (wherever $v(x)w(t) \neq 0$) $\frac{w''(t)}{w(t)} = \frac{v''(x)}{v(x)}$. The LHS is independent of x and the RHS is independent of x, so both sides are equal to a constant; call it $-\lambda$.

We end up with ODEs for v and w:

$$v''(x) + \lambda v(x) = 0$$
 $(0 \le x \le \pi)$ "spatial ODE" $w''(t) + \lambda w(t) = 0$ $(t \ge 0)$ "temporal ODE"

Applying the BC to the "spatial ODE", we get $v(0) = v(\pi) = 0$, leading to the following "eigenvalue problem:" determine for which (in this case real) values of λ there exists a non-trivial (i.e., not $\equiv 0$) solution v(x) of the boundary-value problem (BVP):

DE
$$v'' + \lambda v = 0$$
 $0 \le x \le \pi$
BC $v(0) = v(\pi) = 0$

Case (i) $\lambda < 0$: The general solution of $v'' + \lambda v = 0$ is $c_1 \cosh(\sqrt{-\lambda}x) + c_2 \sinh(\sqrt{-\lambda}x)$. $v(0) = 0 \Rightarrow c_1 = 0$, and then $v(\pi) = 0 \Rightarrow c_2 = 0$. No nontrivial solutions.

Case (ii) $\lambda = 0$: The general solution of v'' = 0 is $v(x) = c_1 + c_2 x$. $v(0) = 0 \Rightarrow c_1 = 0$, and then $v(\pi) = 0 \Rightarrow c_2 = 0$. No nontrivial solutions.

Case (iii) $\lambda > 0$: The general solution of $v'' + \lambda v = 0$ is $v(x) = c_1 \cos(\sqrt{\lambda}x) + c_2 \sin(\sqrt{\lambda}x)$ $v(0) = 0 \Rightarrow c_1 = 0$. Then $v(\pi) = 0$ (and $c_2 \neq 0$ so v is nontrivial) $\Rightarrow \sin(\sqrt{\lambda}\pi) = 0 \Rightarrow \sqrt{\lambda} \in \{1, 2, 3, \ldots\} \Rightarrow \lambda = n^2$ for $n \in \{1, 2, 3, \ldots\}$. These are the "eigenvalues" of this eigenvalue problem. The corresponding "eigenfunctions" are $\sin(\sqrt{\lambda}) = \sin(nx)$.

Applying the homogeneous IC $u_t(x,0) = 0$ to the "temporal ODE," we get w'(0) = 0. For $\lambda = n^2$, the general solution of $w'' + \lambda w = 0$ is $c_1 \cos nt + c_2 \sin nt$. The IC w'(0) = 0 implies $c_2 = 0$, so $w(t) = c_1 \cos nt$. Thus the fundamental modes for this problem are

$$u_n(x,t) = \cos(nt)\sin(nx)$$
 $n \in \{1, 2, 3, ...\}.$

Linear combinations of these are also solutions of the DE, the BC, and the one IC $u_t(x, 0) = 0$. To satisfy the IC u(x, 0) = f(x) for $0 \le x \le \pi$, we represent f(x) in a Fourier sine series: $f(x) = \sum_{n=1}^{\infty} A_n \sin(nx)$. Then (provided this series converges appropriately) $u(x, t) = \sum_{n=1}^{\infty} A_n \cos(nt) \sin(nx)$ satisfies the DE, the BC, and both IC. (See Problem 3 on Problem Set 7 for details).

Application: Heat Flow

Consider heat flow in a thin rod with insulated lateral surface.

Assume that the temperature u(x,t) is a function only of horizontal position x and time t. By Newton's law of cooling, the amount of heat flowing from left to right across the point x in time Δt is $-\kappa \frac{\partial u}{\partial x}(x,t)\Delta t$ (proportional to the gradient of temperature), where the constant of proportionality κ is called the *heat conductivity* of the rod. So the net heat flowing *into* the part of rod between x an $x + \Delta x$ in the time interval from t to $t + \Delta t$ is

$$\kappa \frac{\partial u}{\partial x}(x + \Delta x, t)\Delta t - \kappa \frac{\partial u}{\partial x}(x, t)\Delta t.$$

The net heat flowing into this part of the rod in this time interval can also be expressed

as $\rho \Delta x \cdot c$ c $\partial u \Delta t$, where ρ is the density (mass per unit length) of the rod, and c is the *specific heat* of the rod (the amount of heat needed to raise a unit mass by 1 unit of temperature). Equating these two expressions, dividing by Δt and Δx , and taking the limit as $\Delta x \to 0$, we obtain

$$\kappa u_{xx} = \rho c u_t$$
.

Normalizing units so that $\rho c = \kappa$, we obtain the *heat equation* (in one space dimension):

$$u_t = u_{xx}$$
.

Fourier considered circular rods of length 2π , leading to the following IBVP with periodic BC:

IBVP: DE
$$u_t = u_{xx}$$
 $0 \le x \le 2\pi, t \ge 0$ IC $u(x,0) = f(x)$ $0 \le x \le 2\pi$ $0 \le x \le 2\pi$

(We can view u defined on $T \times [0, \infty)$ [where $T = S^1$], or 2π -periodic func. of $x \in \mathbb{R}$ with $t \geq 0$.)

As with the wave equation, we separate variables, and look for solutions of the form u(x,t) = v(x)w(t). The DE $u_t = u_{xx}$ becomes v(x)w'(t) = v''(x)w(t), or (wherever $v(x)w(t) \neq 0$) $\frac{w'}{w} = \frac{v''}{v}$; both sides are equal to a constant; call it $-\lambda$. The "spatial ODE" is $v''(x) + \lambda v(x) = 0$ and the "temporal ODE" is $w'(t) + \lambda w(t) = 0$ ($t \geq 0$).

Eigenvalue Problem: $v'' + \lambda v = 0 \ (0 \le x \le 2\pi)$

periodic BC
$$v(0) = v(2\pi), \quad v'(0) = v'(2\pi).$$

Case (i). $\lambda < 0 \ v \equiv 0$

Case (ii). $\lambda = 0$ One lin. ind. solution: $v \equiv 1$

Case (iii). $\lambda > 0$ $\lambda = n^2$ for $n \in \{1, 2, 3, ...\}$, with two lin. ind. solutions: $\cos(nt)$ and $\sin(nt)$ (see Problem 1 on Problem Set 7 for details). For $\lambda = n^2$ (with $n \in \{0, 1, 2, ...\}$), one lin. ind. soln. of $w' + \lambda w = 0$: $w = e^{-\lambda t}$. Thus the fundamental modes for this problem are $u \equiv 1$ and for $n \in \{1, 2, 3, ...\}$, $u(x, t) = e^{-n^2 t} \cos nt$ and $u(x, t) = e^{-n^2 t} \sin nt$. To satisfy the IC u(x, 0) = f(x) for $0 \le x \le 2\pi$, we represent f(x) in a Fourier series: $f(x) = a_0 + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$. Then (provided this series converges appropriately)

$$u(x,t) = a_0 + \sum_{n=1}^{\infty} e^{-n^2 t} (a_n \cos nx + b_n \sin nx)$$

satisfies the DE, the periodic BC, and the IC.

Remark. This form of the Fourier series of f (viewed as its 2π -periodic extension) is equivalent to the complex exponential form $f(x) = \sum_{n=-\infty}^{\infty} c_n e^{inx}$. For $n \geq 1$, $\cos nx = \frac{1}{2} \left(e^{inx} + e^{-inx} \right)$ and $\sin nx = \frac{1}{2i} \left(e^{inx} - e^{-inx} \right)$ span the same two-dimensional subspace (over \mathbb{C}) as $e^{inx} = \cos nx + i \sin nx$ and $e^{-inx} = \cos nx - i \sin nx$. The coefficients are related as follows: $c_0 = a_0$; for $n \geq 1$, $c_n = \frac{1}{2} (a_n - ib_n)$, $c_{-n} = \frac{1}{2} (a_n + ib_n)$, $a_n = c_n + c_{-n}$, $b_n = i(c_n - c_{-n})$. In the inner product $\langle f, g \rangle = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) \overline{g(x)} dx$ on $L^2(T)$ (here $T = S^1$), the set $\{1\} \bigcup \{\sqrt{2} \cos nx : n \geq 1\} \bigcup \{\sqrt{2} \sin nx : n \geq 1\}$ is a complete orthonormal set in $L^2(T)$, giving us the following formulas for a_n and b_n :

$$a_0 = \langle f, 1 \rangle = \frac{1}{2\pi} \int_0^{2\pi} f(x) dx.$$

For
$$n \ge 1$$
, $a_n = \frac{\langle f, \cos nx \rangle}{\langle \cos nx, \cos nx \rangle} = 2\langle f, \cos nx \rangle = \frac{1}{\pi} \int_0^{2\pi} f(x) \cos nx dx$
 $b_n = \frac{\langle f, \sin nx \rangle}{\langle \sin nx, \sin nx \rangle} = 2\langle f, \sin nx \rangle = \frac{1}{\pi} \int_0^{2\pi} f(x) \sin nx dx$

Caution. Many books will write $f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$, in which case $a_0 = 2\langle f, 1 \rangle = \frac{1}{\pi} \int_0^{2\pi} f(x) dx = \frac{1}{\pi} \int_0^{2\pi} f(x) \cos(0x) dx$.

The solution u(x,t) expressed in terms of complex exponentials is

$$u(x,t) = \sum_{\xi \in \mathbb{Z}} \widehat{f}(\xi) e^{-\xi^2 t} e^{i\xi x}$$

where $\widehat{f}(\xi) = \langle f, e^{ix\xi} \rangle = \frac{1}{2\pi} \int_0^{2\pi} f(x) e^{-ix\xi} dx$. Note that if $f \in C^1(T)$ (or even f is continuous and piecewise C^1 on T, meaning f' has only a finite number of jump discontinuities) then $\widehat{f} \in l^1(\mathbb{Z})$; then this series for u(x,t) converges absolutely and uniformly for $x \in T$ and $t \geq 0$, and u(x,0) = f(x); moreover, for t > 0, this is a C^{∞} solution of $u_t = u_{xx}$. This is because $e^{-\xi^2 t}$ decays very rapidly as $|\xi| \to \infty$ for t > 0. But for t < 0, we do not expect this series to converge unless $|\widehat{f}(\xi)| \to 0$ extremely fast as $|\xi| \to \infty$. These properties are common for parabolic equations: the solution is smooth for t > 0, but we cannot go backwards in time.

Remark. As for the wave equation, we can also solve IBVP of the form

DE
$$u_t = u_{xx}$$
 $(0 \le x \le \pi, t \ge 0)$
IC $u(x,0) = f(x)$ $(0 \le x \le \pi)$
BC $u(0,t) = 0,$ $u(\pi,t) = 0$ $(t \ge 0)$

(or with BC $u_x(0,t) = 0$, $u_x(\pi,t) = 0$, etc.)

Final Comment. The partial sums $S_k(f) = \sum_{\xi=-k}^k \widehat{f}(\xi)e^{ix\xi}$ of the Fourier series of f are obtained by convolving f with the "Dirichlet kernel" $D_k(x) = \sum_{\xi=-k}^k e^{ix\xi} = \frac{\sin\left(\left(k+\frac{1}{2}\right)x\right)}{\sin\left(\frac{1}{2}x\right)}$: $\widehat{f}*D_k = \widehat{f}\widehat{D}_k$, so $f*D_k(x) = \sum_{\xi\in\mathbb{Z}}\widehat{f}(\xi)\widehat{D}_k(\xi)e^{ix\xi} = \sum_{\xi=-k}^k\widehat{f}(\xi)e^{ix\xi} = S_k(f)$. The Dirichlet kernel, however, is not a summability kernel: D_k is not nonnegative (not horrible), and it does not satisfy condition (4) of a summability kernel.

Our next main topic is Fourier Transforms. before discussing Fourier Transforms, we will briefly discuss convolutions.

Convolutions

Let f, g be [complex-valued] measurable functions defined on \mathbb{R}^n . In general, we define $(f * g)(x) = \int_{\mathbb{R}^n} f(x - y)g(y)dy$ $(x \in \mathbb{R}^n)$ whenever the integral makes sense.

Example. If $f \in L^1(\mathbb{R}^n)$ and $g \in L^\infty(\mathbb{R}^n)$, then $\forall x \in \mathbb{R}^n$, $f(x-y)g(y) = L^1(\mathbb{R}^n_y)$, so (f*g)(x) is defined $(\forall x \in \mathbb{R}^n)$, and $||f*g||_{\infty} \le ||f||_1 \cdot ||g||_{\infty}$. Moreover, f*g is continuous since $|(f*g)(x) - (f*g)(z)| \le ||g||_{\infty} \int_{\mathbb{R}^n} |f(x-y) - f(z-y)| dy \to 0$ as $|x-z| \to 0$ by the continuity of translation on L^1 . Thus $f*g \in C_b(\mathbb{R}^n)$ (bounded continuous functions on \mathbb{R}^n). In fact, f*g is uniformly continuous.

Theorem. (L^1 convolution on \mathbb{R}^n). If $f, g \in L^1(\mathbb{R}^n)$, then for a.e. $x \in \mathbb{R}^n$, $f(x - y)g(y) \in L^1(\mathbb{R}^n_y)$, so f * g is defined a.e. Moreover, $f * g \in L^1(\mathbb{R}^n)$, and $||f * g||_1 \le ||f||_1 \cdot ||g||_1$.

Proof. By Tonelli, $\int_{\mathbb{R}^n} |f * g(x)| dx \leq \int \int |f(x-y)g(y)| dy dx = \int |g(y)| \int |f(x-y)| dx dy = \|g\|_1 \cdot \|f\|_1 < \infty$, so $f(x-y)g(y) \in L^1(\mathbb{R}^n_x \times \mathbb{R}^n_y)$. The rest follows.

Properties of Convolutions

Commutativity (f * g)(x) = (g * f)(x)

(by change of variables z = x - y, $\int f(x - y)g(y)dy = \int f(z)g(x - z)dz$)

Associativity (f * g) * h = f * (g * h).

Young's Inequality. Suppose $1 \leq p, q, r \leq \infty$ and $\frac{1}{r} = \frac{1}{p} + \frac{1}{q} - 1$. If $f \in L^p(\mathbb{R}^n)$ and $g \in L^q(\mathbb{R}^n)$, then f * g is defined a.e., $f * g \in L^r(\mathbb{R}^n)$, and $||f * g||_r \leq ||f||_p \cdot ||g||_q$.

Proof. The case $r = \infty$ follows from Hölder's Inequality (since then $\frac{1}{p} + \frac{1}{q} = 1$): $|f * g(x)| \le \int |f(x-y)g(y)|dy \le ||f||_p \cdot ||g||_q$. Moreover, in this case f*g is uniformly continuous (one of p,q is $< \infty$; by commutativity WLOG $p < \infty$; $|f*g(x)-f*g(z)| \le ||g||_q ||f(x-\cdot)-f(z-\cdot)||_p \to 0$ as $|x-z| \to 0$ by continuity of translation on L^p (as $p < \infty$), so $f*g \in C_b(\mathbb{R}^n)$.

When $r < \infty$, then also $p, q < \infty$. If either p or q is 1 (say WLOG q = 1), then Minkowski's Inequality for Integrals $(\|\int h(\cdot,y)dy\|_p \le \int \|h(\cdot,y)\|_p dy$, see Jones §11E) implies $\|f*g\|_p \le \|\int |f(\cdot-y)g(y)|dy\|_p \le \int \|f(\cdot-y)g(y)\|_p dy = \|f\|_p \|g\|_1$. The last case is $r < \infty$ and $1 < p, q < \infty$ (which also implies r > 1). Let p', q' be the exponents conjugate to p, q, respectively. Then $\frac{1}{p'} = 1 - \frac{1}{p}, \frac{1}{q'} = 1 - \frac{1}{q}$. It follows that $\frac{1}{r} + \frac{1}{p'} + \frac{1}{q'} = 1$, and quick calculations give $(1 - \frac{p}{r}) q' = p, (1 - \frac{q}{r}) p' = q$. By Hölder's Inequality for three functions (see problem 2 in Jones §10A),

$$\begin{split} |f*g(x)| & \leq \int (|f(x-y)|^{\frac{p}{r}}|g(y)|^{\frac{q}{r}})|f(x-y)|^{\left(1-\frac{p}{r}\right)}|g(y)|^{\left(1-\frac{q}{r}\right)}dy \\ & \leq \left(\int |f(x-y)|^{p}|g(y)|^{q}dy\right)^{\frac{1}{r}} \left(\int |f(x-y)|^{\left(1-\frac{p}{r}\right)q'}dy\right)^{\frac{1}{q'}} \left(\int |g(y)|^{\left(1-\frac{q}{r}\right)p'}dy\right)^{\frac{1}{p'}} \\ & = \left[(|f|^{p}*|g|^{q})(x)\right]^{\frac{1}{r}} ||f||_{p}^{\frac{p}{q'}} ||g||_{q}^{\frac{q}{p'}}. \end{split}$$

So $\int |f * g(x)|^r dx \le ||f|^p * |g|^q ||_1 ||f|^{\frac{rp}{q'}}_p ||g|^{\frac{rq}{p'}}_q \le ||f|^p ||_1 ||f|^q ||_1 ||f|^{rp/q'}_p ||g|^{rq/p'}_q = ||f|^{p+rp/q'}_p ||g|^{q+rq/p'}_q \text{ and the result follows since } p + \frac{rp}{q'} = q + \frac{rq}{p'} = r.$

Note the special cases:

(i) if
$$\frac{1}{p} + \frac{1}{q} = 1$$
, $1 \le p, q \le \infty$, $||f * g||_{\infty} \le ||f||_p ||g||_q$

(ii) if
$$1 \le p \le \infty$$
, $||f * g||_p \le ||f||_p ||g||_1$

Approximate [Convolution] Identities (or convolution with approximate δ -functions).

Suppose $g \in L^1(\mathbb{R}^n)$ is "peaked" near the origin (like \mathbb{R}^n) and \mathbb{R}^n g = 1. Then we expect $(f * g)(x) = \int_{\mathbb{R}^n} f(x - y)g(y)dy \approx f(x)$. This expectation can be made rigorous by letting g become more "peaked" as follows: choose any $\varphi \in L^1(\mathbb{R}^n)$ for which $\int_{\mathbb{R}^n} \varphi(x)dx = 1$; for $\varepsilon > 0$, let $\varphi_{\varepsilon}(x) = \varepsilon^{-n}\varphi\left(\frac{x}{\varepsilon}\right)$; then by change of variables, also $\int_{\mathbb{R}^n} \varphi_{\varepsilon}(x)dx = 1$ for all $\varepsilon > 0$. For any fixed $\delta > 0$, $\int_{|x| \le \delta} \varphi_{\varepsilon}(x)dx = \int_{|x| \le \frac{\delta}{\varepsilon}} \varphi(x)dx$, so $\int_{|x| \le \delta} \varphi_{\varepsilon}(x)dx \to 1$ as $\varepsilon \to 0$; in this sense φ_{ε} gets more "peaked" as $\varepsilon \to 0$. The family of functions $\{\varphi_{\varepsilon} : \varepsilon > 0\}$ (or $\{\varphi_{\varepsilon} : 0 < \varepsilon \le \varepsilon_0\}$ for some $\varepsilon_0 > 0$, or $\{\varphi_{\varepsilon_j} : j = 1, 2, \ldots\}$ for some sequence $\varepsilon_j \to 0$) is called an approximate δ -function or an approximate identity (for convolution). The latter name is clarified by the following theorem. To allow the case of a continuum of values of ε , we first need:

Extension of the Lebesgue Dominated Convergence Theorem

Let A be a metric space and α_0 be a limit point of A. Suppose E is a measurable subset of \mathbb{R}^n , and $g \in L^1(E)$. Suppose

- (i) for each $\alpha \neq \alpha_0 \in A$, $f_\alpha : E \to \mathbb{C}$ is measurable, and $|f_\alpha(x)| \leq g(x)$ a.e.
- (ii) for some measurable function $f: E \to C$, $\lim_{\alpha \to \alpha_0} f_{\alpha}(x) = f(x)$ a.e.

Then $f \in L^1(E)$, and $\lim_{\alpha \to \alpha_0} \int_E f_{\alpha}(x) dx = \int_E f(x) dx$.

Proof. If $\int_E f_{\alpha} \not\to \int_E f$, then \exists a sequence $\alpha_n \to \alpha_0$ and an $\varepsilon > 0$ for which $(\forall n) | \int_E f_{\alpha_n} - \int_E f | \ge \varepsilon$. But by the LDCT, $\int_E f_{\alpha_n} \to \int_E f$. Contradiction.

Theorem. Suppose $\varphi \in L^1(\mathbb{R}^n)$ and $\int_{\mathbb{R}^n} \varphi = 1$. For $\varepsilon > 0$, let $\varphi_{\varepsilon}(x) = \varepsilon^{-n} \varphi\left(\frac{x}{\varepsilon}\right)$.

- (a) If $f \in L^p(\mathbb{R}^n)$ where $1 \leq p < \infty$, then $f * \varphi_{\varepsilon} \to f$ in L^p (i.e., $||f * \varphi_{\varepsilon} f||_p \to 0$).
- (b) $(p = \infty)$. If f is bounded and uniformly continuous on \mathbb{R}^n , then $f * \varphi_{\varepsilon} \to f$ uniformly.

Proof.

(a) Let $\psi(y) = ||f_y - f||_p$ for $y \in \mathbb{R}^n$ where $f_y(x) = f(x - y)$. Then ψ is continuous, ≥ 0 , bounded by $2||f||_p$, and $\psi(0) = 0$. By Minkowski's Inequality for Integrals, for $\varepsilon > 0$,

$$||f * \varphi_{\varepsilon} - f||_{p} = \left\| \int_{\mathbb{R}^{n}} (f(\cdot - y) - f(\cdot)) \varphi_{\varepsilon}(y) dy \right\|_{p}$$

$$\leq \int_{\mathbb{R}^{n}} ||(f(\cdot - y) - f(\cdot)) \varphi_{\varepsilon}(y)||_{p} dy$$

$$= \int_{\mathbb{R}^{n}} \psi(y) |\varphi_{\varepsilon}(y)| dy = \int_{\mathbb{R}^{n}} \psi(\varepsilon z) |\varphi(z)| dz \to 0$$

as $\varepsilon \to 0$ by the extended LDCT.

(b) The proof in part (a) fails if only $f \in L^{\infty}$, but goes through with $p = \infty$ when f is bounded and unif. cont.

Mollification. One of the main applications of this theorem is when φ is smooth. As we will see, mild further assumptions on φ and f imply that $f * \varphi_{\varepsilon}$ is as smooth as φ . So $f * \varphi_{\varepsilon}$ is a smooth function close to f in L^p .

Notation: A multi-index is an $\alpha \in \mathbb{Z}^n$ with each $\alpha_i \geq 0$. For $x \in \mathbb{R}^n$, $x^{\alpha} = x_1^{\alpha_1} x_2^{\alpha_2} \cdots x_n^{\alpha_n}$. Define $\partial_x^{\alpha} = \left(\frac{\partial}{\partial x_1}\right)^{\alpha_1} \cdots \left(\frac{\partial}{\partial x_n}\right)^{\beta_n}$. We write $|\alpha| = \sum_{i=1}^n \alpha_i$.

Differentiation Under the Integral Sign. Suppose E is a measurable subset of \mathbb{R}^n , and $I \subset \mathbb{R}$ is an interval. Suppose $f: E \times I \to \mathbb{C}$ satisfies $(\forall t \in I) f(\cdot, t) \in L^1(E), \frac{\partial f}{\partial t}(x, t)$ exists for all $(x, t) \in E \times I$, and $\exists g \in L^1(E) \ni (\forall (x, t) \in E \times I) \left| \frac{\partial f}{\partial t}(x, t) \right| \leq g(x)$. Let $F(t) = \int_E f(x, t) dx$. Then F is differentiable on I, and $F'(t) = \int_E \frac{\partial f}{\partial t}(x, t) dx$.

Proof. Fix $t_0 \in I$. For $t \neq t_0 \in I$, let $h(x,t) = \frac{f(x,t) - f(x,t_0)}{t - t_0}$. The Mean Value Theorem implies $|h(x,t)| \leq \sup_{t \in I} \left| \frac{\partial f}{\partial t}(x,t) \right| \leq g(x)$, so the extended LDCT implies $\lim_{t \to t_0} \frac{F(t) - F(t_0)}{t - t_0} = \lim_{t \to t_0} \int_E h(x,t) dx = \int_E \lim_{t \to t_0} h(x,t) dx = \int_E \frac{\partial f}{\partial t}(x,t) dx$.

Remark. A similar result is true for partial derivatives when $I^{\text{open}} \subset \mathbb{R}^m$.

Differentiating Convolutions

Theorem. Suppose $f \in L^1(\mathbb{R}^n)$, $g \in C^k(\mathbb{R}^n)$, and for $|\alpha| \leq k$, $\partial^{\alpha} g$ is bounded. Then $f * g \in C^k(\mathbb{R}^n)$, and for $|\alpha| \leq k$, $\partial^{\alpha} (f * g) = f * \partial^{\alpha} g$.

Proof. Use induction on $|\alpha|$. For $|\alpha| = 1$, write $(f * g)(x) \int_{\mathbb{R}^n} g(x - y) f(y) dy$. Then $\partial_x^{\alpha}(g(x - y) f(y)) = \partial^{\alpha}g(x - y) f(y)$, so $\|\partial^{\alpha}g\|_{\infty}|f(y)|$ is a dominating function, and we can differentiate under the integral sign.

Corollary. If $f \in L^1_{loc}(\mathbb{R}^n)$ and $g \in C^k_c(\mathbb{R}^n)$ (c for compact support), then $f * g \in C^k(\mathbb{R}^n)$.

Proof. For R > 0, let $B_R = \{x : |x| < R\}$. Suppose $g(x) \equiv 0$ for $|x| \ge R$. For |x| < N, $f * g(x) = \int_{B_R} f(x-y)g(y)dy = \int_{B_R} (\psi f)(x-y)g(y)dy = (\psi f) * g(x)$, where $\psi = B_{N+R}$. Since $\psi f \in L^1$, the corollary follows.

Note. If $f \in L^p_{loc}(\mathbb{R}^n)$ for any p $(1 \le p \le \infty)$, then $f \in L^1_{loc}(\mathbb{R}^n)$.

Remark on supports: Clearly $\operatorname{supp}(f * g) \subset \operatorname{supp}(f) + \operatorname{supp}(g)$.

Theorem. Let Ω be an open subset of \mathbb{R}^n and $1 \leq p < \infty$. Then $C_c^{\infty}(\Omega)$ (C^{∞} functions with compact support in Ω) is dense in $L^p(\Omega)$.

Proof. Let $K_1 \subset K_2 \subset \cdots$ be a compact exhaustion of Ω , i.e., each K_j is a compact subset of Ω , $K_j \subset K_{j+1}^0$ (interior), and $\bigcup K_j = \Omega$. Given $f \in L^p(\Omega)$ and $\varepsilon > 0$, the LDCT implies

 $\begin{array}{l} f\chi_{K_{j}} \to f \ \ {\rm in} \ L^{p}(\Omega), \ {\rm so} \ \ {\rm we} \ \ {\rm can} \ \ {\rm choose} \ j \ \ {\rm for} \ \ {\rm which} \ \|f\chi_{K_{j}} - f\|_{p} < \frac{\varepsilon}{2}. \ \ {\rm Since} \ K_{j} \subset K_{j+1}^{0}, \\ \exists \ \eta > 0 \ \ni K_{j} + B_{\eta} \ \subset K_{j+1}^{0}. \ \ {\rm Let} \ \varphi(x) \ \ {\rm be} \ \ {\rm in} \ C_{c}^{\infty}(\mathbb{R}^{n}) \ \ {\rm with} \ \ \varphi(x) = 0 \ \ {\rm for} \ \ |x| \ge 1 \ \ {\rm and} \ \\ \int_{\mathbb{R}^{n}} \varphi(x) dx = 1 \ \ ({\rm e.g.}, \ \varphi(x) = \frac{\psi(x)}{f \ \psi} \ \ {\rm where} \ \psi(x) = \exp\left(\frac{1}{1-|x|^{2}}\right) \ \ {\rm for} \ \ |x| < 1 \ \ {\rm and} \ \ \psi(x) = 0 \ \ {\rm for} \ \\ |x| \ge 1), \ \ {\rm and} \ \ {\rm let} \varphi_{\delta}(x) = \delta^{-n}\varphi\left(\frac{x}{\delta}\right) \ \ {\rm for} \ \ 0 < \delta \le \eta. \ \ {\rm Now} \ f\chi_{K_{j}}*\varphi_{\delta} \to f\chi_{K_{j}} \ \ {\rm in} \ L^{p}(\mathbb{R}^{n}) \ \ {\rm as} \ \delta \to 0. \\ \ \ {\rm Since} \ \ {\rm supp}(f\chi_{K_{j}}*\varphi_{\delta}) \subset \Omega \ \ {\rm for} \ \ 0 < \delta \le \eta, \ \exists \ \delta \in (0,\eta] \ \ {\rm for} \ \ {\rm which} \ \ \|f\chi_{K_{j}}*\varphi_{\delta} - f\chi_{K_{j}}\|_{p} < \frac{\varepsilon}{2}, \\ \ \ {\rm and} \ \ f\chi_{K_{j}}*\varphi_{\delta} \in C_{c}^{\infty}(\Omega). \end{array}$