Periodic Functions/Functions on a
Torus/Fourier Series

Let {e; : 1 < j < n} be the standard basis in R*: We say f : R* — C is 2m-periodic in each
variable if
f(z + 2me;) = f(z) VzeR"1<j<n.
We can identify 27-periodic functions with functions on a torus. Let S* = {e? : § € R} C C,
and 7" = S' x --- x S' ¢ C". To each function 5: T" — C we can identify a 27-periodic
function ¢ : R* — C by @(x1,...,1,) = ¢(e,...,e%). Conversely, each 2m-periodic
function ¢ : R* — C induces a unique ¢ : 7™ — C for which ¢(e", ..., €®) = ¢(z1, ..., T,).
If ¢ : R* — C is 2w-periodic, ¢ is uniquely determined by its values ¢(z) for z € [—m, 7)™ or
1

for z € [0,27)". Let v, = Gy M where m,, is n-dimensional Lebesgue measure. Then v,

induces a measure v, on 7™ for which

bdv, = / bdvy.
" [0,27]"

From here on, we blur the distinction between ¢ and 5 and between v,, and 7, and we will
abuse these notations. Note: v,(T™) = v,([0,27]|") = 1. Let LP(T") denote L?([0, 27]") with
measure v, (1 < p < o). L2(T™) is a Hilbert space with inner product

(6.9) = wm=/ $Pdva.
" [0,27]"

Theorem. {e®¢ : £ € Z"} is an orthonormal system in L*(T™).

1, £=n
0, £#n° H

Definition. A trigonometric polynomial is a finite linear combination of {e®¢ : £ € Z"}.
(Note: since {e®¢ e~¢} and {cos(z-&),sin(z-£)} span the same two-dimensional subspace,
we could use sines and cosines as our basis functions.)

Proof. (e ei@m) = Jio,2mpn

st = {

Definition. C(7™) is the space of all continuous 27-periodic functions ¢ : R* — C. Note
that C(T™) G C([0,27]").

We will use the uniform norm ||¢||, = sup, |¢(z)| on C(T™). C¥(T™) (for k > 0,k € 7Z)
is the space of all C* 27-periodic functions ¢ : R* — C. Again C*(T™) G C*([0, 27]"). We
will use the norm ||¢[|cx = >_ 1, <4 |06

91
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Fourier Coefficients

For f € LY(T"), define f(¢ . €7 f(z)dv,(z) for € € Z™. Then for f € L2(T),
T

F(&) = (f,e¢). (Note that ||f||1 < || fll2 since v(T™) = 1.)
The Fourier series of f is the formal series Y ¢cpn f(&)e™*. We will study in what sense
this series converges to f.

j=1" 2
(ﬁ)n Define gy () = ;- (H?Zl 1+C§”">k. Then
(1) g is a trigonometric polynomial (of degree nk)
(2) gi(z) 2
(3) Jru ar(z)dvn(z) =1
(4) If ne(0) = max{qe(x) : © € [—7,7|"\(—6,0)"} then limy ,ne(6) = 0 (for such =z,
a(z) < (1+c_os5) < (w(k;l))Q (1+cos5)k 0 as k — 0o).

k
Lemma. Let ay = [, (Hﬁ_ M) dv,(z) (note: 0 < integrand < 1). Then a; >

2

— Qg 2 2
Theorem. Given f € C(T"), let

pe(z) = (f * qx)(x) = f(ﬂﬁ— Y)ak(y)dvn(y).

Then py is a trig polynomial, and ||px — f||l. — 0 as k — oc.

Proof. Since g (&) = 0 for |¢| sufficiently large,

(@) = | F@)ar(e —y)dva(y) = qu £)e' ™4 du, (y)
= Y F©m©)e*
:

is a trig. poly. Given € > 0, choose ¢ (by the uniform continuity of f)
\ﬂi—w\oo <6 =|f(z) - f(w)| <e.
Then pg(z) = [ (f = f(@))ar(y)dvn(y)

pe(z) — f(2)] < - [f (@ —y) — f@)|a(y)dn(y) = I + I j‘

L (_57 6)n [—7'(',71']"\(—6’ 5)71
I < /( . eqr(y)dvn(y) < €

L < / 2| F 1 (8 < 2]\ fllumi(6) <
[—7, ]\ (—6,0)™

for k suff. large. O
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Corollary 1 Trig polynomials are dense in C(T™).

Remark. Sequences g, with properties (1), (2), (3), (4) are called summability kernels. In

SlIl2 .
R', another such kernel is the Féjer kernel g;(z) = kjlqﬁ ZE——k (1 - ‘il) et If

we define Si(f) = Zlgz_k F(O)e™¢ and oy (f) = w1 (So(f) + -+ + Sk(f)) = f * g then for
feC(T), or(f) — f uniformly (same proof as above). (Thls is the classical result that the
Fourier series of an f € C(T) is Cesaro summable to f.)

Corollary 2 Trig polynomials are dense in L*(T™).

Proof. Given f e L>(T") and e > 0, 3g € C(T™) > ||f —gll» < §. 3 trig. poly p >
llp — gll« < £, so since v, (T™) =1,

If =Dl <|If —gllz+1lg—pllz < If —gllz2+ llg = pllu <e.
]

Corollary 3 {e®¢ : £ € Z"} is a complete orthonormal system in L*>(T™). Hence if f €
L?(T™), the Fourier series of f (any arrangement) converges to f in L?. Also, the map

F : L*(T") — I2(Z") given by f — [ is a Hilbert space isomorphism.

Theorem. If f € L'(T"), then p, — f in L'(T") (where py = f * q; and g, is given on the
previous page).

Proof. The proof is similar to the proof of the Theorem above, except we use continuity of
translation in L' instead of uniform continuity. Given ¢ > 0, choose 6 > ||f(z—a)— f(z)|: <
¢ whenever ||y < §. By Fubini,

e = 1) < [ [at) [ 1760 - 1@ dnt)
_ 11,—> (_6’ 5)n+12[—> [—7r’7r]”\(—5, 5)n

Tn

I < [q(y)edv,(y) =€ ) O
L < 2||fllime(6) = 0as k — oo

-~

Corollary. (Uniqueness Theorem). If f € L'(T") and (V& € Z")f(§) = 0, then f =0
a.e. (Thus if f,g € L'(T™) and f =7, then f = g a.e.)

Proof. If f =0, then p;(z) = D¢ FOT(©)ei€ =0, and pp — f in LL. O
Theorem. (Riemann-Lebesgue Lemma). If f € L'(T"), then f(g) — 0 as || — oc.

Proof. View f as f(z)X[—n(z) € L'(R"). O
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Absolutely Convergent Fourier Series

Suppose f € L'(T™) and fe I'(Z™). Then the Fourier series of f converges absolutely and
uniformly to a g € C(T™), and g = f a.e.

Proof. Let g(z) = Y ccyn F(€)e™€ (converges uniformly and absolutely). Then g € C(T™).
By the Dominated Convergence Theorem,

1 = [ —*‘"f(Zf “")dm)

neL™

= Y F) [ emenan @) = Fo).

neL”
Sog=f a.e. O

Decay of Fourier Coeflicients <+ Smoothness of f

Lemma. Suppose «a(€) € [*(Z") and (i&)a(€) € INZ™). Let f = Y a(f)e™, g =
>e(i&;)a(§)e™ . Then f,g € C(T), 2L - exists everywhere, and af =g.

Proof. The two series of continuous functions converge absolutely and uniformly to f and g,

respectively. Since %(a(&)e”'f) = i&a(€)e™ ¢, the result follows from a standard theorem

in analysis. O

Theorem. Suppose f € L'(T™) and (1 + [£|™)f(€) € I'(Z") for some integer m > 0. Then
the Fourier series of f converges absolutely and uniformly to a g € C™(T™), and f = g a.e.

Proof. Just must show g € C™(T™). For each v with |v| < m, (i€)"f(€) € I(Z"), so
> (i€)7 f(§)e™ ¢ converges abs. unif. to some g, € C(T™). By the Lemma and induction,
g = 0"g. O

Theorem. Suppose f € C™(T").

(a) For [v| <m, Byf(¢) = (i) F(£)

(b) So (1+[€%)F (&) (or (1+ ™) F(€) or (1 + |6 F(€)) € 2(Z")

(c) Hence if k <m — 2, then (1 + |£[2)3[F(¢)| € I'(Z") and 3C 5 |F(€)] < Cile|™
Proof.

(a) Integration by parts — e.g., let T = (22, ...,2,), S0 © = (x4, T)

af _ e O
(@ = [ i@ [ dn)e =@

B / dv,,—1 (7)(ié1) /wa(xl)e—“ff(x)
= (i6)f(©).
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(b) Choosing v =0 and v =me; for j =1,...,n, we get (1 + |&|™+---+ \§n|m)|f(§)| €
I2(Z"), (b) follows.

(¢) Suppose k < m — 2. By Cauchy-Schwarz, (& = 22 +

NE

)
Z(1+|s|2>%|f<g)|s (Sa+ )’ (Sa+lemirer)’ =c

vl

6 Vv - TV

<o Since 2(k—m)<-n <o
For each £ € Z™, (1 + |§|2)§|f(€)| < Cy, s0 |f(f)| < Cile]™*
]
The Hausdorff-Young Inequality. Suppose 1 < p < 2 and % +, =1L If f e L(T),
then f € 19(Z"), and || fllg < || f]l,-

Proof. For f € LY(T"), ||flle < |If|l and for f € L2(T™), || fll2 = ||f|l2- By the Riesz-
Thorin interpolation theorem, |||, < || f]lp- O

Other decay estimates for f € L'(T). (See Katznelson, Intro to Harmonic Analysis, pp.
24-25.)

(1) If f € L}(T), then (&) = o(1) (i.e., f(£) — 0).

(2) If f is absolutely continuous (i.e, f' € L, etc.), then f(&) = (%) (ie., |€]F(€) = 0).

(3) T f € BV(T), then f(§) = O (£) (in fact ()] < if).

Application: Vibrating Strings

Consider an infinite oscillating string. Assume
that the x-axis is the equilibrium position of the
string and that the tension in the string at rest

“snap shot” at time ¢:

in equilibrium is 7. Let u(x,t) denote the dis- u ~u(z,t) = displacement
placement at x at time £. Then the wave equa- ‘ y

tion (in one space dimension) governs the mo- x x

tion.

Derivation (for small displacements). We
make the following simplifying assumptions:

e the displacement of the string from equilibrium (and its slope) are small;
e each point on the string moves only in the vertical direction;

e the tension force T'(z,t) in the string (i.e., the (vector) force which the part of the
string to the right of z exerts on the part to the left of z, at time ¢) is tangential to
the string and has magnitude proportional to the local stretching factor /1 + u2.
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Since u, = 01in equilibrium, the constant of proportionality
is the equilibrium tension 7. Thus the magnitude of T'(z,t) is
T/ 1 4+ ug(z,t)?, and the vertical component of T'(x,t) is Tu,.
Now consider the part of the string between x and x + Ax.
The vertical component of Newton’s second law (F = ma,

force = mass - acceleration) applied to this part of the string is
/{(ZH—Am,t)
force mass accel T
s g N AN : ;
Tug(z + Az, t) — Tug(z,t) = pAx uy(z,t), 2 wthe

where p is the density (mass per unit length; assumed constant). Dividing by Az and taking
the limit as Az — 0, we obtain
TUgy = PUtt-

Normalizing units so that p = 7, we obtain the wave equation (in one space dimension):

Ut = Ugy-

Solutions of uy = vy,

Change variables. Let y =z +t, 2z =2z —1t (soxz = %, t = £2). Then a% = g—ja% +

20 — 1(a+%) and & = %0 4 010 _ 1(@_@)’ 50 uy = 3(ug + uy) and uy, =

dy ot 2 \oz 8z 9z Ox 8z Ot 2 \oz ~ ot
(L2 - 2) t(us + u) = +(uge — uy). In the new coordinates, the wave equation becomes

simply w,, = 0. Thus u, is independent of 2, i.e., u, = f(y). Integrating in y for each fixed

z, we get u = f(y) + g(z) (where f(y) = ff(y)dy) So any solution of the wave equation
Uy = Ugy 1S Of the form

(%) u(z,t) = f(x+1t) + g(x —t).

Physically, this is a superposition of left-going and right-going waves:

f(z) s
L \\\\/;u>

- (as t increases)
|ty ’f\\\\jy—w

Observation. The derivation above shows that any C? function of z and ¢ satisfying the
wave equation is of the form (*). Conversely, if f and g are C? functions of one variable, it
is easily checked that u(z,t) = f(z+1t)+ g(z —t) is a C? solution of the wave equation. But
if f and g are only continuous, f(z +1t) + g(x — t) still makes sense; in what sense is this a
solution of uy = ug,? (It is true in the sense of distributions.)
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Initial-Value Problem (IVP) (or the Cauchy Problem). Thinking only in terms of ODEs
in time ¢ (overlooking that 66—;2 is not a bounded linear operator) we “should” be able to
determine u(z,t) for x € R and ¢ > 0 if we are given initial values u(x,0) and u(z,0) for

xz € R (we need u and u; at t = 0 since the equation is second-order in t).

D’Alembert’s Formula (for the Cauchy Problem for u; = ug;). Consider the IVP: DE
Uy = Uge (x € R E > 0)

IC{ uEx,O) i f(z) ExGR;

u (note: not the same f, g as above)
t

(To obtain a C? solution u(z, t), it will suffice for f € C?(R), g € C'(R).) We will separately
analyze the cases ¢ = 0 and f = 0, and then use superposition.

Case 1. ¢g=01IC { u@,0) = flz) (x € R). We have u(z,t) = wi(x+1t) +wq(z —1t) for

u(z,0) = 0

some wy, wy € C*(R). By the IC, wy(z) +wa(z) = u(z,0) = f(z) (so wy; and wy differ
wi(z) —wy(z) = w(z,0)=0

by a constant). One solution is w;(z) = wa(z) = 5 f(z).

Remark. For a solution u(z,t) of uy = gy, w; and we are uniquely determined up to a
constant (if wy(x +t) + wa(x — t) = vi(x +t) + vo(z — t), then wi(z + 1) —vi(z +t) =
vo(r —t) —we(z —t) is independent of both y = x +¢ and z = z — ¢, and is thus a constant).

wy(z) =
wy(x) =

u(z,t) = %f(a:—i—t) + %f(ac —t).

(x

(z i_ 2 for some constant c. So the solution to

N = | =

f(z)
f(z)

So any other solution is {

Case 1 is

Case 2. f=01C { ulzg:gg z g(x) (z € R). Again, u(z,t) = wi(x + t) + we(z — t) for
0 wi(z) + we(z) = 0 we = —uwn .
some wy,wy € C*(R). By the IC, { wl(z) — wi(z) = glx) = w = % = w; =
2 [ g. So the solution to Case 2 is
T+t
1 1 T+t
ue.0 = (5 [9) ‘ 5[ atsgas
2 2
Adding Cases 1 and 2, the solution of the IVP with IC { @, 0) = f(x) is:
w(z,0) = g(z)

1 1 1 T+t
u(z,t) = §f(33 +1)+ if(x —t) + 5/ t g(s)ds  d’Alembert’s formula
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Remarks.
t (1) d’Alembert’s formula gives an explicit demonstration of the finite
‘ domain of dependence of the solution of this IVP on the initial
T e data (a general property of hyperbolic PDEs): for a fixed z € R

and fixed t > 0, u(x,t) depends only on f(z +1t), f(z —t), and
{9(s)rz—t<s<az+t}.

(2) d’Alembert’s formula also provides a solution for negative ¢ as well: uy = uy, (¢ €

U’("I:’O) = f(il') « » sy T . .
R, t < 0), { w0 = glz) (“final” conditions); like ODEs, hyperbolic PDEs in

general can be advanced either in the +¢ direction or the —¢ direction.

Initial-Boundary Value Problem (IBVP)

Consider now a finite string (0 < z < ) fixed at both ends,

so u(0,t) = wu(m,t) = 0. Suppose the initial displacement y
is u(z,0) = f(z) (0 < z < ) (where f(0) = f(m) = 0),
and for simplicity suppose the initial velocity is wu;(z,0) = 0
(0 <z < 7). This models a “plucked” violin string (moved to
position u(z,0) = f(z) at time ¢t = 0, and then released with
initial velocity u(z,0) = 0). We obtain an IBVP with both
initial conditions (IC) and boundary conditions (BC):
DE  uy = tge (0<z<mt>0) 0 a—
wz,0) = f(x)
1c {ut(x,O) = 0 (O<z<m
u(0,t) = 0
>
BC { wmt) = 0 (t>0)

We will solve this IBVP in two ways: (D by d’Alembert’s formula, and (2) by Fourier series.

Solution (@) (d’Alembert). Find functions wy, we defined on R so that u(z,t) = wi(x+1t) +
wy(z — t) satisfies the IC and BC. The BC u(0,¢) = 0 for ¢t > 0 gives 0 = wy (¢) + wa(—1) for
t >0, or wy(t) = —wy(—t) for t < 0. [Note that to define u(z,t) in the region 0 < z < 7,
t > 0, we only need to give w; (s) for s > 0 and wsy(s) for s < 7. To simplify our calculations,
we will find w; and wy defined on all of R, so that u(zx,t) satisfies the BC for ¢ < 0 too.]
So we ask wy(t) = —wi(—t)(Vt € R). Next, the BC u(m,t) = 0 (now V¢ € R) gives 0 =
wy(m+1t)+we(m—1t), so wy(m+1t) = —wo(m—1t) = wi(t—m), ie.,, wi(t+2m) = wi(t)(Vt € R).
So wy is 2m-periodic, and thus wy(t) = —w;(—t) is also 2w-periodic. The IC u(z,0) = 0
(0 <z <) gives 0 = wi(x) — wh(x) = wi(z) — wi(—z) for 0 < z < 7, ie., wi(—z) = wi(z)
for 0 < z < 7; since w] is 2m-periodic, we conclude that w} is an even function on R. We
may assume wl(O) =0 (if not replace wy by wi(s) —w1(0) and replace wo by wy(s) +wq(0)).
Then wi(—z) = [, “wi(s)ds = — [y wi(—s)ds = — [J wi(s)ds = —wi(z)(Vz € R), so
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w; is an odd function on R; moreover wy = w; since wy(t) = —wi(—t). Finally, the IC
u(z,0) = f(z) (0 <z < ) gives f(z) = wi(z) + wa(z) = 2wy (), ie., wi(z) = 5 f(x) for
0 < z < 7. This completes the determination of w;: it is the 2m-periodic, odd function on
R which agrees with 1 f on [0,7]. So d’Alembert’s solution can be summarized as follows:

define f(x) = f(x) for 0 <z <, f(z) = —f(—x) for —7 < z < 0 (the odd extension of f
from [0, 7] to [—7,7]), and then extend f to be 2r-periodic on R. [Note: if £(0) = f(x) =0
and f € C![0,7], then f € CY(R); if in addition f € C2[0,7] and f"(0) = f"(r) = 0, then
f € C2(R).] We obtain d’Alembert’s formula for the solution of this IBVP:

u(z, t) = % (fN(x +1)+ f(z - t))

(remember, this is the special case where uy(z,0) =0 (0 < z < 7)).

Solution (@ (Fourier series). We use separation of variables. We want to find simple
harmonics of the string, that is, solutions of the form u(x,t) = v(x)w(t) (often called fun-

damental modes). Using ' to mean % for v, and also % for w, the DE uy = ug,,; becomes
v(z)w" (t) = v"(x)w(t), or (wherever v(x)w(t) # 0) % = ”:(%) The LHS is independent
of z and the RHS is independent of ¢, so both sides are equal to a constant; call it —\.

We end up with ODEs for v and w:

v"(z) +dv(z) = 0 0<z<m) “spatial ODE”
w"(t) + Aw(t) = 0 (t>0 “temporal ODE”

Applying the BC to the “spatial ODE”, we get v(0) = v(w) = 0, leading to the following
“eigenvalue problem:” determine for which (in this case real) values of A there exists a
non-trivial (i.e., not = 0) solution v(x) of the boundary-value problem (BVP):

DE v+ = 0 0<z<m
BC v(0) =v(r) = 0

Case (i) A < 0: The general solution of v" + Av = 0 is ¢; cosh(v/—Az) + ¢ sinh(vV—Az).
v(0) =0 = ¢; =0, and then v(7) = 0 = ¢, = 0. No nontrivial solutions.

Case (ii) A = 0: The general solution of v" =0 is v(z) = ¢; + coz. v(0) =0 = ¢; =0, and
then v(m) = 0 = ¢, = 0. No nontrivial solutions.

Case (iii) A > 0: The general solution of v" + v = 0 is v(x) = ¢; cos(VAz) + ¢y sin(vV/Az)
v(0) =0 = ¢; = 0. Then v(m) = 0 (and ¢, # 0 so v is nontrivial) = sin(v/ A7) =0 = VA €
{1,2,3,..} == A=n?forn € {1,2,3,...}. These are the “eigenvalues” of this eigenvalue
problem. The corresponding “eigenfunctions” are sin(v/A) = sin(nz).

Applying the homogeneous IC u(x,0) = 0 to the “temporal ODE,” we get w'(0) = 0.
For A\ = n?, the general solution of w” + Aw = 0 is ¢; cosnt + cosinnt. The IC w'(0) = 0
implies ¢, = 0, so w(t) = ¢; cosnt. Thus the fundamental modes for this problem are

un(z,t) = cos(nt) sin(nx) ne€{1,2,3,...}.
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Linear combinations of these are also solutions of the DE, the BC, and the one IC u;(z, 0) = 0.
To satisfy the IC u(z,0) = f(z) for 0 < z < 7, we represent f(z) in a Fourier sine series:
f(z) = Y02 Apsin(nz). Then (provided this series converges appropriately) u(z,t) =
Yoo | Ay cos(nt) sin(nz) satisfies the DE, the BC, and both IC. (See Problem 3 on Problem
Set 7 for details).

Application: Heat Flow

Consider heat flow in a thin rod with insulated lateral surface.

P z+Azx

Assume that the temperature u(z,t) is a function only of horizontal position z and time t.

By Newton’s law of cooling, the amount of heat flowing from left to right across the point x

in time At is —x2%(z, t) At (proportional to the gradient of temperature), where the constant

of proportionality  is called the heat conductivity of the rod. So the net heat flowing into
the part of rod between x an z + Az in the time interval from ¢ to ¢ + At is

n%(:r + Az, t)At — /{a—u(x, t)At.

O0x ox
The net heat flowing into this part of the rod in this time interval can also be expressed
~NAY
mass  gpecificheat 7o =
A~ ou

as pAz- "¢ - EAt’ where p is the density (mass per unit length) of the rod, and ¢ is

the specific heat of the rod (the amount of heat needed to raise a unit mass by 1 unit of
temperature). Equating these two expressions, dividing by At and Az, and taking the limit
as Az — 0, we obtain

Klgy = PCU-

Normalizing units so that pc = k, we obtain the heat equation (in one space dimension):
Ut = Ugyg-

Fourier considered circular rods of length 27, leading to the following IBVP with periodic
BC:
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IBVP: DE Up = Ugy 0<z<2m,t>0
IC u(z,0) = f(z) 0<z<2r
- u(0,t) = wu(2m,1)
>
periodic BC { up(0,8) = ug(2m, 1) t>0

(We can view u defined on T x [0,00) [where T = S'], or 2m-periodic func. of z € R with

t>0.)
As with the wave equation, we separate variables, and look for solutions of the form
u(z,t) = v(x)w(t). The DE u; = wuy, becomes v(z)w'(t) = v"(x)w(t), or (wherever

v(z)w(t) #0) % = ”7”; both sides are equal to a constant; call it —\. The “spatial ODE” is
v"(x) + M(z) = 0 and the “temporal ODE” is w'(t) + Aw(t) = 0 (¢ > 0).

Eigenvalue Problem: v" + Av =0 (0 < z < 27)
periodic BC v(0) = v(27), v'(0) = o'(2m).

Case (i). A<0v =0

Case (ii). A = 0 One lin. ind. solution: v =1

Case (iii). A > 0 A = n? for n € {1,2,3,...}, with two lin. ind. solutions: cos(nt) and
sin(nt) (see Problem 1 on Problem Set 7 for details). For A = n? (with n € {0,1,2,...}),
one lin. ind. soln. of w’ + Mw = 0: w = e~ *. Thus the fundamental modes for this problem
are v = 1 and for n € {1,2,3,...}, u(z,t) = e *cosnt and u(z,t) = e *sinnt. To
satisfy the IC u(z,0) = f(x) for 0 < z < 27, we represent f(z) in a Fourier series: f(x) =
ao+ Y oo (ay cosnz + b, sinnz). Then (provided this series converges appropriately)

o
u(z,t) = ag + Z e~ ay, cos na + by, sin nz)
n=1

satisfies the DE, the periodic BC, and the IC.

Remark. This form of the Fourier series of f (viewed as its 2m-periodic extension) is
equivalent to the complex exponential form f(z) = Y00 _ c,e™®. For n > 1, cosnz =
5 (€™ + e™™) and sinne = - (e™* — e~™*) span the same two-dimensional subspace (over
C) as €™ = cosnz + isinnz and e = cosnz — isinnz. The coefficients are related
as follows: ¢y = ag; for n > 1, ¢, = %(a” —ib,), ¢, = %(an + ibn), an = €y + C_p,
by = i(cy — c_p). In the inner product (f,g) = o= [T f(z)g(z)dz on L*(T) (here T = S*),
the set {1} (J{v/2cosnz : n > 1} J{V2sinnz : n > 1} is a complete orthonormal set in

L3(T), giving us the following formulas for a,, and b,:

ao = (f,1) = %/0 " fla)da.

—ine
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Forn>1, a, = % = 2(f,cosnz) = 1 Ozwf(x)cosna:dx
by, = % = 2(f,sinnz) = L[ f(z)sinnzdz.

Caution. Many books will write f(z) = % + Y™  (an cosnz + b, sinnz), in which case
ap = 2(f,1) = L [7" f(z)dz = L [7" f(x) cos(0z)dz.

mJ0
The solution u(z,t) expressed in terms of complex exponentials is

u(w1) = 3 F@e e

ez

where f(£) = (f, €'€) = o 02« f(z)e"*¢dz. Note that if f € C*(T) (or even f is continuous
and piecewise C! on T, meaning f’ has only a finite number of jump discontinuities) then
fe I'(Z); then this series for u(x,t) converges absolutely and uniformly for z € T and ¢ > 0,
and u(z,0) = f(x); moreover, for t > 0, this is a C* solution of u; = ug,. This is because
e~ decays very rapidly as |£| — oo for t > 0. But for ¢ < 0, we do not expect this series
to converge unless |f(§)\ — 0 extremely fast as |£| — oco. These properties are common for
parabolic equations: the solution is smooth for ¢ > 0, but we cannot go backwards in time.

Remark. As for the wave equation, we can also solve IBVP of the form

DE Uy = Ugpy 0<z<mt>0)
IC u(z,0) = f(z) (0<z<m)
BC u(0,t) = 0, u(m,t) =0 (t>0)

(or with BC u,(0,t) = 0, ug(m,t) = 0, etc.)

Final Comment. The partial sums Si(f) = Zlg:_k J/‘\(f)ei’”g of the Fourier series of f are
; sin Dz
obtained by convolving f with the “Dirichlet kernel” Dy(z) = Zlgz_k et = M :

ﬁn(§m)
f* Dy = fDg, s0 fx Dy(z) = Zéezf(g)Dk(ﬁ)e””E = Z’g:_k f(€)e®t = Si(f). The Dirichlet
kernel, however, is not a summability kernel: Dy is not nonnegative (not horrible), and it

does not satisfy condition (4) of a summability kernel.

Our next main topic is Fourier Transforms. before discussing Fourier Transforms, we will
briefly discuss convolutions.

Convolutions

Let f,g be [complex-valued] measurable functions defined on R™. In general, we define
(f*g9)(x) = [zn [z —y)g(y)dy (z € R*) whenever the integral makes sense.

Example. If f € L'(R") and g € L®(R"), then Vz € R*, f(z —y)g(y) = L'(R}), so
(f * g)(z) is defined (Vz € R™), and ||f * g|loo < [|f]l1 - ||g|lcc- Moreover, f * g is continuous

since |(f * g)(z) = (f * 9)(2)| < l|gllco Jgn |f(z —y) = f(z —y)|dy — 0 as [z — 2| — 0 by the
continuity of translation on L'. Thus f x g € Cy(R") (bounded continuous functions on R?).
In fact, f * g is uniformly continuous.
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Theorem. (L' convolution on R*). If f,g € L'(R"), then for a.e. z € R*, f(z —y)g(y) €
L'(R?), so f * g is defined a.e. Moreover, f x g€ L'(R"), and || f * glly < || f]l1 - [lg]]:-

Proof. By Tonelli, [o. |f * g(@)|dz < [ [|f(z —y)g9(y)|dydz = [ |g(y)| [ |f(z — y)|dzdy =
llgll - [If]l1 < oo, so f(z —y)g(y) € L*(R? x R?). The rest follows. O

Properties of Convolutions

Commutativity (f * g)(z) = (g * f)(z)
(by change of variables z =z — y, [ f(z — y)g(y)dy = [ f(2)g(z — z)dz)

Associativity (f xg) * h = f* (g * h).

Young’s Inequality. Suppose 1 < p,q,r < oo and % = Il)+ % — 1. If f € LP(R") and
g € LY(R"), then f * g is defined a.e., fxg € L"(R"), and ||f * g/ < || fll, - [|9ll4-

Proof. The case r = oo follows from Holder’s Inequality (since then % 5T l =1): [fxg(z)] <

f |f(z—=y)g(y)|dy < || fll,-|lgllq- Moreover, in this case fxg is unlformly contmuous (one of p, q
is < 0o; by commutativity WLOG p < oo; |fxg(z)— f*xg(2)| < ||gllql|f(x—-)—Ff(z—-)|[, = O
as |x — z| — 0 by continuity of translation on LP (as p < 00), so f x g € Cy(R").

When r < oo, then also p,g < oo. If either p or ¢ is 1 (say WLOG ¢ = 1), then
Minkowski’s Inequality for Integrals || J h(: dyH < [|h(-, v)|l,dy, see Jones §11E) implies

1 gl < IS 1£C=9)g@ldy|, < [IF(—y)g( )Ilpdy— ||f||p||g||1- The last case is 7 < 00
and 1 < p,q < oo (which also 1mphes r > 1). Let p/, ¢’ be the exponents conjugate to p,
1
q

g, respectively. Then 1% =1- ’7, q— = 1— 2. It follows that l + l + l = 1, and quick
calculations give (1 — %) q = p, (1 — g) p' = ¢q. By Holder’s Inequahty for three functions
(see problem 2 in Jones §10A),

f*g(@)] < /(|f(fv— DI 9@ ) f (@ — )] g(y)| (- ay

< (Je-mraa) (e (fuc v

= [(FP* g @ 1715 gl

(5 'r
So [1f = g(@)[rde < |[1F1 * gl Nalle < I 1P 1 I lgl 1 1FIEP 1lglle”
IFIET™/4|g]|47""/"" and the result follows since p+ T=at+t=r O

Note the special cases:
(i) if ;+;=11<p,g <00, [If*gllec <IIfllpllgllg

(i) if 1 <p < oo, [If *gllp < [Ifllpllgllx
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Approximate [Convolution]| Identities (or convolution with approximate d-functions).

Suppose g € LI(R") is peaked” near the origin (like R,) and [z, g =1. Then
we expect (fxg)( fRn 9(y)dy =~ f(z). This expectation can be made rigorous by
letting g become more peaked” as follows choose any ¢ € L'(R") for which fR“ x)dr = 1;
for e > 0, let p.(x) = 6_”@0( ) then by change of variables, also [,. p-(z)dz = 1 for all
e > 0. For any fixed § > 0, f$|S6<pE z)dr = f$|5g o(z)dz, so fm|§6(‘05 z)dr — 1 as € — 0;

in this sense ¢, gets more “peaked” as e - 0. The family of functions {¢. : € > 0} (or
{9: : 0 <& < g} for some g9 > 0, or {¢, : j =1,2,...} for some sequence ¢; — 0) is called
an approrimate 6-function or an apprommate zdentzty (for convolution). The latter name is
clarified by the following theorem. To allow the case of a continuum of values of ¢, we first
need:

Extension of the Lebesgue Dominated Convergence Theorem

Let A be a metric space and ag be a limit point of A. Suppose F is a measurable subset of
R*, and g € L'(F). Suppose

(i) for each o # o € A, fo : E — C is measurable, and |f,(z)| < g(z) a.e
(ii) for some measurable function f: E — C, limy_,q, fo(z) = f(z) a.e.

Then f € L'(E), and limy—,a, [, fa(z)dz = [, f(z)dz

Proof. If [, fo 7 [, f, then 3 asequence o, — ag and an & > 0 for which (V n) UE fa, — fEf| >
e. But by the LDCT, [, fa, — [ f- Contradiction. O

Theorem. Suppose ¢ € L'(R*) and [;, ¢ = 1. For e > 0, let .(z) = "¢ ().

(a) If f € LP(R™) where 1 < p < oo, then f* ¢, — fin L? (i.e., || f % o. — f|l, = 0).

(b) (p = o0). If f is bounded and uniformly continuous on R”, then f x . — f uniformly.

Proof.

(a) Let ¥(y) = ||fy — fll, for y € R* where fy(z) = f(z —y). Then ¢ is continuous, > 0,
bounded by 2||f||,, and (0) = 0. By Minkowski’s Inequality for Integrals, for £ > 0,

1f* e = fll, =

[ =)= 1)ewiy

p

< - N(FC—2y) — F()e:(w)llpdy

= Rn¢(y)|<ps(y)|dy: Y(ez)|p(2)|dz — 0

R”

as ¢ — 0 by the extended LDCT.
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(b) The proof in part (a) fails if only f € L*, but goes through with p = co when f is
bounded and unif. cont.

g

Mollification. One of the main applications of this theorem is when ¢ is smooth. As we
will see, mild further assumptions on ¢ and f imply that f * ¢, is as smooth as ¢. So f * ¢,
is a smooth function close to f in LP.

Notation: A multi-index is an o € Z™ with each o; > 0. For x € R, 2* = z{"z5? - - - 20,
o1 On
— a a ; —
Define 9% = (a_wl> (E) . We write |a] =)0 | ;.

Differentiation Under the Integral Sign. Suppose E is a measurable subset of R” and
I C R is an interval. Suppose f : E x I — C satisfies (V¢ € I)f(, t) € L\(E), ¥ (:v t)
exists for all (z,t) € E x I, and 3g € LY(F) > (V(z,t) € E X I) (a: t)| < g(x). Let

= [, f(z,t)dz. Then F is differentiable on I, and F'(t) = [, % (a: t)dz.
Proof. Fix ¢ty € I. Fort # ty € I, let h(z,t) = %{0(“0) The Mean Value Theorem
implies |h(z,t)| < supye; |%(x, t)| < g(z), so the extended LDCT implies lim;_,y, %f;(to) =
limy_ys, [, bz, t)dz = [, lim, y, h(z,t)dz = [, &L (z,t)dz. O

Remark. A similar result is true for partial derivatives when I°P¢" C R™.

Differentiating Convolutions

Theorem. Suppose f € L}(R"), g € C¥(R"), and for |a| < k, 8%g is bounded. Then
f*g € CHR"), and for |a| < k, 0°(f x g) = f * 0°g.

Proof. Use induction on |a|. For |a| = 1, write (f * g)(z) [z. 9( — ¥)f(y)dy. Then
0%(g(x —y)f(y)) = 0%g(x — y) f(y), so ||0%g||| f(¥)] is a domlnatmg function, and we can
differentiate under the integral sign. U

Corollary. If f € L. (R") and g € C*(R") (c for compact support), then f * g € C*(R™).

Proof For R > 0 let BR = {z : |x| < R}. Suppose g(z) = 0 for |z| > R. For |z| < N,
fxg@) = [y, fla—y)gW)dy = [z, W)@ —y)gly)dy = (f) * g(z), where ¢ = Byr.
Since w fe L1 the corollary follows. O

Note. If f € LP (R") for any p (1 < p < o0), then f € L (R").

loc loc

Remark on supports: Clearly supp(f * g) C supp(f) + supp(g)-

Theorem. Let €2 be an open subset of R* and 1 < p < oo. Then C(Q) (C* functions
with compact support in 2) is dense in LP((2).

Proof. Let K; C Ky C --- be a compact exhaustion of €2, i.e., each K is a compact subset
of Q, K; C K}, (interior), and |J K; = Q. Given f € LP(Q2) and € > 0, the LDCT implies
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fxkx; — f in LP(Q), so we can choose j for which ||fxx;, — f[l, < §. Since K; C K+1,
3n > 0> K; + B, C KJ;. Let ¢(x) be in CP(R") with ¢(z) = 0 for |m\>1and
Jen 0(@)dz =1 (e.g., gp( ) = fw where 1(z) = exp (1 \z\z) for |z| < 1 and v¥(x) = 0 for
lz| > 1), and let p5(z) = 6 "¢ (%) for 0 < § < 7. Now Xk, %95 = fXKk,; in LP(R") as 6 — 0.
Since supp(fxx; * cp(s) C Qfor 0 <d<mn,30 € (0,7 for which |[fxk; * v5 — fxx;llp < 5,
and fxk; * g5 € CF(Q). O




