Overview of Lebesgue Integration on \mathbb{R}^n

(see Jones, Chapter 2 ff)

Riemann integration is based on subdividing the *domain* of f. The problem with Riemann integration is the requirement of some "smoothness" of f: for x, y close, f(x) and f(y) need to have something to do with each other. Lebesgue integration is based on subdividing the codomain of f: it is built on inverse images.

Typical Example. For a set $E \subset \mathbb{R}^n$, define the characteristic function of the set E to be $\chi_E(x) = \begin{cases} 1 \text{ if } x \in E \\ 0 \text{ if } x \notin E \end{cases}$. Consider $\int_0^1 \chi_{\mathbb{Q}}(x) dx$ (\mathbb{Q} is set of rationals)

Riemann Upper integral - inf of "upper sums" $\overline{\int_0^1} \chi_{\mathbb{Q}}(x) dx = 1$

Lower integral - sup of "lower sums" $\int_0^1 \chi_{\mathbb{Q}}(x) dx = 0$

Since $\overline{\int_0^1}\chi_{\mathbb Q}(x)dx \neq \underline{\int_0^1}\chi_{\mathbb Q}(x)dx$, not Riemann integrable.

Lebesgue integral: $\lambda(E)$ denotes "size" of E (temporary)

$$\int_0^1 \chi_{\mathbb{Q}}(x) dx = 1 \cdot \lambda(\mathbb{Q} \cap [0, 1]) + 0 \cdot \lambda(\mathbb{Q}^c \cap [0, 1])$$
$$= 1 \cdot 0 + 0 \cdot 1 = 0.$$

First, must develop theory of Lebesgue measure (for "size" of sets).

Advantages of Lebesgue theory over Riemann theory:

- 1. Extension to more functions (on finite intervals).
- 2. Good convergence theorems: $\lim_{n\to\infty} \int f_n(x) dx = \int \lim_{n\to\infty} f_n(x) dx$ under mild assumptions.
- 3. Completeness of L^p spaces.

Current goal. Construct Lebesgue measure on \mathbb{R}^n . For $A \subset \mathbb{R}^n$, we want to define $\lambda(A)$, the Lebesgue measure of A, with $0 \le \lambda(A) \le \infty$ (an extension of n-dim volume).

Problem: We can't define $\lambda(A)$ for all subsets $A \subset \mathbb{R}^n$ and maintain all the properties we want. We will define $\lambda(A)$ for "[Lebesgue] measurable" subsets of \mathbb{R}^n (very many subsets). Construct $\lambda(A)$ for increasingly complicated sets.

Step 0 ϕ $\lambda(\phi) = 0$

Step 1 "Special rectangles" $I = [a_1, b_1) \times [a_2, b_2) \times \cdots \times [a_n, b_n), \ \lambda(I) = (b_1 - a_1)(b_2 - a_2) \cdots (b_n - a_n)$ for $-\infty < a_i < b_i < \infty$ (note: Jones leaves right ends closed).

Step 2 "Special polygons" *P* is a finite union of special rectangles, each of finite positive measure.

Fact Every special polygon is a disjoint union of finitely many special rectangles.

For
$$P=\bigcup\limits_{k=1}^{N}I_{k}$$
 (where the I_{k} 's are disjoint, i.e., for $j\neq k,\ I_{j}\cap I_{k}=\phi$), define $\lambda(P)=\sum\limits_{k=1}^{N}\lambda(I_{k})$

Fact $\lambda(P)$ independent of the choice of I_k 's.

Step 3 Nonempty open sets $G \subset \mathbb{R}^n$. Define $\lambda(G) = \sup\{\lambda(P) : P \text{ is a special polygon, } P \subset G\}$ ("special poly. from inside").

Remark Every nonempty open set in \mathbb{R}^n can be written as a *countable* disjoint union of special rectangles.

Step 4 Compact sets $K \subset \mathbb{R}^n$. Define $\lambda(K) = \inf\{\lambda(G) : G \text{ open}, K \subset G\}$ ("open sets from outside").

Fact If $K = \overline{P}$ for a special polygon P, then $\lambda(K) = \lambda(P)$.

For $A \subset \mathbb{R}^n$, A arbitrary, define

$$\lambda^*(A) = \inf\{\lambda(G) : G \text{ open, } A \subset G\}$$
 (outer measure of A)
 $\lambda_*(A) = \sup\{\lambda(K) : K \text{ compact, } K \subset A\}$ (inner measure of A)

Facts. If A is open or compact, $\lambda_*(A) = \lambda(A) = \lambda^*(A)$. Hence for any $A, \lambda_*(A) \leq \lambda^*(A)$.

Step 5 Bounded subsets of \mathbb{R}^n : we say a bounded subset $A \subset \mathbb{R}^n$ is [Lebesgue] measurable if $\lambda_*(A) = \lambda^*(A)$, in which case we define $\lambda(A) = \lambda_*(A) = \lambda^*(A)$.

Step 6 Arbitrary subsets of \mathbb{R}^n : we say A is [Lebesgue] measurable if for each R > 0, $A \cap B(0,R)$ (ball of radius R, center 0) is measurable, and define $\lambda(A) = \sup_{R>0} \lambda(A \cap B(0,R))$.

Let \mathcal{L} denote the collection of all Lebesgue measurable subsets of \mathbb{R}^n .

Fact. \mathcal{L} is a σ -algebra of subsets of \mathbb{R}^n , i.e., (i) ϕ , $\mathbb{R}^n \in \mathcal{L}$, (ii) $A \in \mathcal{L} \Rightarrow A^C \in \mathcal{L}$, (iii) if $A_1, A_2, \ldots \in \mathcal{L}$ is a *countable* collection of subsets of \mathbb{R}^n in \mathcal{L} , then $\bigcup_{k=1}^{\infty} A_k \in \mathcal{L}$.

Fact. If S is any collection of subsets of a set X, then there is a smallest σ -algebra A of subsets of X containing S (i.e., $S \subset A$), namely, the intersection of all σ -algebras of subsets of X containing A. This smallest σ -algebra A is called the σ -algebra generated by S.

Definition. The smallest σ -algebra of subsets of \mathbb{R}^n containing the open sets is called the collection \mathcal{B} of *Borel sets*. Closed sets are Borel sets.

Fact. Every open set is [Lebesgue] measurable. Thus $\mathcal{B} \subset \mathcal{L}$.

Fact. If $A \in \mathcal{L}$, then $\lambda_*(A) = \lambda(A) = \lambda^*(A)$.

Caution: However, $\lambda_*(A) = \lambda^*(A) = \infty$ does not imply $A \in \mathcal{L}$.

Properties of Lebesgue measure λ

 λ is a measure: $\lambda(\phi) = 0$, $(\forall A \in \mathcal{L}) \ \lambda(A) \geq 0$, and if $A_1, A_2, \ldots \in \mathcal{L}$ are disjoint then $\lambda\left(\bigcup_{k=1}^{\infty} A_k\right) = \sum_{k=1}^{\infty} \lambda(A_k)$ (countable additivity). Consequences:

(i) if $A, B \in \mathcal{L}$ and $A \subset B$, then $\lambda(A) \leq \lambda(B)$

(ii) if
$$A_1, A_2, \dots \in \mathcal{L}$$
, then $\lambda \left(\bigcup_{k=1}^{\infty} A_k \right) \leq \sum_{k=1}^{\infty} \lambda(A_k)$ (countable subadditivity)

Remark: both (i) and (ii) are true of outer measure λ^* on all subsets of \mathbb{R}^n .

Sets of Measure Zero

Fact. If $\lambda^*(A) = 0$, then $0 \le \lambda_*(A) \le \lambda^*(A) = 0$, so $0 = \lambda_*(A) = \lambda^*(A)$, so $A \in \mathcal{L}$. Thus every subset of a set of measure zero is also measurable (we say λ is a *compact measure*).

Characterization of Lebesgue measurable sets

Definition. A set is called a G_{δ} if it is the intersection of a countable collection of open sets. A set is called an F_{σ} if it is the union of a countable collection of closed sets. G_{δ} sets and F_{σ} sets are Borel sets.

Fact. A set $A \subset \mathbb{R}^n$ is Lebesgue measurable iff \exists a G_δ set G and an F_σ set F for which $F \subset A \subset G$ and $\lambda(G \setminus F) = 0$. (Note: $G \setminus F = G \cap F^C$ is a Borel set.)

Examples.

- (0) If $A = \{a\}$ is a single point, then $A \in \mathcal{L}$ and $\lambda(A) = 0$.
- (1) If $A = \{a_1, a_2, ...\}$ is countable, then A is measurable, and $\lambda(A) \leq \sum_{j=1}^{\infty} \lambda(\{a_j\}) = 0$, so $\lambda(A) = 0$. For example, $\lambda(\mathbb{Q}) = 0$.
- (2) $\lambda(\mathbb{R}^n) = \infty$.
- (3) **Open sets in** \mathbb{R} . Every nonempty open set G in \mathbb{R} is a (finite or) countable disjoint union of open intervals (a_j, b_j) $(1 \le j \le J \text{ or } 1 \le j < \infty)$, and $\lambda(G) = \sum_j \lambda(a_j, b_j) = \sum_j (b_j a_j)$.
- (4) **The Cantor Set** is a closed subset of [0, 1]. Let

$$G_{1} = \left(\frac{1}{3}, \frac{2}{3}\right), \qquad \lambda(G_{1}) = \frac{1}{3}$$

$$G_{2} = \left(\frac{1}{9}, \frac{2}{9}\right) \cup \left(\frac{7}{9}, \frac{8}{9}\right), \qquad \lambda(G_{2}) = \frac{2}{9}$$

$$G_{3} = \left(\frac{1}{27}, \frac{2}{27}\right) \cup \dots \cup \left(\frac{25}{27}, \frac{26}{27}\right), \qquad \lambda(G_{3}) = \frac{4}{27}$$
etc.
$$\left(\text{note } \lambda(G_{k}) = \frac{2^{k-1}}{3^{k}}\right)$$

$$\left[\begin{array}{c|c} & & \\ & \\ & & \\ & \\ & & \\ & \\ & & \\ &$$

(middle thirds of remaining subintervals)

Let
$$G = \bigcup_{k=1}^{\infty} G_k$$
 (G open subset of $(0,1)$).

Define the Cantor set $C = [0, 1] \setminus G$

$$\lambda(G) = \frac{1}{3} + \frac{2}{9} + \frac{4}{27} + \dots = \frac{1}{3} \left(1 + \frac{2}{3} + \left(\frac{2}{3} \right)^2 + \dots \right) = \frac{1}{3} \cdot \frac{1}{1 - \frac{2}{3}} = 1$$

Since $\lambda(C) + \lambda(G) = \lambda([0,1]) = 1$, $\lambda(C) = 0$.

Fact. For $x \in [0,1]$, $x \in C$ iff x has a base 3 expansion with only 0's and 2's, i.e., $x = \sum_{j=1}^{\infty} \frac{d_j}{3^j}$ with each $d_j \in \{0,2\}$.

examples.
$$0 = (0.000 \cdots)_3$$

 $\frac{1}{3} = (0.100 \cdots)_3 = (0.0222 \cdots)_3$
 $\frac{2}{3} = (0.200 \cdots)_3$
 $1 = (0.222 \cdots)_3$

 $\frac{3}{4} = (0.202020 \cdots)_3$ is in C (not an endpoint of any interval in any G_k). C can be put in 1-1 correspondence with [0,1] (and thus also with \mathbb{R}).

Invariance of Lebesgue measure

(1) **Translation**. For a fixed $x \in \mathbb{R}^n$ and $A \subset \mathbb{R}^n$, define $x + A = \{x + y : y \in A\}$.

Fact. If $x \in \mathbb{R}^n$ and $A \in \mathcal{L}$, then $x + A \in \mathcal{L}$, and $\lambda(x + A) = \lambda(A)$.

(2) If $T: \mathbb{R}^n \to \mathbb{R}^n$ is linear and $A \in \mathcal{L}$, then $T[A] \in \mathcal{L}$, and $\lambda(T[A]) = |\det T| \cdot \lambda(A)$.

Measurable Functions

Consider a function $f: \mathbb{R}^n \to [-\infty, \infty]$ (arithmetic in the extended reals: for $x \in \mathbb{R}$, $x \pm \infty = \pm \infty$; for a > 0, $a \cdot (\pm \infty) = \pm \infty$; for a < 0, $a \cdot (\pm \infty) = \mp \infty$; $0 \cdot (\pm \infty) = 0$. f is called Lebesgue measurable if for every $t \in \mathbb{R}$, $f^{-1}([-\infty, t]) \in \mathcal{L}$ (in \mathbb{R}^n).

Recall. Inverse images commute with unions, intersections, complements

$$f^{-1}[B^C] = f^{-1}[B]^C; \ f^{-1}\left[\bigcup_{\alpha} A_{\alpha}\right] = \bigcup_{\alpha} f^{-1}[A_{\alpha}]; \ f^{-1}\left[\bigcap_{\alpha} A_{\alpha}\right] = \bigcap_{\alpha} f^{-1}[A_{\alpha}].$$

Fact. For any function $f: \mathbb{R}^n \to [-\infty, \infty]$, the collection of sets $B \subset [-\infty, \infty]$ for which $f^{-1}[B] \in \mathcal{L}$ is itself a σ -algebra of subsets of $[-\infty, \infty]$.

Note. The smallest σ -algebra of subsets of $[-\infty, \infty]$ containing all sets of the form $[-\infty, t]$ for $t \in \mathbb{R}$ contains also $\{-\infty\}$, $\{\infty\}$, and all sets of the form $[-\infty, t)$, $[t, \infty]$, $(t, \infty]$, (a, b), etc. It is the collection of all sets of the form $B, B \cup \{\infty\}$, $B \cup \{-\infty\}$, or $B \cup \{-\infty, \infty\}$ for Borel subsets B of \mathbb{R} .

Comments. If f and $g: \mathbb{R}^n \to [-\infty, \infty]$ are measurable, then f+g, $f \cdot g$, and |f| are measurable.

(define $\infty + (-\infty)$ (and $(-\infty) + \infty$) separately in a consistent fashion)

Moreover, if $\{f_k\}$ is a sequence of measurable functions $f_k: \mathbb{R}^n \to [-\infty, \infty]$, then so are $\sup_k f_k(x)$, $\inf_k f_k(x)$, $\lim\sup_{k \to \infty} f_k(x)$, $\lim\inf_k f_k(x)$, so if $\lim_{k \to \infty} f_k(x)$ exists $\forall x$, it is also

measurable.

Definition. If $A \subset \mathbb{R}^n$, $A \in \mathcal{L}$, and $f : A \to [-\infty, \infty]$, we say that f is measurable (on A) if, when we extend f to be 0 on A^C , f is measurable on \mathbb{R}^n (equivalent: $f\chi_A$ is measurable for any extension of f).

Definition. If $f: \mathbb{R}^n \to \mathbb{C}$ (not including ∞), we say f is Lebesgue measurable if $\mathcal{R}ef$ and $\mathcal{I}mf$ are both measurable.

Fact. $f: \mathbb{R}^n \to \mathbb{C}$ is measurable iff for every open set $G \subset \mathbb{C}$, $f^{-1}[G] \in \mathcal{L}$.

Integration

First consider only $f: \mathbb{R}^n \to [0,\infty]$ (so $f \geq 0$), with f measurable. Define $S_N = \sum_{k=0}^{\infty} k 2^{-N} \lambda \left(\left\{ x : k 2^{-N} \leq f(x) < (k+1) 2^{-N} \right\} \right) + \underbrace{\infty \cdot \lambda \left(\left\{ x : f(x) = +\infty \right\} \right)}_{\text{(here } \infty \cdot 0 = 0)}$. Call this a Lebesgue sum.

Claim. $S_N \leq S_{N+1}$.

Proof. $\{x: k2^{-N} \le f(x) < (k+1)2^{-N}\}\$ is the disjoint union of $\{x: k2^{-N} \le f(x) < (k+\frac{1}{2})2^{-N}\}\$ and $\{x: (k+\frac{1}{2})2^{-N} \le f(x) < (k+1)2^{-N}\}\$ so $k2^{-N}\lambda(\{x: k2^{-N} \le f(x) < (k+1)2^{-N}\})$

 $k2^{-N}\lambda\left(\left\{x:k2^{-N}\leq f(x)<\left(k+\frac{1}{2}\right)2^{-N}\right\}\right)+\left(k+\frac{1}{2}\right)2^{-N}\lambda\left(\left\{x:\left(k+\frac{1}{2}\right)2^{-N}\leq f(x)<(k+1)2^{-N}\right\}\right)$ and the claim follows after summing and redefining indices.

77

Define. $\int_{\mathbb{R}^n} f = \int_{\mathbb{R}^n} f(x) dx = \lim_{N \to \infty} S_N$ (also written $\int_{\mathbb{R}^n} f d\lambda$). This limit exists (in $[0,\infty]$) by the monotonicity $S_N \leq S_{N+1}$.

General Measurable Functions

Let $f: \mathbb{R}^n \to [-\infty, \infty]$ be measurable. Define $f_+(x) = \begin{cases} f(x) & \text{if } f(x) \geq 0 \\ 0 & \text{if } f(x) < 0 \end{cases}$ and $f_-(x) = \begin{cases} 0 & \text{if } f(x) > 0 \\ -f(x) & \text{if } f(x) \leq 0 \end{cases}$ so $(\forall x) \ f(x) = f_+(x) - f_-(x)$. The integral of f is only defined if at least one of $\int f_+ < \infty$ and $\int f_- < \infty$ holds, in which case we define

$$\int_{\mathbb{R}^n} f = \int_{\mathbb{R}^n} f_+ - \int_{\mathbb{R}^n} f_-.$$

Definition. A measurable function is called *integrable* if both $\int f_+ < \infty$ and $\int f_- < \infty$. Since $|f| = f_+ + f_-$, this is equivalent to $\int |f| < \infty$.

Properties of the Lebesgue Integral

(We will write $f \in L^1$ to mean f is measurable and $\int |f| < \infty$.)

- (1) If $f, g \in L^1$ and $a, b \in \mathbb{R}$, then $af + bg \in L^1$, and $\int (af + bg) = a \int f + b \int g$. (We will write f = g a.e. (almost everywhere) to mean $\lambda \{x : f(x) \neq g(x)\} = 0$.)
- (2) If $f, g \in L^1$ and f = g a.e., then $\int f = \int g$.
- (3) If $f \geq 0$ and $\int f < \infty$, then $f < \infty$ a.e. Thus if $f \in L^1$, then $|f| < \infty$ a.e. (We will identify two functions if they agree a.e., e.g., $\chi_{\mathbb{Q}} = 0$ a.e.)
- (4) If $f \ge 0$ and $\int f = 0$, then f = 0 a.e. (Not true if f can be both positive and negative, e.g., $\int_{-\infty}^{\infty} \frac{x}{1+x^4} dx = 0$.)
- (5) If A is measurable, $\int \chi_A = \lambda(A)$.

Definition. If A is a measurable set and $f: A \to [-\infty, \infty]$ is measurable, then $\int_A f = \int_{\mathbb{R}^n} f \chi_A$.

(6) If A and B are disjoint and $f\chi_{A\cup B}\in L^1$, then

$$\int_{A \cup B} f = \int_A f + \int_B f.$$

Definition. If $f: \mathbb{R}^n \to \mathbb{C}$ is measurable, and both $\mathcal{R}ef$ and $\mathcal{I}mf \in L^1$, define $\int_{\mathbb{R}^n} f = \int_{\mathbb{R}^n} \mathcal{R}ef + i \int_{\mathbb{R}^n} \mathcal{I}mf$.

(7) If $f: \mathbb{R}^n \to \mathbb{C}$ is measurable, then $\mathcal{R}ef$ and $\mathcal{I}mf \in L^1$ iff $|f| \in L^1$. Moreover, $|\int f| \leq \int |f|$.

Comparison of Riemann and Lebesgue integrals

If f is bounded and defined on a bounded set and f is Riemann integrable, then f is Lebesgue integrable and the two integrals are equal.

Theorem. If f is bounded and defined on a bounded set, then f is Riemann integrable iff f is continuous a.e.

Note: The two theories vary in their treatment of infinities (in both domain and range). For example, the improper Riemann integral $\lim_{R\to\infty}\int_0^R\frac{\sin x}{x}dx$ exists and is finite, but $\frac{\sin x}{x}$ is not Lebesgue integrable over $[0,\infty)$ as $\int_0^\infty\left|\frac{\sin x}{x}\right|dx=\infty$.

Convergence Theorems

If $\lim_{k\to\infty} f_k(x) = f(x)$ (maybe only a.e.), where f_k and f are measurable, then how are $\int f_k$ and $\int f$ related?

Examples.

- (1) Let $f_k = \chi_{[k,\infty)}$. Then $f_k \geq 0$, $\lim f_k = 0$, and $\int f_k = \infty$, so $\lim \int f_k \neq \int \lim f_k$.
- (2) Let $f_k = \chi_{[k,k+1]}$. Then again $\lim f_k = 0$, and $\int f_k = 1$, so $\lim \int f_k \neq \int \lim f_k$.

Monotone Convergence Theorem. (Jones calls "Increasing Conv. Thm.") If $0 \le f_1 \le f_2 \le \cdots$ a.e., $f = \lim_{k \to \infty} f_k$ a.e., and f_k and f are measurable, then $\lim_{k \to \infty} \int f_k = \int f$ $(= \int \lim_k f_k)$ (in $[0, \infty]$). Note: $\lim_{k \to \infty} f_k$ exists a.e. by monotonicity.

Fatou's Lemma. If f_k are nonnegative a.e. and measurable, then

$$\int \liminf_{k \to \infty} f_k \le \liminf_{k \to \infty} \int f_k.$$

Lebesgue Dominated Convergence Theorem. Suppose $\{f_k\}$ is a sequence of complex-valued (or extended-real-valued) measurable functions. Assume $\lim_k f_k = f$ a.e., and assume that there exists a "dominating function," i.e., an *integrable* function g such that $|f_k(x)| \leq g(x)$ a.e. Then

$$\int f = \lim_{k \to \infty} \int f_k.$$

A corollary is the

Bounded Convergence Theorem. Let A be a measurable set of finite measure, and suppose $|f_k| \leq M$ on A. Assume $\lim_k f_k$ exists a.e. Then $\lim_k \int_A f_k = \int_A f$. (Apply Dominated Convergence Theorem with $g = M\chi_A$.)

Example. (using Fatou with a dominating sequence)

Extension of Lebesgue Dominated Convergence Theorem. Suppose $g_k \geq 0$, $g \geq 0$ are all integrable, and $\int g_k \to \int g$, and $g_k \to g$ a.e. Suppose f_k , f are all measurable, $|f_k| \leq g_k$

a.e. (which implies that f_k is integrable), and $f_k \to f$ a.e. (which implies $|f| \le g$ a.e.). Then $\int |f_k - f| \to 0$ (i.e. $||f_k - f||_{L^1} \to 0$).

Proof. $|f_k - f| \le |f_k| + |f| \le g_k + g$ a.e. Apply Fatou to $g_k + g - |f_k - f|$ (which is ≥ 0 a.e.). Then $\int \liminf(g_k + g - |f_k - f|) \le \liminf \int (g_k + g - |f_k - f|)$. So $\int 2g \le \lim \int g_k + \int g - \limsup \int |f_k - f| = 2 \int g - \limsup \int |f_k - f|$. Since $\int g < \infty$, $\limsup \int |f_k - f| \le 0$. Thus $\int |f_k - f| \to 0$.

Example — the Cantor Ternary Function

 $f:[0,1] \to [0,1]$ is increasing and continuous. If $x \in C$ (the Cantor set), say $x = \sum_{k=1}^{\infty} \frac{d_k}{3^k}$ with $d_k \in \{0,2\}$, set $f(x) = \sum_{k=1}^{\infty} \frac{d_k/2}{2^k}$. On $[0,1] \setminus C$, map $\left(\frac{1}{2},\frac{2}{3}\right)$ to $\frac{1}{2}$, $\left(\frac{1}{9},\frac{2}{9}\right)$ to $\frac{1}{4}$, $\left(\frac{7}{9},\frac{8}{9}\right)$ to $\frac{3}{4}$, etc. (For any $x \in [0,1]$, if $x = \sum_{k=1}^{\infty} \frac{d_k}{3^k}$ where $d_k \in \{0,1,2\}$, let K be the smallest k for which $d_k = 1$, and set $f(x) = \left(\sum_{k=1}^{K-1} \frac{d_k/2}{2^k}\right) + \frac{1}{2^K}$.)

Find
$$\int_{0}^{1} f(x)dx$$
. Let $\varphi_{1} = \frac{1}{2}\chi_{\left(\frac{1}{3},\frac{2}{3}\right)}$
 $\varphi_{2} = \varphi_{1} + \frac{1}{4}\chi_{\left(\frac{1}{9},\frac{2}{9}\right)} + \frac{3}{4}\chi_{\left(\frac{7}{9},\frac{8}{9}\right)}$

etc.

Then each φ_k is simple (a finite linear comb of char. func. of meas. sets). (Note: if $\varphi = \sum_{j=1}^N a_j \chi_{A_j}$, where $A_j \in \mathcal{L}$ and $\lambda(A_j) < \infty$, then $\int \varphi = \sum_{j=1}^N a_j \lambda(A_j)$.) Also $\varphi_k(x) \to f(x)$ for $x \in [0,1] \backslash C$, and $\varphi_k(x) = 0$ for $x \in C(\forall k)$. Since $\lambda C = 0$, $\varphi_k \to f$ a.e. on [0,1]. So by MCT or LDCT or BCT, $\int_0^1 (f(x)dx = \lim_{k \to \infty} \int_0^1 \varphi_k(x)dx$. Now $\int \varphi_k = \frac{1}{3} \cdot \frac{1}{2} + \frac{1}{3^2} \cdot \frac{1}{2^2}(1+3) + \frac{1}{3^3} \cdot \frac{1}{2^3}(1+3+5+7) + \cdots + \frac{1}{3^k} \cdot \frac{1}{2^k}(1+3+5+\cdots+(2^k-1))$. (note: $1+3+5+\cdots+(2j-1)=j^2$) So $\int f = \lim_k \int \varphi_k = \frac{1}{2^k}(1+3+5+\cdots+(2^k-1))$.

$$\sum_{m=1}^{\infty} \frac{1}{3^m} \frac{1}{2^m} 2^{2m-2} = \frac{1}{6} \left(1 + \frac{2}{3} + \left(\frac{2}{3} \right)^2 + \cdots \right) = \frac{1}{6} \left(\frac{1}{1 - \frac{2}{3}} \right) = \frac{1}{2}.$$

"Multiple Integration" via Iterated Integrals

Suppose n = m + l, so $\mathbb{R}^n = \mathbb{R}^m \times \mathbb{R}^l$. For $x \in \mathbb{R}^n$, write x = (y, z), $y \in \mathbb{R}^m$, $z \in \mathbb{R}^l$. Then $\int_{\mathbb{R}^n} f d\lambda_n = \int_{\mathbb{R}^n} f(x) d\lambda_n(x) = \int_{\mathbb{R}^n} f(y, z) d\lambda_n(y, z)$. Write dx for $d\lambda_n(x)$, dy for $d\lambda_m(y)$, dz for $d\lambda_l(z)$ (λ_n is Leb. meas. on \mathbb{R}^n). Consider the iterated integrals

$$\int_{\mathbb{R}^l} \left[\int_{\mathbb{R}^m} f(y,z) dy \right] dz \qquad \text{and} \qquad \int_{\mathbb{R}^m} \left[\int_{\mathbb{R}^l} f(y,z) dz \right] dy.$$

Questions:

- (1) When are these iterated integrals the same? (allowing change of order)
- (2) When are they equal to $\int_{\mathbb{R}^n} f(x) dx$?

There are two key theorems, usually used in tandem.

① Tonelli's Theorem. Suppose $f \geq 0$ is measurable on \mathbb{R}^n . Then for a.e. $z \in \mathbb{R}^l$, the function $f_z(y) \equiv f(y, z)$ is measurable on \mathbb{R}^m (as a function of y), and

$$\int_{\mathbb{R}^n} f(x)dx = \int_{\mathbb{R}^l} \left[\int_{\mathbb{R}^m} f(y, z)dy \right] dz.$$

Example. Let $A \in \mathbb{R}^m$ be non-measurable. Define $f: \mathbb{R}^n \to \mathbb{R}$ by $f(y,z) = \begin{cases} 0 & (z \neq z_0) \\ \chi_A(y) & (z = z_0) \end{cases}$. Then f is measurable on \mathbb{R}^n (as $\lambda_n(\{x: f_n(x) \neq 0\}) = 0$). But the "slice function" $f_{z_0}(y) = f(y,z_0) = \chi_A(y)$ is not measurable on \mathbb{R}^m . However, since the set of z's for which $\int f_z(y) dy$ is undefined has measure zero, the iterated integral still makes sense and is 0.

② Fubini's Theorem. Suppose f is integrable on \mathbb{R}^n (i.e., f meas., $\int |f| < \infty$). Then for a.e. $z \in \mathbb{R}^l$;, the slice functions $f_z(y)$ are integrable on \mathbb{R}^m , and

$$\int_{\mathbb{R}^n} f(x)dx = \int_{\mathbb{R}^l} \left[\int_{\mathbb{R}^m} f(y, z)dy \right] dz.$$

Typical Case. Want to show $\int \left[\int f(y,z) dy \right] dz = \int \left[\int f(y,z) dz \right] dy$. Plan: Use Tonelli to verify hypothesis of Fubini:

- (i) look at either iterated integral for |f|; show (if true) that the iterated integral is $< \infty$. Then by Tonelli, $\int_{\mathbb{R}^n} |f(x)| dx = \int \left[\int |f(y,z)| dz \right] dy < \infty$;
- (ii) having verified now that $\int_{\mathbb{R}^n} |f| < \infty$, now apply Fubini.

Example. (Can't drop $\int |f| < \infty$ in Fubini.) Define f on $(0,1) \times (0,1)$ by $f(x,y) = \begin{cases} x^{-2} & 0 < y \le x < 1 \\ -y^{-2} & 0 < x < y < 1 \end{cases}$. Then $\int_0^1 \int_0^1 f(x,y) dy dx = \int_0^1 \left(\frac{1}{x^2} - \int_x^1 \frac{dy}{y^2}\right) dx = \int_0^1 \left(\frac{1}{x} + 1 - \frac{1}{x}\right) dx = 1$. Similarly, $\int_0^1 \int_0^1 f(x,y) dx dy = -1$. Note that by Tonelli, $\int_{(0,1)\times(0,1)} |f(x,y)| d\lambda_2(x,y) = \int_0^1 \int_0^1 |f(x,y)| dy dx = \int_0^1 \left(\frac{1}{x} + \int_x^1 \frac{dy}{y^2}\right) dx = \infty$.

L^p spaces

 $1 \leq p < \infty$. Fix a measurable subset $A \subset \mathbb{R}^n$. Consider measurable functions $f: A \to \mathbb{C}$ for which $\int_A |f|^p < \infty$. Define $||f||_p = \left(\int_A |f|^p\right)^{\frac{1}{p}}$. On this set of functions, $||f||_p$ is only a seminorm:

$$||f||_{p} \geq 0$$
 (but $||f||_{p} = 0$ does not imply $f = 0$, only $f(x) = 0$ a.e.)
 $||\alpha f||_{p} = |\alpha| \cdot ||f||_{p}$
 $||f + g||_{p} \leq ||f||_{p} + ||g||_{p}$ (Minkowski's Inequality)

(Note: $||f||_p = 0 \Rightarrow \int_A |f|^p = 0 \Rightarrow f = 0$ a.e. on A.) Define an equivalence relation on this set of functions:

81

$$f \sim g$$
 means $f = g$ a.e. on A

Let $\widetilde{f} = \{g \text{ measurable on } A : f = g \text{ a.e.}\}$, the equivalence class of f. Define $\|\widetilde{f}\|_p = \|f\|_p$ (independent of choice of representative in \widetilde{f}). Define $L^p(A) = \{\widetilde{f} : \int_A |f|^p < \infty\}$. Then $\|\cdot\|_p$ is a *norm* on $L^p(A)$. We usually abuse notation and write $f \in L^p(A)$ (meaning $\widetilde{f} \in L^p(A)$).

Example. We say $f \in L^p(\mathbb{R}^n)$ is "continuous" if $\exists g \in L^p(\mathbb{R}^n)$ for which $g : \mathbb{R}^n \to \mathbb{C}$ is continuous and f = g a.e. (and WLOG we can assume f is chosen to be that representative g of \widetilde{f}).

 $p=\infty.$ Fix $A^{\mathrm{measurable}}\subset\mathbb{R}^n.$ Consider "essentially bounded" measurable functions $f:A\to\mathbb{C}$, i.e., for which $\exists\,M<\infty$ so that $|f(x)|\le M$ a.e. on A. Define $\|f\|_\infty=\inf\{M:|f(x)|\le M$ a.e. on A}, the essential sup of |f|. If $0<\|f\|_\infty<\infty$, then for each $\varepsilon>0$, $\lambda\{x\in A:|f(x)|>\|f\|_\infty-\varepsilon\}>0$. As above, $\|\cdot\|_\infty$ is a seminorm on the set of essentially bounded meas. func's, and $\|\cdot\|_\infty$ is a norm on $L^\infty(A)=\{\widetilde{f}:\|f\|_\infty<\infty\}$.

Fact. For $f \in L^{\infty}(A)$, $|f(x)| \leq ||f||_{\infty}$ a.e. (Proof: $\{x : |f(x)| > ||f||_{\infty}\} = \bigcup_{m=1}^{\infty} \{x : |f(x)| > ||f||_{\infty} + \frac{1}{m}\}$. Each of these latter sets has measure 0.) So the inf is a min in the definition of $||f||_{\infty}$.

Fact. $L^{\infty}(\mathbb{R}^n)$ is not separable (i.e., it does not have a countable dense subset).

Example. For each $\alpha \in \mathbb{R}$, let $f_{\alpha}(x) = \chi_{[\alpha,\alpha+1]}(x)$. For $\alpha \neq \beta$, $||f_{\alpha} - f_{\beta}||_{\infty} = 1$. So $\{B_{\frac{1}{\alpha}}(f_{\alpha}) : \alpha \in \mathbb{R}\}$ is an uncountable collection of disjoint nonempty open subsets in $L^{\infty}(\mathbb{R})$.

Conjugate Exponents. If $1 \le p \le \infty$, $1 \le q \le \infty$, and $\frac{1}{p} + \frac{1}{q} = 1$ (where $\frac{1}{\infty} \equiv 0$), we say that p and q are *conjugate exponents*. Examples: $\begin{vmatrix} p \\ q \end{vmatrix} \begin{bmatrix} 1 & 2 & 3 & \infty \\ \infty & 2 & \frac{3}{2} & 1 \end{vmatrix}$.

Hölder's Inequality. If $1 \le p \le \infty$, $1 \le q \le \infty$, and $\frac{1}{p} + \frac{1}{q} = 1$, then $\int |fg| \le ||f||_p \cdot ||g||_q$. (Note: if $\int |fg| < \infty$, also $|\int fg| \le \int |fg| \le ||f||_p \cdot ||g||_q$.)

Remark. The cases $\left\{ \begin{array}{l} p=1\\ q=\infty \end{array} \right.$ and $\left\{ \begin{array}{l} p=\infty\\ q=1 \end{array} \right.$ are obvious. When $p=2,\ q=2,$ this is the Cauchy-Schwarz inequality $\int |f\,g| \leq \|f\|_2 \cdot \|g\|_2.$

Completeness

Theorem. (Riesz-Fischer) Let $A^{\text{meas.}} \subset \mathbb{R}^n$, $1 \leq p \leq \infty$. Then $L^p(A)$ is complete (using $\|\cdot\|_p$).

Locally L^p Functions

Definition. Let $G^{\text{open}} \subset \mathbb{R}^n$. Define

$$L^p_{\mathrm{loc}}(G) = \{[\mathrm{equiv\ classes\ of}] f : f^{\mathrm{meas}}\ \mathrm{on}\ G, (\forall\, K^{\mathrm{compact}} \subset G) f \in L^p(K)\}.$$

There is a metric on L^p_{loc} which makes it a complete metric space (but not a Banach space — not given by a norm). (Fact. If (X, ρ) is a metric space, and we define $\sigma(x, y) = \frac{\rho(x, y)}{1 + \rho(x, y)}$, then σ is a metric on X, and (X, ρ) is uniformly equivalent to (X, σ) . Use that $t \mapsto \frac{t}{1+t}$ is increasing on $[0, \infty)$ to show σ satisfies the triangle inequality. Note that $\sigma(x, y) < 1$ for all $x, y \in X$.)

Let K_1, K_2, \ldots be a "compact exhaustion" of G, i.e., a sequence of nonempty compact subsets of G with $K_m \subset K_{m+1}^{o\leftarrow \text{interior}}$ and $\bigcup_{m=1}^{\infty} K_m = G$ (e.g., $K_m = \{x \in G : \text{dist}(x, G^C) \geq \frac{1}{m}\}$ and $|x| \leq m\}$). Then for any compact set $K \subset G$, $K \subset \bigcup_{m=1}^{\infty} K_m \subset \bigcup_{m=1}^{\infty} K_{m+1}^o$, so $\exists m$ for which $K \subset K_m$. The distance in $L^p_{\text{loc}}(G)$ is $d(f,g) = \sum_{m=1}^{\infty} 2^{-m} \frac{\|f-g\|_{p,K_m}}{1+\|f-g\|_{p,K_m}}$. Clearly $f_j \to f$ in $L^p_{\text{loc}}(G)$ iff $(\forall K^{\text{compact}} \subset G) \|f_j - f\|_{p,K} \to 0$.

Continuous Functions not closed in L^p

Let $G \subset \mathbb{R}^n$ be open and bounded. Consider $C_b(G)$, the set of bounded continuous functions on G. Clearly $C_b(G) \subset L^p(G)$. But $C_b(G)$ is not closed in $L^p(G)$ $(p < \infty)$.

Example. G = (0,1) $f_j = 0$ $\frac{1}{2}$ Then $\{f_j\}$ is Cauchy in $\|\cdot\|_p$ for $1 \le p < \infty$. But there is no cont. function f for which $\|f_j - f\|_p \to 0$ as $j \to \infty$.

Facts. Suppose $1 \leq p < \infty$ and $G^{\text{open}} \subset \mathbb{R}^n$.

- (1) The set of simple functions (finite linear combinations of characteristic functions of measurable sets) with support in a bounded subset of G is dense in $L^p(G)$.
- (2) The set of step functions (finite linear combinations of characteristic functions of rectangles) with support in a bounded subset of G is dense in $L^p(G)$.
- (3) $C_C(G)$ is dense in $L^p(G)$ the set of continuous functions f whose support $\overline{\{x:f(x)\neq 0\}}$ is compact, $\subset G$.
- (4) $C_C^{\infty}(G)$ is dense in $L^p(G)$ (idea: mollify a given $f \in L^p(G)$).

 the set of C^{∞} functions whose support is a compact subset of G.

Consequence: For $1 \leq p < \infty$, $L^p(G)$ is separable (e.g., use (2), rectangles with rational endpoints, linear combinations with rational coefficients).

Example. Continuity of Translation in $L^p(\mathbb{R}^n)$ for $1 \leq p < \infty$ (uses $C_C(\mathbb{R}^n)$ dense). Let $f \in L^p(\mathbb{R}^n)$. For $y \in \mathbb{R}^n$, define $f_y(x) = f(x-y)$ (translate f by y).

Claim. The map $y \mapsto f_y$ from \mathbb{R}^n into $L^p(\mathbb{R}^n)$ is uniformly continuous.

Proof. Given $\varepsilon > 0$, choose $g \in C_C(\mathbb{R}^n)$ for which $\|g - f\|_p < \frac{\varepsilon}{3}$. Let $M = \lambda(\{x : g(x) \neq 0\}) < \infty$. By uniform continuity of g, $\exists \, \delta > 0$ for which $|z - y| < \delta \Rightarrow (\forall \, x) |g_z(x) - g_y(x)| < \frac{\varepsilon}{3(2M)^{\frac{1}{p}}}$. Then for $|z - y| < \delta$, $\|g_z - g_y\|_p^p = \int |g_z - g_y|^p \le \lambda(\{x : g_z(x) \neq 0 \text{ or } g_y(x) \neq 0\}) \left(\frac{\varepsilon}{3(2M)^{\frac{p}{p}}}\right)^p \le (2M) \frac{\varepsilon^p}{3^p(2M)}$, i.e., $\|g_z - g_y\|_p \le \frac{\varepsilon}{3}$, and thus $\|f_z - f_y\|_p \le \|f_z - g_z\|_p + \|g_z - g_y\|_p + \|g_y - f_y\|_p < \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon$.

L^p convergence and pointwise a.e. convergence

For $p = \infty$. $f_k \to f$ in $L^{\infty} \Rightarrow$ on the complement of a set of measure 0, $f_k \to f$ uniformly. (Let $A_k = \{x : |f_k(x) - f(x)| > ||f_k - f||_{\infty}\}$, and $A = \bigcup_{k=1}^{\infty} A_k$. Since each $\lambda(A_k) = 0$, also $\lambda(A) = 0$. On A^C , $(\forall k)|f_k(x) - f(x)| \le ||f_k - f||_{\infty}$, so $f_k \to f$ unif. on A^C .)

For $1 \le p < \infty$. Let $A^{\text{meas.}} \subset \mathbb{R}^n$. Here $f_k \to f$ in $L^p(A)$ (i.e., $||f_k - f||_p \to 0$) does not imply that $f_k \to f$ a.e. (Example. $A = [0, 1], f_1 = \chi_{[0, 1]}, f_2 = \chi_{[0, \frac{1}{2}]}, f_3 = \chi_{[\frac{1}{2}, 1]}, f_4 = \chi_{[0, \frac{1}{4}]}, \cdots$

etc. Clearly $||f_k||_p \to 0$, so $f_k \to 0$ in L^p , but for no $x \in [0,1]$ does $f_k(x) \to 0$.) So L^p convergence for $1 \le p < \infty$ does not imply a.e. convergence. However:

Fact. If $1 \leq p < \infty$ and $f_k \to f$ in $L^p(A)$, then \exists a subsequence f_{k_j} for which $f_{k_j} \to f$ a.e. as $j \to \infty$.

Example. Suppose $A^{\text{meas}} \subset \mathbb{R}^n$, $1 \leq p < \infty$, $f_k, f \in L^p(A)$, and $f_k \to f$ a.e. Question: when does $f_k \to f$ in $L^p(A)$ (i.e. $||f_k - f||_p \to 0$)? Answer: In this situation, $f_k \to f$ in $L^p(A)$ iff $||f_k||_p \to ||f||_p$.

Proof.

- (\Rightarrow) If $||f_k f||_p \to 0$, then $|||f_k||_p ||f||_p| \le ||f_k f||_p$, so $||f_k||_p \to ||f||_p$.
- (\Leftarrow) First, observe: **Fact**. If $x, y \ge 0$, then $(x+y)^p \le 2^p (x^p + y^p)$. (Proof: let $z = \max\{x, y\}$; then $(x+y)^p \le (2z)^p = 2^p z^p \le 2^p (x^p + y^p)$.) We will use Fatou's lemma with a "dominating sequence." We have

$$|f_k - f|^p \le (|f_k| + |f|)^p \le 2^p (|f_k|^p + |f|^p).$$

Apply Fatou to $2^p(|f_k|^p + |f|^p) - |f_k - f|^p \ge 0$. By assumption, $||f_k||_p \to ||f||_p$, so $\int |f_k|^p \to \int |f|^p$. We thus get

$$\int 2^{p} (|f|^{p} + |f|^{p} - 0) \leq \liminf \int 2^{p} (|f_{k}|^{p} + |f|^{p}) - |f_{k} - f|^{p}$$

$$= \int 2^{p} |f|^{p} + \int 2^{p} |f|^{p} - \limsup |f_{k} - f|^{p}.$$

Thus $\limsup \int |f_k - f|^p \le 0$. So $||f_k - f||_p^p = \int |f_k - f|^p \to 0$. So $||f_k - f||_p \to 0$.

Intuition for growth of functions in $L^p(\mathbb{R}^n)$

Fix n, fix p with $1 \le p < \infty$, and fix a. Let $f_1(x) = \frac{1}{|x|^a} \chi_{\{x:|x|<1\}}$ $f_2(x) = \frac{1}{|x|^a} \chi_{\{x:|x|>1\}}$ $f_2(x) = \frac{1}{|x|^a} \chi_{\{x:|x|>1\}}$ no problems near x = 0, investigate behavior as $|x| \to \infty$.

Polar Coordinates in \mathbb{R}^n

So $\int_{\mathbb{R}^n} |f_1(x)|^p dx = \int_{S^{n-1}} \left[\int_0^1 \left(\frac{1}{r^a}\right)^p r^{n-1} dr \right] d\sigma = \omega_n \int_0^1 r^{n-ap-1} dr$ where $\omega_n = \sigma(S^{n-1})$. This is $< \infty$ iff n - ap - 1 > -1, i.e., $a < \frac{n}{p}$. So $f_1 \in L^p(\mathbb{R}^n)$ iff $a < \frac{n}{p}$. Similarly, $f_2 \in L^p(\mathbb{R}^n)$ iff $a > \frac{n}{p}$.

Conclusion. For any $p \neq q$ with $1 \leq p, q \leq \infty$, $L^p \not\subset L^q$. However, for sets A of finite measure, we have:

Claim. If
$$\lambda(A) < \infty$$
 and $1 \le p < q \le \infty$, then $L^q(A) \subset L^p(A)$, and
$$\|f\|_p \le \lambda(A)^{\frac{1}{p} - \frac{1}{q}} \|f\|_q.$$

Proof. This is obvious when $q = \infty$. So suppose $1 \le p < q < \infty$. Let $r = \frac{q}{p}$. Then $1 < r < \infty$. Let s be the conjugate exponent to r, so $\frac{1}{r} + \frac{1}{s} = 1$. Then $\frac{1}{s} = 1 - \frac{p}{q} = p\left(\frac{1}{p} - \frac{1}{q}\right)$. By Hölder,

$$||f||_{p}^{p} = \int_{A} |f|^{p} = \int \chi_{A} |f|^{p} \le ||\chi_{A}||_{s} \cdot ||f|^{p}||_{r} = \lambda(A)^{\frac{1}{s}} \left(\int |f|^{q}\right)^{\frac{p}{q}}$$
$$= \lambda(A)^{p\left(\frac{1}{p} - \frac{1}{q}\right)} ||f||_{q}^{p}.$$

Take p^{th} roots.

Remark. This is in sharp contrast to what happens in l^p : For sequences $\{x_k\}_{k=1}^{\infty}$, the l^{∞} norm is $||x||_{\infty} = \sup_k |x_k|$, and for $1 \leq p < \infty$, the l^p norm is $||x||_p = (\sum_k |x_k|^p)^{\frac{1}{p}}$.

Claim. For $1 \leq p < q \leq \infty$, $l^p \subset l^q$. In fact $||x||_q \leq ||x||_p$.

Proof. Obvious when $q = \infty$. So suppose $1 \le p < q < \infty$. Then

$$||x||_q^q = \sum_k |x_k|^q = \sum_k |x_k|^{q-p} |x_k|^p$$

$$\leq ||x||_{\infty}^{q-p} \sum_k |x_k|^p \leq ||x||_p^{q-p} ||x||_p^p = ||x||_p^q.$$

Take q^{th} roots to get $||x||_q \leq ||x||_p$.