Overview of Lebesgue Integration on
Rn

(see Jones, Chapter 2 ff)

Riemann integration is based on subdividing the domain of f. The problem with Riemann
integration is the requirement of some “smoothness” of f: for z,y close, f(z) and f(y) need
to have something to do with each other. Lebesgue integration is based on subdividing the
codomain of f: it is built on inverse images.

SN
/\/

Typical Example. For a set £ C R”, define the characteristic function of the set F to be

| lifzeFE . 1 . .
xe(z) = { Oifz ¢ E - Consider [, xq(z)dz (Q is set of rationals)

1+ - - - - =— 1 at rationals

<— 0 at irrationals

Riemann Upper integral - inf of “upper sums” f()lXQ(Q?)d."E =1

Lower integral - sup of “lower sums” fol Xo(z)dz =0

Since f_olx@(:v)dx # fol Xo(z)dz, not Riemann integrable.
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Lebesgue integral: A\(E) denotes “size” of E (temporary)

/01 xo(z)dr = 1-AQnNJ0,1])+0-A(Q N][0,1])
= 1-04+0-1=0.

First, must develop theory of Lebesgue measure (for “size” of sets).
Advantages of Lebesgue theory over Riemann theory:

1. Extension to more functions (on finite intervals).

2. Good convergence theorems: lim, o [ fu(2)dz = [lim,_, fn(z)dz under mild as-
sumptions.

3. Completeness of LP spaces.

Current goal. Construct Lebesgue measure on R”. For A C R”, we want to define A(A),
the Lebesgue measure of A, with 0 < A(A) < oo (an extension of n-dim volume).

Problem: We can’t define A\(A) for all subsets A C R" and maintain all the properties we
want. We will define A\(A) for “[Lebesgue| measurable” subsets of R* (very many subsets).
Construct A(A) for increasingly complicated sets.

Step 0 ¢ Ap) =0

Step 1 “Special rectangles” I = [a1,b1) X [ag,b2) X -+ X [an, by), A(I) = (b1 — a;)(be —
as) -+ (bn — ay) for —oo < a; < bj < 0o (note: Jones leaves right ends closed).

Step 2 “Special polygons” P is a finite union of special rectangles, each of finite positive
measure.

Fact Every special polygon is a disjoint union of finitely many special rectangles.

N
For P = |J I (where the I}’s are disjoint, i.e., for j # k, I; N I, = ¢), define
k

A(P) = ém)

Fact A(P) independent of the choice of I;’s.

Step 3 Nonempty open sets G C R". Define A(G) = sup{A(P) : P is a special polygon, P C
G} (“special poly. from inside”).

Remark Every nonempty open set in R” can be written as a countable disjoint union
of special rectangles.
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Step 4 Compact sets K C R". Define A(K) = inf{\(G) : G open, K C G} (“open sets
from outside”).

Fact If K = P for a special polygon P, then A\(K) = \(P).
For A C R", A arbitrary, define
A (A) = inf{\(G) : G open, A C G} (outer measure of A)
A(A4) = sup{A(K): K compact, K C A} (inner measure of A
Facts. If A is open or compact, A\.(A) = A(A) = A*(A). Hence for any A, A\, (A) < A *(A).

Step 5 Bounded subsets of R": we say a bounded subset A C R" is [Lebesgue| measurable
if \,(A) = A*(A), in which case we define A(4) = A, (4) = A*(4).

Step 6 Arbitrary subsets of R”: we say A is [Lebesgue|] measurable if for each R > 0,
ANB(0, R) (ball of radius R, center 0) is measurable, and define A(A) = supg.o A(AN
B(0, R)).

Let £ denote the collection of all Lebesgue measurable subsets of R”.
Fact. L is a o-algebra of subsets of R", i.e., (i) ¢, R* € £, (ii) A € £L = A® € L, (iii) if

Ay, As, ... € Lis a countable collection of subsets of R* in £, then |J Ay € L.
k=1

Fact. If S is any collection of subsets of a set X, then there is a smallest o-algebra A of
subsets of X containing S (i.e., S C A), namely, the intersection of all g-algebras of subsets
of X containing .A. This smallest o-algebra A is called the o-algebra generated by S.

Definition. The smallest o-algebra of subsets of R* containing the open sets is called the
collection B of Borel sets. Closed sets are Borel sets.

Fact. Every open set is [Lebesgue| measurable. Thus B C L.
Fact. If A € £, then \,(A) = A(A) = \*(A).
Caution: However, A\,(4) = A*(A) = oo does not imply A € L.

Properties of Lebesgue measure \
A is a measure: A(¢p) = 0, (VA € L) A\(A) > 0, and if Ay, Ay,... € L are disjoint then
A (U Ak> = Y AMAx) (countable additivity). Consequences:
k=1 k=1
(i) if A,B € £ and A C B, then A(A) < A(B)
(ii) if Ay, Ag,--- € L,then A (U Ak) < 37 AM(Ag) (countable subadditivity)
k=1 k=1

Remark: both (i) and (ii) are true of outer measure A\* on all subsets of R".
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Sets of Measure Zero

Fact. If A*(4) = 0, then 0 < A\, (4) < A*(A) =0, 50 0 = A\ (A) = A*(A), so A € L. Thus
every subset of a set of measure zero is also measurable (we say A is a compact measure).

Characterization of Lebesgue measurable sets

Definition. A set is called a Gy if it is the intersection of a countable collection of open
sets. A set is called an F, if it is the union of a countable collection of closed sets. G5 sets
and F, sets are Borel sets.

Fact. A set A C R" is Lebesgue measurable iff 3 a G5 set G and an F, set F' for which
F CACGand A\(G\F) =0. (Note: G\F =GN F¢ is a Borel set.)

Examples.
(0) If A= {a} is a single point, then A € £ and A(A) = 0.

(1) If A ={ay,as,...} is countable, then A is measurable, and A(A) < Z;‘;l A({e,}) =0,
so A(A) = 0. For example, A(Q) = 0.

2) A(R*) = oo.

(3) Open sets in R. Every nonempty open set G in R is a (finite or) countable disjoint
union of open intervals (a;,b;) (1 <j < Jorl<j<oo),and A(G) =}_; Aa;,b;) =

>;(b; — aj).
(4) The Cantor Set is a closed subset of [0,1]. Let

12 1
Gl - (§a§>, )‘(Gl)—g
12) (78 2

6 = (33)0(5s)  A@=3
12 25 26 4
Gs = (2—7,2—7>U"'U<2—7;2—7), )\(Gs)—2_7

etc.

o —
© | o
©IN ——
ol
WM ——
©|~1——
©O|00 —t—
—_

(middle thirds of remaining subintervals)

Let G = |J Gy (G open subset of (0,1)).
k=1
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Define the Cantor set C' = [0, 1]\G

Since A(C) + A(G) = A([0,1]) = 1, A(C) = 0.

Fact. For z € [0,1], z € C iff x has a base 3 expansion with only 0’s and 2’s, i.e.,
=32 % with each d; € {0,2}.

j=1 37
examples. 0 = (0.000---)3
1 = (0.100---)3 = (0.0222---);
2 = (0.200---);
1 = (0.222--);

2 =(0.202020 - - )3 is in C (not an endpoint of any interval in any G). C can be put
in 1 — 1 correspondence with [0, 1] (and thus also with R).

Invariance of Lebesgue measure
(1) Translation. For a fixed z € R® and A C R”, definex + A={z+y:y € A}
Fact. If t ¢ R* and A € £, then z + A € £, and A(z + A) = A(A).
(2) T :R" — R" is linear and A € £, then T[A] € £, and A(T[A]) = |[det T| - A(A).

Measurable Functions

Consider a function f : R® — [—o00,00] (arithmetic in the extended reals: for z € R,
x + 00 = do0; for a > 0, a - (+oo) = +oo; for a < 0, a - (£00) = Foo; 0- (£oo) =0). fis
called Lebesque measurable if for every t € R, f~1([—oc,t]) € L (in R?).

Recall. Inverse images commute with unions, intersections, complements

U (4

FBCl =B

:Ufil[Aa]; fil :ﬂfil[Aa]'

Fact. For any function f : R* — [—o0, o0, the collection of sets B C [—o00, 00| for which
f7YB] € L is itself a o-algebra of subsets of [—o0, o0].

Note. The smallest g-algebra of subsets of [—00, 00| containing all sets of the form [—oo, ¢]
for ¢t € R contains also {—o0}, {00}, and all sets of the form [—o0,t), [t, 0], (¢, 0], (a,b),
etc. It is the collection of all sets of the form B, BU {oco}, BU {—o0}, or BU{—00, 00} for
Borel subsets B of R.
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Comments. If f and g : R® — [—00,00] are measurable, then f+ g, f-g, and |f| are

measurable.

(define oo 4 (—o0) (and (—o0) 4+ 00) separately in a consistent fashion)
Moreover, if {f;} is a sequence of measurable functions f; : R* — [—o0, 0], then so are
supy, fe(z), infy, fi(x), limsup fp(x) , liminfy fx(x), so if limy_, fx(z) exists Vz, it is also
k

\_\/_/
=infg>15up;> fi ()
measurable.

Definition. If A CR*, A€ £, and f : A — [—00, 0], we say that f is measurable (on A)
if, when we extend f to be 0 on A, f is measurable on R* (equivalent: fy 4 is measurable
for any extension of f).

Definition. If f: R* — C (not including co), we say f is Lebesgue measurable if Ref and
Imf are both measurable.

Fact. f:R" — C is measurable iff for every open set G C C, f~![G] € L.

Integration

First consider only f : R* — [0,00] (so f > 0), with f measurable. Define Sy =
S k27NN ({o k27N < f(z) < (k+1)27V}) 400 - A{z : f(z) = +00}). Call this a Lebesgue
k=0 ~ ~

~”

(here c0-0=0)
sum.

M <
I Ty
. J «
I

T V< @) < (ki 1)2 M

Claim. SN S SN+1.

Proof. {z: k27" < f(z) < (k+1)27"} is the disjoint union of {z : k27" < f(z) < (k+ 1) 27"}
and {z: (k+3)27V < f(z) < (k+1)27V} so k27" A\{z : k27N < f(z) < (k+1)27V}) <
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27NN ({o k27N < fla) < (k+3) 27V )+(k+3) 27" A ({z: (k+3) 27V < f(z) < (k+1)27V})
and the claim follows after summing and redefining indices. O
Define. [, f = [z f(z)dz = limy_, Sy (also written [, fdA). This limit exists (in

[0, 00]) by the monotonicity Sy < Sy.;.

General Measurable Functions

Let f: R* — [—00, 00| be measurable. Define f,(z) = { f(o.’r) ii ;Eg ig and f_(z) =

{ —fO(x) LE }cgg z 8 so (Vz) f(z) = fi(z) — f(z). The integral of f is only defined if

at least one of [ f, < oo and [ f_ < oo holds, in which case we define

[ =] 1- e

Definition. A measurable function is called integrable if both [ fi < co and [ f- < oc.
Since |f| = f4 + f—, this is equivalent to [ |f] < co.

Properties of the Lebesgue Integral

(We will write f € L' to mean f is measurable and [ |f] < c0.)

(1) If f,ge L' and a,b € R, then af +bg € L', and [(af +bg) =a [ f+b [g. (We will
write f = g a.e. (almost everywhere) to mean Mz : f(z) # g(z)} = 0.)

(2) If f,ge L' and f = g a.e., then [ f = [g.
(3) If f >0 and [ f < oo, then f < co a.e. Thus if f € L', then |f| < co a.e. (We will
identify two functions if they agree a.e., e.g., xo = 0 a.e.)

(4) If f > 0and [ f =0, then f =0 a.e. (Not true if f can be both positive and negative,
e.g., [70 —Eidr=0.)

oo 1+z?

(5) If A is measurable, [ x4 = A(A).

Definition. If A is a measurable set and f : A — [—o00, 00| is measurable, then [, f =

fR" fXA
(6) If A and B are disjoint and fxaup € L', then

Juu? =177 01

Definition. If f : R* — C is measurable, and both Ref and Imf € L', define fRn f=
Jon Ref +1i [gn Imf.
(7) If f : R* — C is measurable, then Ref and ZImf € L' iff |[f| € L'. Moreover,
| [fI< [IfI-
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Comparison of Riemann and Lebesgue integrals

If f is bounded and defined on a bounded set and f is Riemann integrable, then f is Lebesgue
integrable and the two integrals are equal.

Theorem. If f is bounded and defined on a bounded set, then f is Riemann integrable iff
f is continuous a.e.

Note: The two theories vary in their treatment of infinities (in both domain and range). For
. . . . R ging
example, the improper Riemann integral limpg_, fo m

not Lebesgue integrable over [0,00) as [ [#2£| dz = oc.

dr exists and is finite, but 2% is

Convergence Theorems

If limy o0 fx(z) = f(z) (maybe only a.e.), where fi and f are measurable, then how are [ f
and [ f related?

Examples.
(1) Let fk = X[k,00)- Then fk Z 0, lim fk = 0, and ffk = 00, SO hmffk 7é fhm fk

(2) Let fr = Xpek+1]- Then again lim f, =0, and [ fr =1, so lim [ fx # [lim f;.

Monotone Convergence Theorem. (Jones calls “Increasing Conv. Thm.”) If 0 < f; <
fo < -+ ae, f = limf, ae, and f; and f are measurable, then limy .o [ fx = [ f
(= [limg f) (in [0,00]). Note: lim f, exists a.e. by monotonicity.

Fatou’s Lemma. If f; are nonnegative a.e. and measurable, then
/lim inf fi < lim inf/fk.
k—o0 k—o0

Lebesgue Dominated Convergence Theorem. Suppose {fx} is a sequence of complex-
valued (or extended-real-valued) measurable functions. Assume limy, fr = f a.e., and assume
that there exists a “dominating function,” i.e., an integrable function g such that |fy(z)| <

g(x) a.e. Then
k—o0
A corollary is the

Bounded Convergence Theorem. Let A be a measurable set of finite measure, and
suppose |fy| < M on A. Assume limy fj exists a.e. Then limy [, fi = [, f. (Apply
Dominated Convergence Theorem with g = M 4.)

Example. (using Fatou with a dominating sequence)
Extension of Lebesgue Dominated Convergence Theorem. Suppose g, > 0, g > 0
are all integrable, and [ g, — [ g, and g, — g a.e. Suppose fy, f are all measurable, | fi| < gx
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a.e. (which implies that f is integrable), and fy — f a.e. (which implies |f| < g a.e.). Then
S 1fs = fl =0 (e || fx = fllzr — 0).

Proof Ifx = fI < |fel + |f| < gx + g a.e. Apply Fatou to gx + g — |fx — f| (which is > 0
e.). Then [liminf(gy + g — |fe — f|) < liminf [(gx + g — |fe — f])- So [2g <lim [ g5 +

fg—hmsupf|fk—f\—ng—hmsupf|fk—f\ Slncefg<oo hmsupf|fk— | <O0.
Thusf\fk—f|—)0. O

Example — the Cantor Ternary Function
f +1]0,1] — [0,1] is increasing and continuous.

If x € C (the Cantor set), say z = Zk | & with 11
dp € {0,2}, set f(z) = zoldg,{Z. n [0,1]\C, \
map (2,3) to %, (%,%) to l, (g,%) to 2 1, etc. (For it —
any z € [0,1], if z = Y37 | % where dj, € {0,1,2}, 1]
let K be the smallest k£ for which d; = 1, and set 2
— rl
@) = (S5 42) + %) ;
T i > 1
Flndfo z)dz. Let ¢ QX(E?) . 3 3
vr T ATy TGS

etc.

Then each @y is simple (a finite linear comb of
char. func. of meas. sets). (Note: if ¢ = Z;\]zl ajxa;, where A; € £ and A(4;) < oo,
then [¢ = Z;VZI a;jA(A;).) Also p(z) = f(z) for x € [0,1]\C, and @i(z) = 0 for x €
C(Vk). Since AC =0, ¢ — f a.e. on [0,1]. So by MCT or LDCT or BCT, fo z)dr =
limy o0 fy @r(z)dz. Now [¢p = 1.1 4+ L. 22(1+3) & 23,(1+3+5+7) ot
(1 +3+5+ -+ (2" —1)). (note: 14+34+5+---+(2j —1) = j° Soff—hmkfcpk =

(2k—1);:22k—2
o0 1 92m—2 _ 2 2)2 _ 1 1 1
Y=t g2 (1+§+(§) +"‘>—5(@)—5-

“Multiple Integration” via Iterated Integrals

Suppose n =m +1, so R* = R™ x R'. For z € R", write x = (y,2), y € R™, 2 € Rl. Then
Jan A = [on f(@)dA(2) = [gn f(y, 2)dNn(y, 2). Write dz for dA,(z), dy for dA,(y), dz
for d\;(z) (A, is Leb. meas. on R"). Consider the iterated integrals

/Rl [ . f(y,z)dy] dz  and /m [ le(y, z)dz] d

Questions:
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(1) When are these iterated integrals the same? (allowing change of order)

(2) When are they equal to [g, f(z)dz?

There are two key theorems, usually used in tandem.

@ Tonelli’s Theorem. Suppose f > 0 is measurable on R*. Then for a.e. z € R, the
function f,(y) = f(y, 2) is measurable on R™ (as a function of y), and

[i@as= [ | s

Example. Let A € R™ be non-measurable. Define f : R® — Rby f(y,2) = { XAO(y) Ez i zz; :
Then f is measurable on R" (as \,({z : fu(z) # 0}) = 0). But the “slice function”

f2 W) = f(y,20) = xa(y) is not measurable on R™. However, since the set of z’s for which
[ f:(y)dy is undefined has measure zero, the iterated integral still makes sense and is 0.

@ Fubini’s Theorem. Suppose f is integrable on R" (i.e., f meas., [ |f| < 00). Then for
a.e. z € R!;, the slice functions f,(y) are integrable on R™, and

ROCEYS [ 5 f(y,z)dy} dz.

Typical Case. Want to show [ [[ f(y,2)dy|dz = [ [[ f(y,2)dz] dy. Plan: Use Tonelli to
verify hypothesis of Fubini:

(i) look at either iterated integral for |f|; show (if true) that the iterated integral is < oc.
Then by Tonelli, [o. |f(z)|dz = [ [[|f(y,2)|dz] dy < oo;

(ii) having verified now that [, |f| < oo, now apply Fubini.

Example. (Can’t drop [ |f| < oo in Fubini.) Define f on (0,1) x (0,1) by f(z,y) =

x2 O0<y<z<l1 1
{—y‘Q 0<x<y<1 Thnfofo xydyd:r—fo (x_?_ dy)d —f0(1+1—%)dx:

1. Similarly, fo fo z,y)dzdy = —1. Note that by Tonelli, f(o,1)><(0,1) |f(z,y)|dX2(z,y) =
fo fo |f(z,y |dyd:1::f0 ( +f1 dy) dr = oo

LP spaces

1 < p < . Fix a measurable subset A C R". Consider measurable functions f : A — C
1
for which [, |f|P < oo. Define ||f|l, = (f,|f|P)». On this set of functions, ||f||, is only a

SemInorm:
Ifll, > O(but || f||, =0 does not imply f = 0,only f(z) =0 a.e.)

lafll, = lal-[Iflly
Wf+9ll, < IIfll, + llgll,(Minkowski’s Inequality)
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(Note: ||fll,=0= [,[fP=0= f=0ae. on A.) Define an equivalence relation on this
set of functions:

f ~gmeans f =g a.e. on A

Let f = {g measurable on A : f = g a.e.}, the equivalence class of f. Define ||f||p = | fllp
(independent of choice of representative in f). Define LP(A) = {f : [, |f|P < co}. Then ||-||,
is a norm on LP(A). We usually abuse notation and write f € LP(A) (meaning f € LP(A)).

Example. We say f € LP(R") is “continuous” if 3g € LP(R") for which g : R* — C is
continuous and f = g a.e. (and WLOG we can assume f is chosen to be that representative

g of f).

p = oo. Fix Ameasurable — Rn  Consider “essentially bounded” measurable functions f :
A — C, i.e., for which 3M < oo so that |f(z)| < M a.e. on A. Define || f|| = inf{M :
|f(z)] < M a.e. on A}, the essential sup of |f|. If 0 < ||f|lcc < 00, then for each £ > 0,
Mz e A:|f(x)] > || fllo —€} > 0. As above, || - || is a seminorm on the set of essentially
bounded meas. func’s, and || - ||oo is a norm on L®(A) = {f : ||f]lec < o0}

Fact. For f € L*(A), |f(z)] < ||fll a-e. (Proof: {z : [f(z)] > [[fllec} = mfjl{ﬂﬁ | f ()] >

| flloo + =} Bach of these latter sets has measure 0.) So the inf is a min in the definition of

1/ lloo-

Fact. L°°(R") is not separable (i.e., it does not have a countable dense subset).

Example. For each a € R, let fo(2) = Xaat+1)(x). For a # B, ||fa — fsllo = 1. So
{B% (fa) : @ € R} is an uncountable collection of disjoint nonempty open subsets in L*(R).

Conjugate Exponents. If 1 <p < oo, 1< g < oo, and % + % =1 (where
that p and g are conjugate exponents. Examples: p‘ 1 ; g olo .

2
Hoélder’s Inequality. If 1 < p < 0o, 1 < ¢ < 00, and %—i— é =1, then [ |fg| <|fllp - llgllq-
(Note: if [[fg| < oo, also | [ fgl < [[fgl < £y~ llglls-)

Remark. The cases { Z_ o and { gi <1>O are obvious. When p = 2, ¢ = 2, this is the

Cauchy-Schwarz inequality [ [fg| < ||fll2 - |lgll2-
Completeness

Theorem. (Riesz-Fischer) Let A™* C R", 1 < p < co. Then L?(A) is complete (using

- 1lp)-
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Locally L? Functions

Definition. Let G°P® C R". Define

LP

loc

(G) = {[equiv classes of]f : f™* on G, (V K®™* Cc G)f € L*(K)}.

There is a metric on L} = which makes it a complete metric space (but not a Banach space

— not given by a norm). (Fact. If (X, p) is a metric space, and we define o(z,y) = liif(f)y),
then o is a metric on X, and (X, p) is uniformly equivalent to (X, o). Use that t — 1%% is

increasing on [0, 00) to show o satisfies the triangle inequality. Note that o(z,y) < 1 for all
z,y € X.)

Let K1, Ks,... be a “compact exhaustion” of G, i.e., a sequence of nonempty compact
o0

subsets of G with K,, C Kg o and |J Kp =G (e.g., Kpp = {z € G : dist(z,G%) > L
m=1

and [z| < m}). Then for any compact set K C G, K ¢ | K, C U K2, so Im for

m=1 m=1
which K C K,,,. The distance in L} (G) is d(f,g) = o, 27771%' Clearly f; — f
in P p, K — 0.

loc (@) 1ff (V Kot C G| f; — ]

Continuous Functions not closed in L?

Let G C R" be open and bounded. Consider Cy(G), the set of bounded continuous functions
on G. Clearly Cy(G) C LP(G). But Cy(G) is not closed in LP(G) (p < o0).

1 Z :%—]l
Example. G = (0,1) f;= o 1 i . Then {f;} is Cauchy in |- ||, for 1 < p < oo.

But there is no cont. function f for which ||f; — f||, = 0 as j — oo.

Facts. Suppose 1 < p < oo and G°P*"* C R".

(1) The set of simple functions (finite linear combinations of characteristic functions of
measurable sets) with support in a bounded subset of G is dense in LP(G).

(2) The set of step functions (finite linear combinations of characteristic functions of rect-
angles) with support in a bounded subset of G is dense in LP(G).

(3) Cc(@Q) is dense in LP(G)

L the set of continuous functions f whose support {z : f(z) # 0} is compact, C G.

(4) CZ(Q) is dense in L?(Q) (idea: mollify a given f € LP(G)).

the set of C'™° functions whose support is a compact subset of G.
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Consequence: For 1 < p < oo, LP(G) is separable (e.g., use (2), rectangles with rational
endpoints, linear combinations with rational coefficients).

Example. Continuity of Translation in LP(R") for 1 < p < oo (uses Cc(R™) dense). Let
f € LP(R"). For y € R, define f,(z) = f(z — y) (translate f by y).

Claim. The map y — f, from R" into LP(R") is uniformly continuous.

Proof. Given ¢ > 0, choose g € C¢(R") for which [|g — f||, < 5. Let M = A({z : g(x) #
0}) < oo. By uniform continuity of g, 3§ > 0 for which |z —y| < 6 = (Vz)|g.(z) — g,(2)| <
£

sy Then for |z =y <0, flg. — g,y = J19: = 9" < AM{z : g:(z) # 0 or gy(z)

p
0D (557 ) < @Mty i e — gl < s and ths 1= fll, < IF: — .1+ . ~

gly+llgy — fll, <5+5+5=e -

L? convergence and pointwise a.e. convergence

For p = oc0. fy — f in L*® = on the complement of a set of measure 0, fy — f uniformly.

(Let Ay = {x : |fe(x) = f(z)| > ||fx — flloo}, and A = |J Ak. Since each A(Ax) = 0, also
k=1

AA) =0. On AC, (VE)|fe(z) — f(2)| < ||f& = flloos SO fr — f unif. on A€.)

For 1 < p < oco. Let A™ C R". Here f, — fin L?(A) (i.e., || fx — f|l, — 0) does not imply
that fk — f a.c. (Example. A= [0’ 1]’ fl = XJ[0,1]» f2 = X[Q,%]: f3 = X[%,l]a f4 = X[O’i]’ o

f1 fa2 f3 fa f5 fo fr

etc. Clearly ||fx|l, = 0, so fr — 0 in LP, but for no = € [0,1] does fx(z) — 0.) So L?
convergence for 1 < p < oo does not imply a.e. convergence. However:

Fact. If 1 <p < oo and fy — fin LP(A), then 3 a subsequence f;, for which f;, — f a.e.

as j — oo.

Example. Suppose A™ C R", 1 < p < o0, fi,f € LP(A), and f, — f a.e. Question:
when does f, — f in LP(A) (i.e. [[fx — fl[, = 0)? Answer: In this situation, f; — f in
LP(A) S | filly — [1f[lp-

Proof.

(=) [ fi = flly = 0, then [[| filly = [[fllo] < lfk = Fllp> 0 [l fllp = [1£1p-

(<) First, observe: Fact. If x,y > 0, then (z+y)? < 2P(2P+yP). (Proof: let z = max{z, y};
then (z + y)? < (22)P = 2Pz < 2P(zP + yP).) We will use Fatou’s lemma with a
“dominating sequence.” We have

e = FIP < (Ul + [FDP < 2P([fl? + [F1P)-
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Apply Fatou to 2°(|f¢|? + |f[P) — |fx — fIP > 0. By assumption, ||fe|l, = ||fll,, so
S| felP = [ |fP. We thus get

[ 1r =0 < timin [ 20507+ 177) - Ife - 7P
= /2p|f|p+/2”\f|p—limsup|fk—f\p.

Thus limsup [ [f5 — f|P < 0. So [|fx — fII5 = [ |fe = fP = 0. So || fx — fll, = 0.

Intuition for growth of functions in LP(R")

Fix n, fix p with 1 < p < 00, and fix a.

Let fi(z) = #X{w:\wkl} fo(z) = #X{w:|w|>1}
blows up near x = 0 for a > 0, no problems near z = 0,
no problems as |z| — oo investigate behavior as |z| — oo.

Polar Coordinates in R"

< n — dim “volume element”

rSvl={z:|z| =71} dV = r"ldrdo

(do is “surface area” measure on S™~1)

SO [en [f1(@)Pdz = [o. s [fol (Tia)pr”_ldr} do = wy, [, 1"~ 'dr where w, = o(S"~"). This

is <ooiffn—ap—1>—1,ie,a<7. Sofi€ LP(R™) iff a < *. Similarly, f; € LP(R™) iff
a> 2
p

Conclusion. For any p # ¢ with 1 < p,q < oo, ILP ¢ L4. However, for sets A of finite
measure, we have:

Claim. If A\(4A) < oo and 1 <p < g < oo, then LI(A) C LP(A), and

1£1lp < ACA)F7 ]| flg-
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Proof. This is obvious when ¢ = oco. So suppose 1 < p < ¢ < co0. Let r = %
1 <r < oo. Let s be the conjugate exponent to r, so ++1 =1. Then 1 = 1-2=p <11J — 1).

By Holder,
= [ 1P = [ xalfP < Dl 11570 = )} ( / |f|q)“

= Ay fe.
Take p'" roots. O

Remark. This is in sharp contrast to what happens in [P: For sequences {zj}%2,, the {*
1
norm is ||z||e = supy, |2x|, and for 1 < p < oo, the I” norm is ||z|[, = (D, |zx[?)?7.

Claim. For 1 <p < ¢ < o0, ? C % In fact ||z||; < ||z]p-

Proof. Obvious when ¢ = 0o. So suppose 1 < p < ¢ < 0o. Then

lzllg =D lanl® = D lowl lanl”
k k
< NlelliS? Y el < N2 lig izl = 2]l

Take ¢ roots to get ||z, < [|z]l,- O



