Linear ODE

Let $I \subset \mathbb{R}$ be an interval (open or closed, finite or infinite — at either end). Suppose $A: I \to \mathbb{F}^{n \times n}$ and $b: I \to \mathbb{F}^n$ are continuous. The DE

$$(*) x' = A(t)x + b(t)$$

is called a first-order linear [system of] ODE[s] on I. Since $f(t,x) \equiv A(t)x + b(t)$ is continuous in t, x on $I \times \mathbb{F}^n$ and, for any compact subinterval $[c,d] \subset I$, f is uniformly Lipschitz in x on $[c,d] \times \mathbb{F}^n$ (with Lipschitz constant $\max_{c \leq t \leq d} |A(t)|$), we have global existence and uniqueness of solutions of the IVP

$$x' = A(t)x + b(t), \qquad x(t_0) = x_0$$

on all of I (where $t_0 \in I$, $x_0 \in \mathbb{F}^n$).

If $b \equiv 0$ on I, (*) is called a linear homogeneous system (LH).

If $b \not\equiv 0$ on I, (*) is called a linear inhomogeneous system (LI).

Fundamental Theorem for LH The set of all solutions of (LH) x' = A(t)x on I form an n-dimensional vector space over \mathbb{F} (in fact, a subspace of $C^1(I, \mathbb{F}^n)$).

Proof. Clearly $x_1' = Ax_1$ and $x_2' = Ax_2$ imply $(c_1x_1 + c_2x_2)' = A(c_1x_1 + c_2x_2)$, so the set of solutions of (LH) form a vector space over \mathbb{F} , which is clearly a subspace of $C^1(I, \mathbb{F}^n)$. Fix $\tau \in I$, and let y_1, \ldots, y_n be a basis for \mathbb{F}^n . For $1 \leq j \leq n$, let $x_j(t)$ be the solution of the IVP x' = Ax, $x(\tau) = y_j$. Then $x_1(t), \ldots, x_n(t)$ are linearly independent in $C^1(I, \mathbb{F}^n)$; indeed,

$$\sum_{j=1}^{n} c_j x_j(t) = 0 \quad \text{in} \quad C^1(I, \mathbb{F}^n)$$

$$\Rightarrow$$

$$\sum_{j=1}^{n} c_j x_j(t) = 0 \quad \forall t \in I$$

$$\Rightarrow$$

$$\sum_{j=1}^{n} c_j y_j = \sum_{j=1}^{n} c_j x_j(\tau) = 0$$

$$\Rightarrow$$

$$c_j = 0 \quad j = 1, 2, \dots, n.$$

Now if x(t) is any solution of (LH), there exist unique c_1, \ldots, c_n such that $x(\tau) = c_1 y_1 + \cdots + c_n y_n$. Clearly $c_1 x_1(t) + \cdots + c_n x_n(t)$ is a solution of the IVP

$$x' = A(t)x, \quad x(\tau) = c_1y_1 + \cdots + c_ny_n,$$

so by uniqueness, $x(t) = c_1 x_1(t) + \cdots + c_n x_n(t)$ for all $t \in I$. Thus $x_1(t), \dots, x_n(t)$ span the vector space of all solutions of (LH) on I. So they form a basis for the vector space of solutions to (LH), and the dimension of this vector space is n.

Remark. Define the linear operator $L: C^1(I, \mathbb{F}^n) \to C^1(I, \mathbb{F}^n)$ by $Lx = \left(\frac{d}{dt} - A(t)\right)x$, i.e., [Lx](t) = x'(t) - A(t)x(t) for $x(t) \in C^1(I, \mathbb{F}^n)$. L is called a linear differential operator. The solution space in the previous theorem is precisely the null space of L. Thus the null space of L is finite dimensional and has dimension n.

Definition. If $\varphi_1, \ldots, \varphi_n$ are n linearly independent (as elements of $C^1(I, \mathbb{F}^n)$) solutions of (LH) x' = Ax, then they form a basis for the vector space of solutions to (LH). Such a basis is called a fundamental set of solutions of (LH). If $\Phi: I \to \mathbb{F}^{n \times n}$ is an $n \times n$ matrix function of $t \in I$ whose columns form a fundamental set of solutions of (LH), then $\Phi(t)$ is called a fundamental matrix for (LH) x' = A(t)x, in which case

$$\Phi'(t) = A(t)\Phi(t).$$

Definition. If $X: I \to \mathbb{F}^{n \times k}$ is in $C^1(I, \mathbb{F}^{n+k})$, we say that X is an $[n \times k]$ matrix solution of (LH) if X'(t) = A(t)X(t). Clearly X(t) is a matrix solution of (LH) if and only if each column of X(t) is a solution of (LH). (We will mostly be interested in the case k = n.)

Theorem. Let $A: I \to \mathbb{F}^{n \times n}$ be continuous where $I \subset \mathbb{R}$ is an interval, and suppose $X: I \to \mathbb{F}^{n \times n}$ is an $n \times n$ matrix solution of (LH) x' = A(t)x on I, i.e., X'(t) = A(t)X(t) on I. Then

$$\det (X(t))' = \operatorname{tr} (A(t))(\det X(t)),$$

and so for all $\tau, t \in I$,

$$\det X(t) = (\det (X(\tau))) \exp \int_{\tau}^{t} \operatorname{tr} (A(s)) ds.$$

Proof Sketch. Let $x_{ij}(t)$ denote the ij^{th} element of X(t), and let $\hat{X}_{ij}(t)$ denote the $(n-1)\times(n-1)$ matrix obtained from X(t) by deleting its *i*th row and *j*th column. The co-factor representation of the determinant gives

$$\det(X(t)) = \sum_{i=1}^{n} (-1)^{(i+j)} x_{ij}(t) \det(\hat{X}_{ij}(t)), \quad i = 1, 2, \dots, n.$$

Hence

$$\frac{d}{dx_{ij}}\det(X(t)) = (-1)^{(i+j)}\det(\hat{X}_{ij}),$$

and so by the chain rule

$$= \sum_{j=1}^{n} (-1)^{(1+j)} x'_{1j}(t) \det (\hat{X}_{ij}(t)) + \dots + \sum_{j=1}^{n} (-1)^{(n+j)} x'_{nj}(t) \det (\hat{X}_{ij}(t)) =$$

$$\det \begin{bmatrix} x'_{11} & x'_{12} & \dots & x'_{1n} \\ (\text{remaining } x_{ij}) \end{bmatrix} + \det \begin{bmatrix} x_{11} & x_{12} & \dots & x_{1n} \\ x'_{21} & x'_{22} & \dots & x'_{2n} \\ (\text{remaining } x_{ij}) \end{bmatrix} + \dots + \det \begin{bmatrix} (\text{remaining } x_{ij}) \\ x'_{n1} & x'_{n2} & \dots & x'_{nn} \end{bmatrix}.$$

Now by (LH)

$$[x'_{11} \ x'_{12} \ \cdots \ x'_{1n}] = [\Sigma_k a_{1k} x_{k1} \cdots \Sigma_k a_{1k} x_{kn}]$$
$$= a_{11} [x_{11} \cdots x_{1n}] + a_{12} [x_{21} \cdots x_{2n}] + \cdots + a_{1n} [x_{n1} \cdots x_{nn}].$$

37

Subtracting $a_{12}[x_{21}\cdots x_{2n}]+\cdots+a_{1n}[x_{n1}\cdots x_{nn}]$ from the first row of the matrix in the first determinant on the RHS doesn't change that determinant. A similar argument applied to the other determinants gives

$$(\det X(t))' =$$

$$\det \begin{bmatrix} a_{11}[x_{11} \cdots x_{1n}] \\ (\text{remaining } x_{ij}) \end{bmatrix} + \det \begin{bmatrix} x_{11} \cdots x_{1n} \\ a_{22}[x_{21} \cdots x_{2n}] \\ (\text{remaining } x_{ij}) \end{bmatrix} + \cdots + \det \begin{bmatrix} (\text{remaining } x_{ij}) \\ a_{nn}[x_{n1} \cdots x_{nn}] \end{bmatrix}$$

$$= (a_{11} + a_{22} + \cdots + a_{nn}) \det X(t) = \operatorname{tr} (A(t))(\det X(t)).$$

Corollary. Let X(t) be an $n \times n$ matrix solution of (LH) x' = A(t)x. Then either

$$(\forall t \in I)$$
 det $X(t) \neq 0$ or $(\forall t \in I)$ det $X(t) = 0$.

Corollary. Let X(t) be an $n \times n$ matrix solution of (LH) x' = A(t)x. Then the following statements are equivalent.

- (1) X(t) is a fundamental matrix for (LH) on I.
- (2) $(\exists \tau \in I) \det X(\tau) \neq 0$ (i.e., columns of X are linearly independent at τ)
- (3) $(\forall t \in I) \det X(t) \neq 0$ (i.e., columns of X are linearly independent at every $t \in I$).

Definition. If X(t) is an $n \times n$ matrix solution of (LH) x' = A(t)x, then det (X(t)) is often called the Wronskian [of the columns of X(t)].

Remark. This is not quite standard notation for general LH systems x' = A(t)x. It is used most commonly when x' = A(t)x is the 1st-order system equivalent to a scalar n^{th} -order linear homogeneous ODE.

Theorem. Suppose $\Phi(t)$ is a fundamental matrix for (LH) x' = A(t)x on I.

- (a) If $c \in \mathbb{F}^n$, then $x(t) = \Phi(t)c$ is a solution of (LH) on I.
- (b) If $x(t) \in C^1(I, \mathbb{F}^n)$ is any solution of (LH) on I, then there exists a unique $c \in \mathbb{F}^n$ for which $x(t) = \Phi(t)c$.

Proof. The theorem just restates that the columns of $\Phi(t)$ form a basis for the set of solutions of (LH).

Theorem. Suppose $\Phi(t)$ is a fundamental matrix (F.M.) for (LH) x' = A(t)x on I.

- (a) If $C \in \mathbb{F}^{n \times n}$ is invertible, then $X(t) = \Phi(t)C$ is also a F.M. for (LH) on I.
- (b) If $X(t) \in C^1(I, \mathbb{F}^{n \times n})$ is any F.M. for (LH), then there exists a unique invertible $C \in \mathbb{F}^{n \times n}$ for which $X(t) = \Phi(t)C$.

Proof. For (a), observe that

$$X'(t) = \Phi'(t)C = A(t)\Phi(t)C = A(t)X(t),$$

so X(t) is a matrix solution, and $\det X(t) = (\det \Phi(t))(\det C) \neq 0$. For (b), set $\Psi(t) = \Phi(t)^{-1}X(t)$. Then $X = \Phi\Psi$, so

$$\Phi'\Psi + \Phi\Psi' = (\Phi\Psi)' = X' = AX = A\Phi\Psi = \Phi'\Psi,$$

which implies that $\Phi \Psi' = 0$. Since $\Phi(t)$ is invertible for all $t \in I$, $\Psi'(t) \equiv 0$ on I. So $\Psi(t)$ is a constant invertible matrix C. Since $C = \Psi = \Phi^{-1}X$, we have $X(t) = \Phi(t)C$.

Remark. If $B(t) \in C^1(I, \mathbb{F}^{n \times n})$ is invertible for each $t \in I$, then

$$\frac{d}{dt}(B^{-1}(t)) = -B^{-1}(t)B'(t)B^{-1}(t).$$

Proof.
$$0 = \frac{d}{dt}(I) = \frac{d}{dt}(B(t)B^{-1}(t)) = B(t)\frac{d}{dt}(B^{-1}(t)) + B'(t)B^{-1}(t).$$

Adjoint Systems

Let $\Phi(t)$ be a F.M. for (LH) x' = A(t)x. Then

$$(\Phi^{-1})' = -\Phi^{-1}\Phi'\Phi^{-1} = -\Phi^{-1}A\Phi\Phi^{-1} = -\Phi^{-1}A.$$

Taking conjugate transposes, $(\Phi^{-H})' = -A^H \Phi^{-H}$. So $\Phi^{-H}(t)$ is a F.M. for the adjoint system (LH*) $x' = -A^H(t)x$.

Theorem. If $\Phi(t)$ is a F.M. for (LH) x' = A(t)x and $\Psi(t) \in C^1(I, \mathbb{F}^{n \times n})$, then $\Psi(t)$ is a F.M. for (LH*) $x' = -A^H(t)x$ if and only if $\Psi^H(t)\Phi(t) = C$, where C is a constant invertible matrix.

Proof. Suppose $\Psi(t)$ is a F.M. for (LH*). Since $\Phi^{-H}(t)$ is also a F.M. for (LH*), \exists an invertible $C \in \mathbb{F}^{n \times n} \ni \Psi(t) = \Phi^{-H}(t)C^H$, i.e., $\Psi^H = C\Phi^{-1}$, $\Psi^H\Phi = C$. Conversely, if $\Psi^H(t)\Phi(t) = C$ (invertible), then $\Psi^H = C\Phi^{-1}$, $\Psi = \Phi^{-H}C$, so Ψ is a F.M. for (LH*). \square

Normalized Fundamental Matrices

Definition. A F.M. $\Phi(t)$ for (LH) x' = A(t)x is called normalized at time τ if $\Phi(\tau) = I$, the identity matrix. (Convention: if not stated otherwise, a normalized F.M. usually means normalized at time $\tau = 0$.)

Facts.

- (1) For a given τ , the F.M. of (LH) normalized at τ exists and is unique. (**Proof**. The j^{th} column of $\Phi(t)$ is the solution of the IVP x' = A(t)x, $x(\tau) = e_j$.)
- (2) If $\Phi(t)$ is the F.M. for (LH) normalized at τ , then the solution of the IVP x' = A(t)x, $x(\tau) = y$ is $x(t) = \Phi(t)y$. (**Proof**. $x(t) = \Phi(y)$ satisfies (LH) x' = A(t)x, and $x(\tau) = \Phi(\tau)y = Iy = y$.)
- (3) For any fixed τ , t, the solution operator S_{τ}^{t} for (LH), mapping $x(\tau)$ into x(t), is linear on \mathbb{F}^{n} , and its matrix is the F.M. $\Phi(t)$ for (LH) normalized at τ , evaluated at t.
- (4) If $\Phi(t)$ is any F.M. for (LH), then for fixed τ , $\Phi(t)\Phi^{-1}(\tau)$ is the F.M. for (LH) normalized at τ . (**Proof**. It is a F.M. taking the value I at τ .) Thus (a) $\Phi(t)\Phi^{-1}(\tau)$ is the matrix of the solution operator S_{τ}^{t} for (LH); and (b) the solution of the IVP x' = A(t)x, $x(\tau) = y$ is $x(t) = \Phi(t)\Phi^{-1}(\tau)y$.

Inhomogeneous Linear Systems

We now want to express the solution of the IVP

$$x' = A(t)x + b(t), \quad x(t_0) = y$$

for the linear inhomogeneous system

(LI)
$$x' = A(t)x + b(t)$$

in terms of a F.M. for the associated homogeneous system

(LH)
$$x' = A(t)x$$
.

Variation of Parameters

Let $\Phi(t)$ be any F.M. for (LH). Then, for any constant vector $c \in \mathbb{F}^n$ $\Phi(t)c$ is a solution of (LH). We will look for a solution of (LI) of the form

$$x(t) = \Phi(t)c(t)$$

(varying the "constants" — elements of c). Plugging into (LI), we want

$$(\Phi c)' = A\Phi c + b,$$

or equivalently

$$\Phi'c + \Phi c' = A\Phi c + b.$$

Since $\Phi' = A\Phi$, this gives $\Phi c' = b$, or $c' = \Phi^{-1}b$. Set

$$c(t) = c_0 + \int_{t_0}^t \Phi^{-1}(s)b(s)ds$$

for some constant vector $c_0 \in \mathbb{F}^n$, and let $x(t) = \Phi(t)c(t)$. These calculations show that x(t) is a solution of (LI). To satisfy the initial condition $x(t_0) = y$, we take $c_0 = \Phi^{-1}(t_0)y$, and obtain

$$x(t) = \Phi(t)\Phi^{-1}(t_0)y + \int_{t_0}^t \Phi(t)\Phi^{-1}(s)b(s)ds.$$

In words, this equation states that

$$\left\{\begin{array}{c} \text{soln of (LI)} \\ \text{with I.C. } x(t_0) = y \end{array}\right\} = \left\{\begin{array}{c} \text{soln of (LH)} \\ \text{with I.C. } x(t_0) = y \end{array}\right\} + \left\{\begin{array}{c} \text{soln of (LI)} \\ \text{with homog. I.C. } x(t_0) = 0 \end{array}\right\}.$$

Viewing y as arbitrary, we find that the general solution of (LI) equals the general solution of (LH) plus a particular solution of (LI) stated in terms of the solution operator.

Note: $\Phi(t)\Phi^{-1}(t_0)$ is the matrix of $S_{t_0}^t$, and $\Phi(t)\Phi^{-1}(s)$ is the matrix of S_s^t .

Duhamel's Principle. If S_{τ}^t is the solution operator for (LH), then the solution of the IVP x' = A(t)x + b(t), $x(t_0) = y$ is $x(t) = S_{t_0}^t y + \int_{t_0}^t S_s^t(b(s)) ds$.

Remark. So the effect of the inhomogeneous term b(t) in (LI) is like adding additional IC at each time $s \in [t_0, t]$, integrating these solutions $S_s^t(b(s))$ of (LH) with respect to $s \in [t_0, t]$.

Constant Coefficient Systems

Consider the linear homogeneous constant-coefficient first-order system

(LHC)
$$x' = Ax$$
,

where $A \in \mathbb{F}^{n \times n}$ is a constant matrix. The F.M. of (LHC), normalized at 0, is $\Phi(t) = e^{tA}$. Recall that

$$e^B \equiv \sum_{j=0}^{\infty} \frac{1}{j!} B^j$$

where $B^0 \equiv I$, so $\Phi(0) = I$. Term by term differentiation is justified in the series for e^{tA} :

$$\Phi'(t) = \frac{d}{dt}(e^{tA}) = \sum_{j=0}^{\infty} \frac{1}{j!} \frac{d}{dt}(tA)^j$$
$$= \sum_{j=1}^{\infty} \frac{1}{(j-1)!} t^{j-1} A^j = A \sum_{k=0}^{\infty} \frac{1}{k!} (tA)^k = A e^{tA}.$$

We can express e^{tA} using the Jordan form of A: if $P^{-1}AP = J$ is in Jordan form where $P \in \mathbb{F}^{n \times n}$ is invertible (assume $\mathbb{F} = \mathbb{C}$ if A has any nonreal eigenvalues), then $A = PJP^{-1}$, so $e^{tA} = e^{tPJP^{-1}} = Pe^{tJ}P^{-1}$. If

$$J = \left[\begin{array}{ccc} J_1 & & \bigcirc \\ & J_2 & \\ & \ddots & \\ \bigcirc & & J_s \end{array} \right]$$

where each J_k is a single Jordan block, then

$$e^{tJ} = \left[egin{array}{ccc} e^{tJ_1} & & \bigcirc & \\ & e^{tJ_2} & & \\ & & \ddots & \\ \bigcirc & & e^{tJ_s} \end{array}
ight].$$

Finally, if

$$J_k = \left[\begin{array}{ccc} \lambda & 1 & & \bigcirc \\ & \lambda & \ddots & \\ & & \ddots & 1 \\ \bigcirc & & \lambda \end{array} \right]$$

is $l \times l$, then

$$e^{tJ_k} = \begin{bmatrix} 1 & t & \frac{t^2}{2!} & \cdots & \frac{t^{l-1}}{(l-1)!} \\ & 1 & t & \ddots & \vdots \\ & & \ddots & \ddots & \frac{t}{2!} \\ & & & t \end{bmatrix}.$$

The solution of the inhomogeneous IVP x' = Ax + b(t), $x(t_0) = y$ is

$$x(t) = e^{(t-t_0)A}y + \int_{t_0}^t e^{(t-s)A}b(s)ds$$

since $(e^{tA})^{-1} = e^{-tA}$ and $e^{tA}e^{-sA} = e^{(t-s)A}$.

Another viewpoint

Suppose $A \in \mathbb{C}^{n \times n}$ is a constant diagonalizable matrix with eigenvalues $\lambda_1, \ldots, \lambda_n$ and linearly independent eigenvectors v_1, \ldots, v_n . Then $\varphi_j(t) \equiv e^{\lambda,t}v_j$ is a solution of (LHC) x' = Ax since

$$\varphi_j' = \frac{d}{dt}(e^{\lambda_j t}v_j) = \lambda_j e^{\lambda_j t}v_j = e^{\lambda_j t}(\lambda v_j)$$
$$= e^{\lambda_j t} A v_j = A(e^{\lambda_j t}v_j) = A\varphi_j.$$

Clearly $\varphi_1, \ldots, \varphi_n$ are linearly independent at t = 0 as $\varphi_j(0) = v_j$. Thus

$$\Phi(t) = [\varphi_1(t)\varphi_2(t)\cdots\varphi_n(t)]$$

is a F.M. for (LHC). So the general solution of (LHC) (for diagonalizable A) is $\Phi(t)c = c_1 e^{\lambda_1 t} v_1 + \cdots + c_n e^{\lambda_n t} v_n$ for arbitrary scalars c_1, \ldots, c_n .

Remark on Exponentials

Let B(t) be a C^1 $n \times n$ matrix function of t, and let A(t) = B'(t). Then

$$\frac{d}{dt}(e^{B(t)}) = \frac{d}{dt}(I + B + \frac{1}{2!}B \cdot B + \frac{1}{3!}B \cdot B \cdot B + \cdots)
= A + \frac{1}{2!}(AB + BA) + \frac{1}{3!}(AB^2 + BAB + B^2A) + \cdots$$

Now, if for each t, A(t) and B(t) commute, then

$$\frac{d}{dt}(e^{B(t)}) = A\left(I + B + \frac{1}{2!}B^2 + \cdots\right) = B'(t)e^{B(t)}.$$

Now suppose we start with a continuous $n \times n$ matrix function A(t), and for some t_0 , we define $B(t) = \int_{t_0}^t A(s)ds$, so B'(t) = A(t). Suppose in addition that A(t) and B(t) commute for all t. Then $\Phi(t) \equiv \exp\left(\int_{t_0}^t A(s)ds\right)$ is the F.M. for (LH) x' = A(t)x, normalized at t_0 , since $\Phi(t_0) = I$ and $\Phi'(t) = A(t)\Phi(t)$ as above. A sufficient (but not necessary) condition guaranteeing that A(t) and $\int_{t_0}^t A(s)ds$ commute is that A(t) and A(s) commute for all t, s.

Remark. Reduction of Order for (LH) x' = A(t)x

In Coddington & Levinson it is shown that if m (< n) linearly independent solutions of the $n \times n$ linear homogeneous system x' = A(t)x are known, then one can derive an $(n-m) \times (n-m)$ system for obtaining n-m more linearly independent solutions.

Example. $D_y S_{\tau}^t$ is Invertible at each y.

In this example we show how one can apply the theory of linear systems to the nonlinear solution operator. Consider the DE x'=f(t,x) where f is C^1 , and let S^t_{τ} denote the solution operator. For a fixed τ , let x(t,y) denote the solution of the IVP x'=f(t,x), $x(\tau)=y$. The equation of variation for the $n \times n$ Jacobian matrix $D_y x(t,y)$ is

$$\frac{d}{dt}\left(D_yx(t,y)\right) = \left(D_xf\left(t,x(t,y)\right)\right)\left(D_yx(t,y)\right),\,$$

and thus

$$\frac{d}{dt}\left(\det\left(D_{y}x(t,y)\right)\right) = \operatorname{tr}\left(D_{x}f\left(t,x(t,y)\right)\right)\det\left(D_{y}x(t,y)\right),$$

so

$$\det (D_y x(t, y)) = \det (D_y x(\tau, y)) \exp \left(\int_{\tau}^{t} \operatorname{tr} (D_x f(s, x(s, y))) \right) ds$$
$$= \exp \left(\int_{\tau}^{t} \operatorname{tr} (D_x f(s, x(s, y))) \right) ds,$$

since

$$D_y x(\tau, y) = D_y y = I.$$

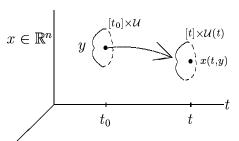
In particular, det $(D_y x(t,y)) \neq 0$, so $D_y x(t,y)$ is invertible. For τ and t fixed, $D_y x(t,y) = D_y S_{\tau}^t$, so we have demonstrated again that $D_y S_{\tau}^t$ is invertible at each y.

Example. The Rate of Change of Volume in a Flow.

Consider an autonomous system x' = f(x), where f is C^1 and $\mathbb{F} = \mathbb{R}$, so $x \in \mathbb{R}^n$. Fix t_0 , and view the family of IVPs

$$x' = f(x), \quad x(t_0) = y$$

for y in an open set $\mathcal{U} \subset \mathbb{R}^n$ as a flow: at the initial time t_0 , there is a particle at each point $y \in \mathcal{U}$; that particle's location at time $t \geq t_0$ is given by x(t,y), where x(t,y) is the solution of the IVP x' = f(x), $x(t_0) = y$ (e.g., f can be thought of as a steady-state velocity field).



For $t \geq t_0$, let $\mathcal{U}(t) = \{x(t,y) : y \in \mathcal{U}\}$. Then $\mathcal{U}(t) = S_{t_0}^t[\mathcal{U}]$ and $S_{t_0}^t : \mathcal{U} \to \mathcal{U}(t)$ is (for fixed t) a C^1 diffeomorphism (i.e., for fixed t, the map $y \mapsto x(t,y)$ is a C^1 diffeomorphism on \mathcal{U}). In particular, det $D_Y x(t,y)$ never vanishes. Assuming, in addition, that \mathcal{U} is connected, det $D_y x(t,y)$ must either be always pos-

itive or always negative; since $\det D_y x(t_0, y) = \det I = 1 > 0$, $\det D_y x(t, y)$ is always > 0. Now the volume $\operatorname{vol}(\mathcal{U}(t))$ satisfies

$$\operatorname{vol}(\mathcal{U}(t)) = \int_{\mathcal{U}(t)} 1 \, dx = \int_{\mathcal{U}} |\det D_y x(t, y)| dy = \int_{\mathcal{U}} \det D_y x(t, y) dy.$$

Assuming differentiation under the integral sign is justified (e.g., if \mathcal{U} is contained in a compact set K and $S_{t_0}^t$ can be extended to $y \in K$),

$$\frac{d}{dt} \left(\operatorname{vol} \left(\mathcal{U}(t) \right) \right) = \int_{\mathcal{U}} \frac{d}{dt} \left(\det D_y x(t, y) \right) dy = \int_{\mathcal{U}} \operatorname{div} f \left(x(t, y) \right) \det D_y x(t, y) dy \\
= \int_{\mathcal{U}(t)} \operatorname{div} f(x) dx,$$

by the previous example, where the divergence of f is by definition

$$\operatorname{div} f(x) = \frac{\partial f_1}{\partial x_1} + \frac{\partial f_2}{\partial x_2} + \dots + \frac{\partial f_n}{\partial x_n} = \operatorname{tr} (D_x f(x)).$$

This gives the rate of change of the volume of $\mathcal{U}(t)$ as the integral of the divergence of f over $\mathcal{U}(t)$. In particular, if $\operatorname{div} f(x) \equiv 0$, then $\frac{d}{dt} (\operatorname{vol} (\mathcal{U}(t))) = 0$, and volume is conserved.

Remark. The same argument applies when f = f(t, x) depends on t as well: just replace $\operatorname{div} f(x)$ by $\operatorname{div}_x f(t, x)$, the divergence of f (with respect to x):

$$\operatorname{div}_x f(t, x) = \left(\frac{\partial f_1}{\partial x_1} + \dots + \frac{\partial f_n}{\partial x_n} \right) \Big|_{(t, x)}.$$

Linear Systems with Periodic Coefficients

Let $A: \mathbb{R} \to \mathbb{C}^{n \times n}$ be continuous, and periodic with period $\omega > 0$:

$$(\forall t \in \mathbb{R})$$
 $A(t + \omega) = A(t)...$

Note that in this case we take the scalar field to be $\mathbb{F} = \mathbb{C}$. Consider the periodic linear homogeneous system

(PLH)
$$x' = A(t)x, \quad t \in \mathbb{R}.$$

All solutions exist $(\forall t \in \mathbb{R})$ since $f(t,x) \equiv A(t)x$ is uniformly Lipschitz in x on $\mathbb{R} \times \mathbb{C}^n$, since, by continuity, there exists M > 0 such that

$$|A(t)| \le M \quad \forall t \in \mathbb{R}.$$

M is a uniform Lipschitz constant for f(t, x) = A(t)x.

Lemma. If $\Phi(t)$ is a F.M. for (PLH), then so also is $\Psi(t) \equiv \Phi(t + \omega)$.

Proof. For each t, $\Psi(t)$ is invertible. Also, $\Psi'(t) = \Phi'(t+\omega) = A(t+\omega)\Phi(t+\omega) = A(t)\Psi(t)$, so $\Psi(t)$ is a matrix solution of (PLH).

Theorem. To each F.M. $\Phi(t)$ for (PLH), there exists an invertible periodic C^1 matrix function $P: \mathbb{R} \to \mathbb{C}^{n \times n}$ and a *constant* matrix $R \in \mathbb{C}^{n \times n}$ for which $\Phi(t) = P(t)e^{tR}$.

Proof. By the lemma, there is an invertible matrix $C \in \mathbb{C}^{n \times n}$ such that $\Phi(t + \omega) = \Phi(t)C$. Since C is invertible, it has a logarithm, i.e. there exists a matrix $W \in \mathbb{C}^{n \times n}$ such that $e^W = C$. Let $R = \frac{1}{\omega}W$. Then $C = e^{\omega R}$. Define $P(t) = \Phi(t)e^{-tR}$. Then P(t) is invertible for all t, P(t) is C^1 , and $\Phi(t) = P(t)e^{tR}$. Finally,

$$P(t+\omega) = \Phi(t+\omega)e^{-(t+\omega)R}$$

= $\Phi(t)Ce^{-\omega R}e^{-tR} = \Phi(t)e^{-tR} = P(t),$

so P(t) is periodic.

Linear Scalar n^{th} -order ODEs

Let $I \equiv [a, b]$ be an interval in \mathbb{R} , and suppose $a_j(t)$ are in $C(I, \mathbb{F})$ for $j = 0, 1, \ldots, n$, with $a_n(t) \neq 0 \, \forall \, t \in I$. Consider the n^{th} -order linear differential operator $L: C^n(I) \to C(I)$ given by

$$Lu = a_n(t)\frac{d^n u}{dt^n} + \dots + a_1(t)\frac{du}{dt} + a_0(t)u,$$

and the n^{th} -order homogeneous equation (nLH) $Lu=0, t\in I$. Consider the equivalent $n\times n$ first-order system (LH) $x'=A(t)x, t\in I$, where

$$A(t) = \begin{bmatrix} 0 & 1 & & & \\ & \ddots & \ddots & & \\ & & 0 & 1 & \\ \frac{-a_0}{a_n} & \dots & -\frac{a_{n-1}}{a_n} \end{bmatrix} \quad \text{and} \quad x = \begin{bmatrix} u \\ u' \\ u'' \\ \vdots \\ u^{(n-1)} \end{bmatrix} \in \mathbb{F}^n.$$

Fix $t_0 \in I$. Appropriate initial conditions for (nLH) are

$$\begin{bmatrix} u(t_0) \\ u'(t_0) \\ \vdots \\ u^{(n-1)}(t_0) \end{bmatrix} = x(t_0) = \zeta \equiv \begin{bmatrix} \zeta_1 \\ \zeta_2 \\ \vdots \\ \zeta_n \end{bmatrix}.$$

Recall that u is a C^n solution of (nLH) if and only if x is a C^1 solution of (LH), with a similar equivalence between associated IVP's. If $\Phi(t)$ is a F.M. for (LH), with A(t) as given above, then $\Phi(t)$ has the form

$$\Phi = \begin{bmatrix} \varphi_1 & \varphi_2 & \cdots & \varphi_n \\ \varphi'_1 & \varphi'_2 & \cdots & \varphi'_n \\ \vdots & \vdots & & \vdots \\ \varphi_1^{(n-1)} & \varphi_2^{(n-1)} & \cdots & \varphi_n^{(n-1)} \end{bmatrix},$$

where each $\varphi_j(t)$ satisfies (nLH).

Definition. If $\varphi_1(t), \ldots, \varphi_n(t)$ are solutions of (nLH), then the Wronskian of $\varphi_1, \ldots, \varphi_n$ (a scalar function of t) is defined to be

$$W(\varphi_1, \dots, \varphi_n)(t) = \det \begin{bmatrix} \varphi_1(t) & \varphi_n(t) \\ \varphi'_1(t) & \cdots & \varphi'_n(t) \\ \vdots & & \vdots \\ \varphi_1^{(n-1)}(t) & & \varphi_n^{(n-1)}(t) \end{bmatrix} (= \det \Phi(t)).$$

Since $\Phi(t)$ is a matrix solution of (LH), we know

$$\det (\Phi(t)) = \det (\Phi(t_0)) \exp \int_{t_0}^t \operatorname{tr} (A(s)) ds,$$

SO

$$W(\varphi_1,\ldots,\varphi_n)(t) = W(\varphi_1,\ldots,\varphi_n)(t_0) \exp \int_{t_0}^t -\frac{a_{n-1}(s)}{a_n(s)} ds.$$

In particular, for solutions $\varphi_1, \ldots, \varphi_n$ of (nLH),

either
$$W(\varphi_1, \ldots, \varphi_n)(t) \equiv 0$$
 on I , or $(\forall t \in I)$ $W(\varphi_1, \ldots, \varphi_n)(t) \neq 0$.

Theorem. Let $\varphi_1, \ldots, \varphi_n$ be n solutions of (nLH) Lu = 0. Then they are linearly independent on I (i.e., as elements of $C^n(I)$) if and only if $W(\varphi_1, \ldots, \varphi_n)(t) \neq 0$ on I.

Proof. If $\varphi_1, \ldots, \varphi_n$ are linearly dependent in $C^n(I)$, then there exist scalars c_1, \ldots, c_n such that

$$c_1\varphi_1(t) + \dots + c_n\varphi_n(t) \equiv 0 \text{ on } I, \text{ with } c \equiv \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix} \neq 0;$$

thus $\Phi(t)c = 0$ on I, so $W(\varphi_1, \ldots, \varphi_n)(t) = \det \Phi(t) = 0$ on I. Conversely, if $\det \Phi(t) = 0$ on I, then the solutions

$$\left[\begin{array}{c} \varphi_1 \\ \vdots \\ \varphi_1^{(n-1)} \end{array}\right], \cdots, \left[\begin{array}{c} \varphi_n \\ \vdots \\ \varphi_n^{(n-1)} \end{array}\right]$$

of (LH) are linearly dependent (as elements of $C^1(I, \mathbb{F}^n)$), so there exist scalars c_1, \ldots, c_n such that

$$c_1 \left[\begin{array}{c} \varphi_1(t) \\ \vdots \end{array} \right] + \dots + c_n \left[\begin{array}{c} \varphi_n(t) \\ \vdots \end{array} \right] \equiv 0 \text{ on } I,$$

where not all $c_j = 0$. In particular, $c_1\varphi_1(t) + \cdots + c_n\varphi_n(t) \equiv 0$ on I, so $\varphi_1, \ldots, \varphi_n$ are linearly dependent in $C^n(I)$.

Corollary. The dimension of the vector space of solutions of (nLH) (a subspace of $C^n(I)$) is n, i.e., $\dim \mathcal{N}(L) = n$, where $\mathcal{N}(L)$ denotes the null space of $L: C^n(I) \to C(I)$.

The differential operator L (normalized so that $a_n(t) \equiv 1$) is itself determined by n linearly independent solutions of (nLH) Lu = 0.

Fact. Suppose $\varphi_1(t), \ldots, \varphi_n(t) \in C^n(I)$ with $W(\varphi_1, \ldots, \varphi_n)(t) \neq 0 \ (\forall t \in I)$. Then there exists a unique n^{th} order linear differential operator

$$L = \frac{d^n}{dt^n} + a_{n-1}(t)\frac{d^{n-1}}{dt^{n-1}} + \dots + a_1(t)\frac{d}{dt} + a_0(t)$$

(with $a_n(t) \equiv 1$ and each $a_j(t) \in C(I)$) for which $\varphi_1, \ldots, \varphi_n$ form a fundamental set of solutions of (nLH) Lu = 0, namely,

$$Lu = \frac{W(\varphi_1, \dots, \varphi_n, u)}{W(\varphi_1, \dots, \varphi_n)}$$

where

$$W(\varphi_1, \dots, \varphi_n, u) = \det \begin{bmatrix} \varphi_1 & \cdots & \varphi_n & u \\ \varphi'_1 & & \varphi'_n & u' \\ \vdots & & \vdots & \vdots \\ \varphi_1^{(n)} & \cdots & \varphi_n^{(n)} & u^{(n)} \end{bmatrix}.$$

Sketch. In this formula for Lu, expanding the determinant in the last column shows that L is an n^{th} order linear differential operator with continuous coefficients $a_j(t)$ and $a_n(t) \equiv 1$. Clearly $\varphi_1, \ldots, \varphi_n$ are solutions of Lu = 0. For uniqueness (with $a_n(t) \equiv 1$), note that if $\varphi_1, \ldots, \varphi_n$ are linearly independent solutions of Lu = 0 for any L, then

$$\Phi^{T}(t) \begin{bmatrix} a_{0}(t) \\ a_{1}(t) \\ \vdots \\ a_{n-1}(t) \end{bmatrix} = - \begin{bmatrix} \varphi_{1}^{(n)}(t) \\ \vdots \\ \varphi_{n}^{(n)}(t) \end{bmatrix}.$$

Since $W(\varphi_1, \ldots, \varphi_n)(t) \neq 0 \ (\forall t \in I), \ \Phi(t)$ is invertible $\forall t \in I$, so

$$\begin{bmatrix} a_1(t) \\ \vdots \\ a_{n-1}(t) \end{bmatrix} = -\Phi^{-T}(t) \begin{bmatrix} \varphi^{(n)}(t) \\ \vdots \\ \varphi_n^{(n)}(t) \end{bmatrix}$$

is uniquely determined by $\varphi_1, \ldots, \varphi_n$.

Remark. A first-order system (LH) x' = A(t)x is uniquely determined by any F.M. $\Phi(t)$. Since $\Phi'(t) = A(t)\Phi(t)$, $A(t) = \Phi'(t)\Phi^{-1}(t)$.

Linear Inhomogeneous n^{th} -order scalar equations

For simplicity, normalize the coefficients $a_j(t)$ so that $a_n(t) \equiv 1$ in L. Consider (nLI)

$$Lu = u^{(n)} + a_{n-1}(t)u^{(n-1)} + \dots + a_0(t)u = \beta(t).$$

Let

$$x = \begin{bmatrix} u \\ u' \\ \vdots \\ u^{(n-1)} \end{bmatrix}, \quad b(t) = \begin{bmatrix} 0 \\ \vdots \\ 0 \\ \beta(t) \end{bmatrix}, \quad \text{and} \quad A(t) = \begin{bmatrix} 0 & 1 \\ & \ddots & \ddots \\ & & 0 & 1 \\ -a_0 & \cdots & -a_{n-1} \end{bmatrix},$$

then x(t) satisfies (LI) x' = A(t)x + b(t). We can apply our results for (LI) to obtain expressions for solutions of (nLI).

Theorem. If $\varphi_1, \ldots, \varphi_n$ is a fundamental set of solutions of (nLH) Lu = 0, then the solution $\psi(t)$ of (nLI) $Lu = \beta(t)$ with initial condition $u^{(k)}(t_0) = \zeta_{k+1}$ $(k = 0, \ldots, n-1)$ is

$$\psi(t) = \varphi(t) + \sum_{k=1}^{n} \varphi_k(t) \int_{t_0}^{t} \frac{W_k(\varphi_1, \dots, \varphi_n)(s)}{W(\varphi_1, \dots, \varphi_n)(s)} \beta(s) ds$$

where $\varphi(t)$ is the solution of (nLH) with the same initial condition at t_0 , and W_k is the determinant of the matrix function obtained from

$$\Phi(t) = \begin{bmatrix} \varphi_1 & \cdots & \varphi_n \\ \varphi'_1 & \cdots & \varphi'_n \\ \vdots & & \vdots \\ \varphi_1^{(n-1)} & \cdots & \varphi_n^{(n-1)} \end{bmatrix}$$

by replacing the k^{th} column of $\Phi(t)$ replaced by the nth unit coordinate vector e_n .

Proof. We know

$$x(t) = \Phi(t)\Phi^{-1}(t_0)x_0 + \Phi(t)\int_{t_0}^t \Phi^{-1}(s)b(s)ds,$$

where $x_0 = [\zeta_1, \dots, \zeta_n]^T$ and $b(s) = [0 \dots \beta(s)]^T$, solves the IVP x' = A(t)x, $x(t_0) = x_0$. The first component of x(t) is $\psi(t)$, and the first component of $\Phi(t)\Phi^{-1}(t_0)x_0$ is the solution $\varphi(t)$ of (nLH) described above. By Cramer's Rule,

the
$$k^{\text{th}}$$
 component of $\Phi^{-1}(s)e_n$ is $\frac{W_k(\varphi_1,\ldots,\varphi_n)(s)}{W(\varphi_1,\ldots,\varphi_n)(s)}$.

Thus the first component of $\Phi(t) \int_{t_0}^t \Phi^{-1}(s)b(s)ds$ is

$$[\varphi_1(t)\cdots\varphi_n(t)]\int_{t_0}^t \Phi^{-1}(s)e_n\beta(s)d = \sum_{k=1}^n \varphi_k(t)\int_{t_0}^t \frac{W_k(\varphi_1,\ldots,\varphi_n)(s)}{W(\varphi_1,\ldots,\varphi_n)(s)}\beta(s)ds.$$

Linear n^{th} -order scalar equations with constant coefficients

For simplicity, take $a_n = 1$ and $\mathbb{F} = \mathbb{C}$. Consider

$$Lu = u^{(n)} + a_{n-1}u^{(n-1)} + \dots + a_0u,$$

where a_0, \ldots, a_{n-1} are constants. Then

$$A = \begin{bmatrix} 0 & 1 & & & \\ & \ddots & \ddots & & \\ & & 0 & 1 \\ -a_0 & \cdots & -a_{n-1} \end{bmatrix}$$

has characteristic polynomial

$$p(\lambda) = \lambda^n + a_{n-1}\lambda^{n-1} + \dots + a_1\lambda + a_0.$$

Moreover, since A is a companion matrix it is nonderogatory, i.e., each distinct eigenvalue of A has only one Jordan block in the Jordan form of A. Indeed, recall that for any λ ,

$$A - \lambda I = \begin{bmatrix} -\lambda & 1 & 0 \\ & \ddots & \ddots \\ -a_0 & & (-a_{n-1} - \lambda) \end{bmatrix}$$

has rank $\geq n-1$, so the geometric multiplicity of each eigenvalue is $1 = \dim(\mathcal{N}(A - \lambda I))$.

Now if λ_k is a root of $p(\lambda)$ having multiplicity m_k (as a root of $p(\lambda)$), then terms of the form $t^j e^{\lambda_k t}$ for $0 \le j \le m_k - 1$ appear in elements of e^{tJ} (where $P^{-1}AP = J$ is in Jordan form), and thus also appear in $e^{tA} = Pe^{tJ}P^{-1}$ the F.M. for (LH) x' = Ax, normalized at 0. This explains the well-known result:

Theorem. Let $\lambda_1, \ldots, \lambda_s$ be the distinct roots of $p(\lambda) = \lambda^n + a_{n-1}\lambda^{n-1} + \cdots + a_0 = 0$, and suppose λ_k has multiplicity m_k for $1 \le k \le s$. Then a fundamental set of solutions of

$$Lu = u^{(n)} + a_{n-1}u^{(n-1)} + \dots + a_0u = 0,$$

49

where $a_k \in \mathbb{C}$, is

$$\{t^j e^{\lambda_k t} : 1 \le k \le s, 0 \le j \le m_k - 1\}.$$

Standard proof: Show that the functions are linear indepent and then plug in and verify they are solutions: write

$$L = \left(\frac{d}{dt} - \lambda_1\right)^{m_1} \cdots \left(\frac{d}{dt} - \lambda_s\right)^{m_s},$$

and use

$$\left(\frac{d}{dt} - \lambda_k\right)^{m_k} \left(t^j e^{\lambda_k t}\right) = 0 \quad \text{for} \quad 0 \le j \le m_k - 1.$$

Introduction to the Numerical Solution of IVP for ODE

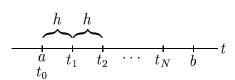
Consider the IVP: DE x' = f(t, x), IC $x(a) = x_a$. For simplicity, we will assume here that $x(t) \in \mathbb{R}^n$ (so $\mathbb{F} = \mathbb{R}$), and that f(t, x) is continuous in t, x and uniformly Lipschitz in x (with Lipschitz constant L) on $[a, b] \times \mathbb{R}^n$. So we have global existence and uniqueness for the IVP above on [a, b].

Moreover, the solution of the IVP x' = f(t, x), $x(a) = x_a$ depends continuously on the initial values $x_a \in \mathbb{R}^n$. This IVP is an example of a well-posed problem: for each choice of the "data" (here, the initial values x_a), we have:

- (1) **Existence.** There exists a solution of the IVP on [a, b].
- (2) Uniqueness. The solution, for each given x_a , is unique.
- (3) Continuous Dependence. The solution depends continuously on the data.

Here, e.g., the map $x_a \mapsto x(t, x_a)$ is continuous from \mathbb{R}^n into $(C([a, b]), \|\cdot\|_{\infty})$. A well-posed problem is a reasonable problem to approximate numerically.

Grid Functions



Choose a mesh width h (with $0 < h \le b - a$, and let $N = \left[\frac{b-a}{h}\right]$ (greatest integer $\le (b-a)/h$). Let $t_i = a+ih$ $(i=0,1,\ldots,N)$ be the grid points in t (note: $t_0=a$), and let x_i denote the approximation to $x(t_i)$. Note that t_i and x_i depend on h, but we will usually suppress this dependence in our notation.

Explicit One-Step Methods

Form of method: start with x_0 (presumably $x_0 \approx x_a$). Recursively compute x_1, \ldots, x_N by

$$x_{i+1} = x_i + h\psi(h, t_i, x_i), \qquad i = 0, \dots, N-1.$$

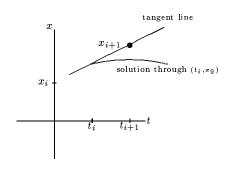
Here, $\psi(h, t, x)$ is a function defined for $0 \le h \le b - a$, $a \le t \le b$, $x \in \mathbb{R}^n$, and ψ is associated with the given function f(t, x).

Examples.

Euler's Method.

$$x_{i+1} = x_i + hf(t_i, x_i)$$

Here, $\psi(h, t, x) = f(t, x)$.



Taylor Methods. To see how the Taylor Method of order p (p as in integer ≥ 1) is constructed, consider the Taylor expansion of a C^{p+1} solution x(t) of x' = f(t, x):

$$x(t+h) = x(t) + hx'(t) + \dots + \frac{h^p}{p!}x^{(p)}(t) + \underbrace{\frac{h^{p+1}}{(p+1)!}x^{(p+1)}(\theta)}_{\text{remainder term}}$$

In the remainder term, θ is between t and t+h, so the remainder term is $\mathcal{O}(h^{p+1})$, that is the magnitude of the remainder term is bounded above by a constant multiple of h^{p+1} for all h>0 sufficiently small. Here we can take the constant to be $\frac{1}{(p_1)!}\max_{a\leq t\leq b}|x^{(p+1)}(t)|$. In the approximation, we will neglect the remainder term, and use the DE x'=f(t,x) to replace $x'(t), x''(t), \ldots$ by expressions involving f and its derivatives:

$$x''(t) = f(t, x(t))$$

$$x''(t) = \frac{d}{dt}(f(t, x(t))) = D_t f \Big|_{(t, x(t))} + D_x f \Big|_{(t, x(t))} \frac{dx}{dt}$$

$$= (D_t f + (D_x f) f) \Big|_{(t, x(t))}$$
 (for $n = 1$, this is $f_t + f_x f$).

For higher derivatives, inductively differentiate the expression for the previous derivative, and replace any occurrence of $\frac{dx}{dt}$ by f(t, x(t)). These expansions lead us to define the Taylor methods of order p:

$$p = 1 : x_{i+1} = x_i + hf(t_i, x_i)$$
 (Euler's method, $\psi(h, t, x) = f(t, x)$)
$$p = 2 : x_{i+1} = x_i + hf(t_k, x_i) + \frac{h^2}{2} \left(D_t f + (D_x f) f \right) \Big|_{(t_i, x_i)}$$

For the case p = 2, we have

$$\psi(h,t,x) = T_2(h,t,x) \equiv \left(f + \frac{h}{2} \left(D_t f + (D_x f) f \right) \right) \Big|_{(t,x)}.$$

We will use the notation $T_p(h, t, x)$ to denote the $\psi(h, t, x)$ function for the Taylor method of order p.

Remark. Taylor methods of order ≥ 2 are rarely used computationally. They require derivatives of f to be programmed and evaluated. They are, however, of theoretical interest in determining the order of a method.

Remark. A "one-step method" is actually an association of a function $\psi(h, t, x)$ (defined for $0 \le h \le b - a, a \le t \le b, x \in \mathbb{R}^n$) to each function f(t, x) (which is continuous in t, x and

Lipschitz in x on $[a, b] \times \mathbb{R}^n$). We study "methods" looking at one function f at a time. Many methods (e.g., Taylor methods of order $p \geq 2$) require more smoothness of f, either for their definition, or to guarantee that the solution x(t) is sufficiently smooth. Recall that if $f \in C^p$ (in t and x), then the solution x(t) of the IVP x' = f(t, x), $x(a) = x_a$ is in $C^{p+1}[a, b]$. For "higher-order" methods, this smoothness is essential in getting the error to be higher order in h. We will assume from here on (usually tacitly) that f is sufficiently smooth when needed.

Examples.

Modified Euler's Method

$$x_{i+1} = x_i + hf\left(t_i + \frac{h}{2}, x_i + \frac{h}{2}f(t_i, x_i)\right)$$
(so $\psi(h, t, x) = f\left(t + \frac{h}{2}, x + \frac{h}{2}f(t, x)\right)$).

Here $\psi(h, t, x)$ tries to approximate

$$x'\left(t+\frac{h}{2}\right) = f\left(t+\frac{h}{2}, x\left(t+\frac{h}{2}\right)\right),$$

using the Euler approximation to $x\left(t+\frac{h}{2}\right) \left(\approx x(t)+\frac{h}{2}f(t,x(t))\right)$.

Improved Euler's Method (or Heun's Method)

$$x_{i+1} = x_i + \frac{h}{2} \left(f(t_i, x_i) + f(t_{i+1}, x_i + hf(t_i, x_i)) \right)$$
(so $\psi(h, t, x) = \frac{1}{2} \left(f(t, x) + f(t + h, x + hf(t, x)) \right)$).

Here again $\psi(h,t,x)$ tries to approximate

$$x'\left(t+\frac{h}{2}\right) \approx \frac{x'(t)+x'(t+h)}{2}.$$

Or $\psi(h,t,x)$ can be viewed as an approximation to the trapezoid rule applied to

$$\frac{1}{h}(x(t+h)-x(t)) = \frac{1}{h} \int_{t}^{t+h} x' \approx \frac{1}{2}x'(t) + \frac{1}{2}x'(t+h).$$

Modified Euler and Improved Euler are examples of 2^{nd} order two-stage Runge-Kutta methods. Notice that no derivatives of f need be evaluated, but f needs to be evaluated twice in each step (from x_i to x_{i+1}).

Before stating the convergence theorem, we introduce the concept of accuracy.

Local Truncation Error

Let $x_{i+1} = x_i + h\psi(h, t_i, x_i)$ be a one-step method, and let x(t) be a solution of the DE x' = f(t, x). The local truncation error (LTE) for x(t) is defined to be

$$l(h,t) \equiv x(t+h) - (x(t) + h\psi(h,t,x(t))),$$

that is, the local truncation error is the amount by which the true solution of the DE fails to satisfy the numerical scheme.

Given h, define

$$\tau(h,t) = \frac{l(h,t)}{h} \quad \text{for } h > 0,$$

and set $\tau_i(h) = \tau(h, t_i)$. Also, set

$$\tau(h) = \max_{a < t < b} |\tau(h, t)| \quad \text{for } h > 0.$$

Note that

$$l(h, t_i) = x(t_{i+1}) - (x(t_i) + h\psi(h, t_i, x(t_i))),$$

explicitly showing the dependence of l on h, t_i , and x(t).

Definition. A one-step method is called [formally] accurate of order p (for a positive integer p) if for any solution x(t) of the DE x' = f(t, x) which is C^{p+1} , we have $l(h, t) = \mathcal{O}(h^{p+1})$.

Definition. A one-step method is called *consistent* if $\psi(0, t, x) = f(t, x)$. Consistency is essentially minimal accuracy:

Proposition. A one-step method

$$x_{i+1} = x_i + h\psi(h, t_i, x_i),$$

where $\psi(h, t, x)$ is continuous for $0 \le h \le h_0$, $a \le t \le b$, $x \in \mathbb{R}^n$ for some $h_0 \in (0, b - a]$, is consistent for the DE x' = f(t, x) if and only if $\tau(h) \to 0$ as $h \to 0^+$.

Proof. Suppose the method is consistent. Fix a solution x(t). For $0 < h \le h_0$, let

$$Z(h) = \max_{\{(k,t) \mid a \le t \le b, a \le t+k \le b, 0 \le k \le h, \}} |\psi(k,t,x(t)) - \psi(0,t+k,x(t+k))|.$$

By uniform continuity, $Z(h) \to 0$ as $h \to 0^+$. For some $\theta \in (0, h)$ and $a \le t < b$,

$$x(t+h) = x(t+h) = x(t) + hx'(t+\theta)$$
$$= x(t) + hf(t+\theta, x(t+\theta))$$
$$= x(t) + h\psi(0, t+\theta, x(t+\theta)).$$

Combining this with the definition of l(h, t) gives

$$|l(h,t)| = h|\psi(0,t+\theta,x(t+\theta)) - \psi(h,t,x(t))| \le hZ(h),$$

so $\tau(h) \leq Z(h) \to 0$. Conversely, if $\tau(h) \to 0$, then for any $t \in [a,b)$ and any $h \in (0,b-t]$,

$$\frac{x(t+h)-x(t)}{h} = \psi(h,t,x(t)) + \tau(h,t).$$

Taking the limit as $h \downarrow 0$ gives $f(t, x) = x'(t) = \psi(0, t, x(t))$.

Convergence Theorem for One-Step Methods

Theorem. Let f(t,x) be a continuous mapping from $[a,b] \times \mathbb{F}^n$ into \mathbb{F}^n , and assume that f is uniformly Lipschitz in x on $[a,b] \times \mathbb{R}^n$. Let x(t) be the solution of the IVP x' = f(t,x), $x(a) = x_a$ on [a,b]. Suppose that the function $\psi(h,t,x)$ in the one step method satisfies the following two conditions

- 1. (Stability) $\psi(h, t, x)$ is continuous in h, t, x and uniformly Lipschitz in x (with Lipschitz constant K) on $0 \le h \le h_0$, $a \le t \le b$, $x \in \mathbb{R}^n$ for some $h_0 > 0$ with $h_0 \le b a$, and
- 2. (Consistency) $\psi(0,t,x) = f(t,x)$.

Given $h \in (0, b - a]$, recursively define

$$x_{i+1}(h) = x_i(h) + h\psi(h, t_i, x_i(h))$$
 for $0 \le i \le \frac{b-a}{h}$,

as in the one-step method. Define

$$t_k(h) = a + kh$$
 for $0 \le k \le \frac{b-a}{h}$,

and set

$$e_k(h) = x(t_k(h)) - x_k(h)$$
 for $0 \le k \le \frac{b-a}{b}$.

The vector $e_k(h)$ is the error in estimating the true solution to the IVP at a + kh, namely x(a+kh), by the approximation given by the one-step method, $x_k(h)$. In particular, $e_0(h) = x_a - x_0(h)$ is the error in the initial value $x_0(h)$. With these definitions, we have

$$|e_i(h)| \le e^{K(t_i(h)-a)}|e_0(h)| + \tau(h)\left(\frac{e^{K(t_i(h)-a)}-1}{K}\right)$$
,

so

$$|e_i(h)| \le e^{K(b-a)}|e_0(h)| + \frac{e^{K(b-a)}-1}{K}\tau(h).$$

Moreover, $\tau(h) \to 0$ as $h \to 0$. Therefore, if $e_0(h) \to 0$ as $h \to 0$, then

$$\max_{0 \le i \le \frac{b-c}{h}} |e_i(h)| \to 0 \quad \text{as} \quad h \to 0,$$

which implies the uniform convergence of the iterates on the grid.

Proof. Hold h > 0 fixed, and ignore rounding error. Subtracting

$$x_{i+1} = x_i + h\psi(h, t_i, x_i)$$

from

$$x(t_{i+1}) = x(t_i) + h\psi(h, t_i, x(t_i)) + h\tau_i,$$

gives

$$|e_{i+1}| \le |e_i| + h|\psi(h, t_i, x(t_i)) - \psi(h, t_i, x_i)| + h|\tau_i|$$

 $\le |e_i| + hK|e_i| + h\tau(h).$

So

$$|e_1| \le (1 + hK)|e_0| + h\tau(h)$$
, and
 $|e_2| \le (1 + hK)|e_1| + h\tau(h)$
 $\le (1 + hK)^2|e_0| + h\tau(h)(1 + (1 + hK))$.

By induction,

$$|e_{i}| \leq (1+hK)^{i}|e_{0}| + h\tau(h)(1+(1+hK)+(1+hK)^{2}+\cdots+(1+hK)^{i-1})$$

$$= (1+hK)^{i}|e_{0}| + h\tau(h)\frac{(1+hK)^{i}-1}{(1+hK)-1}$$

$$= (1+hK)^{i}|e_{0}| + \tau(h)\frac{(1+hK)^{i}-1}{K}$$

Now use $(1+hK)^{\frac{1}{h}} \uparrow e^K$ as $h \to 0^+$ (for K > 0), and $i = \frac{t_i - a}{h}$ to obtain

$$|e_i| \le e^{K(t_i - a)} |e_0| + \tau(h) \frac{e^{K(t_i - a)} - 1}{K}$$

since

$$(1+hK)^{j} = (1+hK)^{\frac{t_{j}-a}{n}} \le e^{K(t_{i}-a)}.$$

The preceding proposition shows $\tau(h) \to 0$, and the theorem follows.

The theorem implies that if a one-step method is accurate of order p and stable [i.e. ψ is Lipschitz in x], then for sufficiently smooth f, $x(t) \in C^{p+1}$, so

$$l(h,t) = \mathcal{O}(h^{p+1})$$
 and thus $\tau(h) = \mathcal{O}(h^p)$.

If, in addition, $e_0(h) = \mathcal{O}(h^p)$, then

$$\max_{i} |e_i(h)| = \mathcal{O}(h^p),$$

i.e. p^{th} order convergence.

Example. The "Taylor method of order p" is accurate of order p. If $f \in C^p$, then $x \in C^{p+1}$, and

$$l(h,t) = x(t+h) - \left(x(t) + hx'(t) + \dots + \frac{h^p}{p!}x^{(p)}(t)\right) = x^{(p+1)}(\theta)\frac{h^{p+1}}{(p+1)!}.$$

So

$$|l(h,t)| \le M_{p+1} \frac{h^{p+1}}{(p+1)!}$$
 where $M_{p+1} = \max_{a \le t \le b} |x^{(p+1)}(t)|$.

Fact. A one-step method $x_{i+1} = x_i + h\psi(h, t_i, x_i)$ is accurate or order p if and only if

$$\psi(h, t, x) = T_p(h, t, x) + \mathcal{O}(h^p),$$

where T_p is the " ψ " for the Taylor method of order p.

Proof. Since

$$x(t+h) - x(t) = hT_p(h, t, x(t)) + \mathcal{O}(h^{p+1}),$$

we have for any given one-step method that

$$l(h,t) = x(t+h) - x(t) - h\psi(h,t,x(t))$$

= $hT_p(h,t,x(t)) + \mathcal{O}(h^{p+1}) - h\psi(h,t,x(t))$
= $h(T_p(h,t,x(t)) - \psi(h,t,x(t))) + \mathcal{O}(h^{p+1}).$

So
$$l(h,t) = \mathcal{O}(h^{p+1})$$
 iff $h(T_p(h,t,x(t)) - \psi(h,t,x(t))) = \mathcal{O}(h^{p+1})$ iff $\psi = T_p + \mathcal{O}(h^p)$.

Remark. The controlled growth of the effect of the local truncation error (LTE) from previous steps in the proof of the convergence theorem (a consequence of the Lipschitz continuity of ψ in x) is called *stability*. The theorem states:

Stability + Consistency (minimal accuracy) \Rightarrow Convergence.

In fact, here, the converse is also true.

Explicit Runge-Kutta methods

One of the problems with Taylor methods is the need to evaluate higher derivatives of f. Runge-Kutta (RK) methods replace this with the much more reasonable need to evaluate f more than once to go from x_i to x_{i+1} . An m-stage (explicit) RK method is of the form

$$x_{i+1} = x_i + h\psi(h, t_i, x_i),$$

with

$$\psi(h, t, x) = \sum_{j=1}^{m} a_j k_j(h, t, x),$$

where a_1, \ldots, a_m are given constants,

$$k_1(h, t, x) = f(t, x)$$

and for $2 \leq j \leq m$,

$$k_j(h, t, x) = f(t + \alpha_j h, x + h \sum_{r=1}^{j-1} \beta_{jr} k_r(h, t, x))$$

with $\alpha_2, \ldots, \alpha_m$ and β_{jr} $(1 \le r < j \le m)$ given constants. We usually choose $0 < \alpha_j \le 1$, and for accuracy reasons we choose

(*)
$$\alpha_j = \sum_{r=1}^{j-1} \beta_{jr} \qquad (2 \le j \le m).$$

Example. m=2

$$x_{i+1} = x_i + h(a_1k_1(h, t_i, x_i) + a_2k_2(h, t_i, x_i))$$

where

$$k_1(h, t_i, x_i) = f(t_i, x_i)$$

 $k_2(h, t_i, x_i) = f(t_i + \alpha_2 h, x_i + h\beta_2 k_1(h, t_i, x_i)).$

For simplicity, write α for α_2 and β for β_2 , and set $\alpha = \beta$ as in (*). Expanding in h,

$$k_{2}(h, t, x) = f(t + \alpha h, x + h\beta f(t, x))$$

$$= f(t, x) + \alpha h D_{t} f(t, x) + (D_{x} f(t, x))(h\beta f(t, x)) + \mathcal{O}(h^{2})$$

$$= [f + h(\alpha D_{t} f + \beta (D_{x} f) f)](t, x) + \mathcal{O}(h^{2}).$$

So

$$\psi(h, t, x) = (a_1 + a_2)f + h(a_2 \alpha D_t f + a_2 \beta(D_x f) f) + \mathcal{O}(h^2).$$

Recalling that

$$T_2 = f + \frac{h}{2}(D_t f + (D_x f)f),$$

and that the method is accurate of order two if and only if

$$\psi = T_2 + \mathcal{O}(h^2),$$

we obtain the following necessary and sufficient condition on a two-stage (explicit) RK method to be accurate of order two:

$$a_1 + a_2 = 1$$
, $a_2 \alpha = \frac{1}{2}$, and $a_2 \beta = \frac{1}{2}$.

Since we have already chosen $\alpha = \beta$ (we now see why), these conditions become:

$$a_1 + a_2 = 1, \qquad a_2 \alpha = \frac{1}{2}.$$

Therefore, there is a one-parameter family (e.g., parameterized by α) of 2nd order, two-stage (m=2) explicit RK methods.

Examples.

- (1) Setting $\alpha = \frac{1}{2}$ gives $a_2 = 1$, $a_1 = 0$, which is the Modified Euler method.
- (2) Choosing $\alpha = 1$ gives $a_2 = \frac{1}{2}$, $a_1 = \frac{1}{2}$, which is the Improved Euler method, or Heum's method.

Remark. Note that an m-stage explicit RK method requires m function evaluations (i.e., evaluations of f) in each step $(x_i \text{ to } x_{i-1})$.

Attainable Orders of Accuracy for Explicit RK methods

# of stages (m)	highest order attainable
1	1 ← Euler's method
2	2
3	3
4	4
5	4
6	5
7	6
8	7

Explicit RK methods are always stable: ψ inherits its Lipschitz continuity from f.

Example.

Modified Euler. Let L be the Lipschitz constant for f, and suppose $h \leq h_0$ (for some $h_0 \leq b-1$).

$$x_{i+1} = x_i + hf\left(t_i + \frac{h}{2}, x_i + \frac{h}{2}f(t_i, x_i)\right)$$

$$\psi(t, h, x) = f\left(t + \frac{h}{2}, x + \frac{h}{2}f(t, x)\right)$$

So

$$\begin{array}{ll} |\psi(h,t,x) - \psi(h,t,y)| & \leq & L \left| \left(x + \frac{h}{2} f(t,x) \right) - \left(y + \frac{h}{2} f(t,y) \right) \right| \\ & \leq & L |x - y| + \frac{h}{2} L |f(t,x) - f(t,y)| \\ & \leq & L |x - y| + \frac{h}{2} L^2 |x - y| \\ & \leq & K |x - y| \end{array}$$

where $K = L + \frac{h_0}{2}L^2$ is thus the Lipschitz constant for ψ .

Example. A popular 4th order four-stage RK method is

$$x_{i+1} = x_i + \frac{h}{6}(k_1 + 2k_2 + 2k_3 + k_4)$$

where

$$k_{1} = f(t_{i}, x_{i})$$

$$k_{2} = f\left(t_{i} + \frac{h}{2}, x_{i} + \frac{h}{2}k_{1}\right)$$

$$k_{3} = f\left(t_{i} + \frac{h}{2}, x_{i} + \frac{h}{2}k_{2}\right)$$

$$k_{4} = f(t_{i} + h, x_{i} + hk_{3}).$$

The same argument as above shows this method is stable.

Remark. RK methods require multiple function evaluations per step (going from x_i to x_{i+1}). One-step methods discard information from previous steps (e.g., x_{i-1} is not used to get x_{i+1} — except in its influence on x_i). We next study a class of multi-step methods. But first, we make a few observations about linear difference equations.

Linear Difference Equations (Constant Coefficients)

In this discussion, x_i will be a (scalar) sequence defined for $i \geq 0$. Consider the linear difference equation (k-step)

(LDE)
$$x_{i+k} + \alpha_{k-1} x_{i+k-1} + \dots + \alpha_0 x_i = b_i$$
 $(i \ge 0).$

If $b_i \equiv 0$, the linear difference equation (LDE) is said to be homogeneous, in this case we will refer to it as (lh). If $b_i \neq 0$ for some $i \geq 0$, the linear difference equation (LDE) is said to be inhomogeneous, in this case we refer to it as (li).

Initial Value Problem (IVP): Given x_i for i = 0, ..., k-1, determine x_i satisfying (LDE) for $i \ge 0$.

Theorem. There exists a unique solution of (IVP) for (lh) or (li).

Proof. An obvious induction on i. The equation for i = 0 determines x_k , etc.

Theorem. The solution set of (lh) is a k-dimensional vector space (a subspace of the set of all sequences $\{x_i\}_{i>0}$).

Proof Sketch. For j = 1, 2, ...k, initialize the (LDE) sequence by setting

$$[x_0, x_1, \dots, x_{k-1}]^T = e_j \in \mathbb{R}^k.$$

Then solving (lh) for each $j=1,2,\ldots k$ gives basis of the solution space of (lh).

In (LDE) we may assume with no loss in generality that $a_0 \neq 0$. Indeed, if $\alpha_0 = 0$, (LDE) isn't really a k-step difference equation since we can shift indices and treat it as a \widetilde{k} -step difference equation for a $\widetilde{k} < k$, namely $\widetilde{k} = k - \nu$, where ν is the smallest index with $\alpha_{\nu} \neq 0$. Thus, henceforth we assume that $a_0 \neq 0$.

Let r_1, \ldots, r_s be the distinct zeroes of p, with multiplicities m_1, \ldots, m_s (note: each $r_j \neq 0$ since $\alpha_0 \neq 0$, and $m_1 + \cdots + m_s = k$.

Define the characteristic polynomial of (lh) to be

$$p(r) = r^k + \alpha_{k-1}r^{k-1} + \dots + \alpha_0.$$

Let us assume that $\alpha_0 \neq 0$. Let r_1, \ldots, r_s be the distinct zeroes of p, with multiplicities m_1, \ldots, m_s . Note that each $r_j \neq 0$ since $\alpha_0 \neq 0$, and $m_1 + \cdots + m_s = k$. These zeros generate the following basis of solutions of (lh):

$$\{\{i^l r_j^i\}_{i=0}^{\infty} : 1 \le j \le s, \ 0 \le l \le m_j - 1\}.$$

Example. Fibonacci Sequence:

$$F_{i+2} - F_{i+1} - F_i = 0$$
, $F_0 = 0$, $F_1 = 1$.

The associated characteristic polynomial $r^2 - r - 1 = 0$ has roots

$$r_{\pm} = \frac{1 \pm \sqrt{5}}{2}$$
 $(r_{+} \approx 1.6, r_{-} \approx -0.6).$

The general solution of (lh) is

$$F_i = C_+ \left(\frac{1+\sqrt{5}}{2}\right)^i + C_- \left(\frac{1-\sqrt{5}}{2}\right)^i.$$

Since $|r_-| < 1$, we have

$$C_{-}\left(\frac{1-\sqrt{5}}{2}\right)^{i} \to 0 \text{ as } i \to \infty.$$

The initial conditions $F_0 = 0$ and $F_1 = 1$ imply that $C_+ = \frac{1}{\sqrt{5}}$ and $C_- = -\frac{1}{\sqrt{5}}$. Hence, asymptotically, the Fibonacci sequence behaves like the sequence $\frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2}\right)^i$.

Remark. If $\alpha_0 = \alpha_1 = \cdots = \alpha_{\nu-1} = 0$ and $\alpha_{\nu} \neq 0$ (i.e., 0 is a root of multiplicity ν), then $x_0, x_1, \ldots, x_{\nu-1}$ are completely independent of x_i for $i \geq \nu$. So $x_{i+k} + \cdots + a_{i+\nu} = b_i$ for $i \geq 0$ with x_i given for $i \geq \nu$ behaves like a $(k - \nu)$ -step difference equation.

Remark. Define $\widetilde{x}_i = [x_i, x_{i+1}, \dots, x_{i+k-1}]^T$. Then $\widetilde{x}_{i+1} = A\widetilde{x}_i$ for $i \geq 0$, where

$$A = \begin{bmatrix} 0 & 1 & & & \\ & \ddots & \ddots & & \\ & & 0 & 1 \\ -\alpha_0 & \dots & & -\alpha_{k-1} \end{bmatrix},$$

and $\widetilde{x}_0 = \begin{bmatrix} x_0, & x_1, & \vdots, & x_{k-1} \end{bmatrix}^T$ is given by the I.C. So (lh) is equivalent to the one-step vector difference equation

$$\widetilde{x}_{i+1} = A\widetilde{x}_i, \quad i \ge 0,$$

whose solution is $\tilde{x}_i = A^i \tilde{x}_0$. The characteristic polynomial of (lh) is the characteristic polynomial of A. Because A is a companion matrix, each distinct eigenvalue has only one Jordan block. If $A = PJP^{-1}$ is the Jordan decomposition of A (J in Jordan form, P invertible), then

$$\widetilde{x}_i = PJ^iP^{-1}\widetilde{x}_0.$$

Let J_j be the $m_j \times m_j$ block corresponding to r_j (for $1 \le j \le s$), so $J_j = r_j I + Z_j$, where Z_j denotes the $m_j \times m_j$ shift matrix:

$$Z_j = \left[\begin{array}{ccc} 0 & 1 \\ \ddots & \ddots & 1 \\ & & 0 \end{array} \right].$$

Then

$$J_j^i = (r_j I + Z_j)^i = \sum_{l=0}^i {i \choose l} r_j^{i-1} Z_j^l.$$

Since $\binom{i}{l}$ is a polynomial in i of degree l and $Z_j^{m_j} = 0$, we see entries of the form (constant) $i^l r_j^i$ for $0 \le l \le m_j - 1$.

Remark. (li) becomes

$$\widetilde{x}_{i+1} = A\widetilde{x}_i + \widetilde{b}_i, \quad i \ge 0,$$

where $\widetilde{b}_i = [0, \dots, 0, b_i]^T$. This leads to a discrete version of Duhamel's principle (exercise).

Remark. All solutions $\{x_i\}_{i>0}$ of (lh) stay bounded (i.e. are elements of l^{∞})

- \Leftrightarrow the matrix A is power bounded (i.e., $\exists M$ so that $||A^i|| \leq M$ for all $i \geq 0$)
- \Leftrightarrow the Jordan blocks J_1, \ldots, J_s are all power bounded

$$\Leftrightarrow \left\{ \begin{array}{ccc} \text{(a)} & \text{each } |r_j| \leq 1 \\ \text{and (b)} & \text{for any } j \text{ with } m_j > 1 \text{ (multiple roots)}, & |r_j| < 1 \end{array} \right..$$

If (a) and (b) are satisfied, then the map $\widetilde{x}_0 \mapsto \{x_i\}_{i\geq 0}$ is a bounded linear operator from \mathbb{R}^k (or \mathbb{C}^k) into l^{∞} (exercise).

Linear Multistep Methods (LMM)

A LMM is a method of the form

$$\sum_{j=0}^{k} \alpha_j x_{i+j} = h \sum_{j=0}^{k} \beta_j f_{i+j}, \quad i \ge 0$$

for the approximate solution of an ODE IVP

$$x' = f(t, x), \quad x(a) = x_a .$$

Here we want to approximate the solution x(t) of this IVP for $a \leq t \leq b$ at the points $t_i = a + ih$ (where h is the time step), $0 \leq j \leq \frac{b-a}{h}$. The term x_i denotes the approximation to a solution of the IVP at t_i , $x(t_i)$. Similarly, f_{i+j} denotes $f(t_{i+j}, x_{i+j})$. We normalize the coefficients so that $\alpha_k = 1$. The above is called a k-step LMM whenever at least one of the coefficients α_0 and β_0 is non-zero. One can view the equation above as a difference equation, solving for x_{i+k} from $x_i, x_{i+1}, \ldots, x_{i+k-1}$. Assume as usual that f is continuous in (t, x) and uniformly Lipschitz in x. For simplicity of notation, assume that x(t) is real and scalar; the analysis that follows applies to $x(t) \in \mathbb{R}^n$ or $x(t) \in \mathbb{C}^n$ (viewed as \mathbb{R}^{2n} for differentiability) with minor adjustments.

Example. (Midpoint rule) (explicit)

$$x(t_i+2)-x(t_i)=\int_{t_i}^{t_{i+2}}x'(s)ds\approx 2hx'(t_{i+1})=2hf(t_{i+1},x(t_{i+1})).$$

This approximate relationship suggests the LMM

Midpoint rule:
$$x_{i+2} - x_i = 2hf_{i+1}$$
.

Example. (Trapezoid rule) (implicit)

The approximation

$$x(t_{i+1}) - x(t_i) = \int_{t_i}^{t_{i+1}} x'(s)ds \approx \frac{h}{2}(x'(t_{i+1}) + x'(t_i))$$

suggests suggests the LMM

Trapezoid rule:
$$x_{i+1} - x_i = \frac{h}{2}(f_{i+1} + f_i)$$
.

Explicit vs Implicit.

If $\beta_k = 0$, the LMM is called *explicit*: once we know $x_i, x_{i+1}, \ldots, x_{i+k-1}$, we compute immediately

$$x_{i+k} = \sum_{j=0}^{k-1} (h\beta_j f_{i+j} - \alpha_j x_{i+j})$$
.

On the other hand, if $\beta_k \neq 0$, the LMM is called *implicit*: knowing $x_k, x_{i+1}, \ldots, x_{i+k-1}$, we need to

solve
$$x_{i+k} = h\beta_k f(t_{i+k}, x_{i+k}) - \sum_{j=0}^{k-1} (\alpha_j x_{i+j} - h\beta_j f(i+j))$$
 for x_{i+k} .

Remark. If h is sufficiently small, implicit LMM methods also have unique solutions given h and $x_0, x_1, \ldots, x_{k-1}$. To see this let L be the Lipschitz constant for f. Given x_i, \ldots, x_{i+k-1} , the value for x_{i+k} is obtained by solving the equation

$$x_{i+k} = h\beta_k f(t_{i+k}, x_{i+k}) + g_i,$$

where

$$g_i = \sum_{j=0}^{k-1} (h\beta_j f_{i+j} - \alpha_j x_{i+j})$$

is constant as far as x_{i_k} is concerned. That is, we are looking for a fixed point of

$$\Phi(x) = h\beta_k f(t_{i+k}, x) + g_i .$$

Note that if $h|\beta_k|L < 1$, then Φ is a contraction:

$$|\Phi(x) - \Phi(y)| \le h|\beta_k||f(t_{i+k}, x) - f(t_{i+k}, y)| \le h|\beta_h|L|x - y|.$$

So by the Contraction Mapping Fixed Point Theorem, Φ has a unique fixed point. Any initial guess for x_{i+k} leads to a sequence converging to the fixed point using functional iteration

$$x_{i+k}^{(l+1)} = h\beta_k f(t_{i+k}, x_{i+k}^{(l)}) + g_i$$

which is initiated at some initial point $x_{i+k}^{(0)}$. In practice, one chooses to either

- (1) iterate to convergence, or
- (2) a fixed number of iterations.

In both approaches one typically uses an *explicit* method to get the initial guess $x_{i+k}^{(0)}$. This pairing is often called a Predictor-Corrector Method.

Function Evaluations. One FE means evaluating f once.

Explicit LMM: 1 FE per step (after initial start)

Implicit LMM: ? FEs per step if one iterates to convergence, and

usually 2 FE per step for a Predictor-Corrector Method.

Initial Values. To start a k-step LMM, we need $x_0, x_1, \ldots, x_{k-1}$. We usually take $x_0 = x_a$, and approximate x_1, \ldots, x_{k-1} using a one-step method (e.g., a Runge-Kutta method).

Local Truncation Error. For a true solution x(t) to x' = f(t, x), define the LTE to be

$$l(h,t) = \sum_{j=0}^{k} \alpha_{j} x(t+jh) - h \sum_{j=0}^{k} \beta_{j} x'(t+jh).$$

If $x \in C^{p+1}$, then

$$x(t+jh) = x(t) + jhx'(t) + \dots + \frac{(jh)^p}{p!}x^{(p)}(t) + \mathcal{O}(h^{p+1}) \text{ and}$$

$$hx'(t+jh) = hx'(t) + jh^2x''(t) + \dots + \frac{j^{p-1}h^p}{(p-1)!}x^{(p)}(t) + \mathcal{O}(h^{p+1})$$

and so

$$l(h,t) = C_0 x(t) + C_1 h x'(t) + \dots + C_p h^p x^{(p)}(t) + \mathcal{O}(h^{p+1}),$$

where

$$C_{0} = \alpha_{0} + \dots + \alpha_{k}$$

$$C_{1} = (\alpha_{1} + 2\alpha_{2} + \dots + k\alpha_{k}) - (\beta_{0} + \dots + \beta_{k})$$

$$\vdots$$

$$C_{q} = \frac{1}{q!}(\alpha_{1} + 2^{q}\alpha_{2} + \dots + k^{q}\alpha_{k}) - \frac{1}{(q-1)!}(\beta_{1} + 2^{q-1}\beta_{2} + \dots + k^{q-1}\beta_{k}).$$

Definition. A LMM is called accurate of order p if $l(h,t) = \mathcal{O}(h^{p+1})$ for any solution of x' = f(t,x) which is C^{p+1} .

Fact. A LMM is accurate of order at least p iff $C_0 = C_1 = \cdots = C_p = 0$.

Remarks.

(i) For the LTE of a method to be $\mathcal{O}(h)$ for all f's, we must have $C_0 = C_1 = 0$: for any f which is C^1 , all solutions x(t) are C^2 , so

$$l(h, t) = C_0 x(t) + C_1 h x'(t) + \mathcal{O}(h^2)$$
 is $\mathcal{O}(h)$ iff $C_0 = C_1 = 0$.

(ii) Note that C_0, C_1, \ldots depend only on $\alpha_0, \ldots, \alpha_k, \beta_0, \ldots, \beta_k$, not on f. So here, "minimal accuracy" is 1st-order.

Definition. A LMM is called *consistent* if $C_0 = C_1 = 0$ (i.e., at least first-order accurate).

Remark. If a LMM is consistent, then any solution x(t) for any f (continuous in (t, x), Lipschitz in x) has $l(h, t) = \mathcal{O}(h)$: since $x \in C^1$,

$$x(t+jh) = x(t) + jhx'(t) + \mathcal{O}(h)$$
 and $hx'(t+jh) = hx'(t) + \mathcal{O}(h)$,

SO

$$l(h,t) = C_0 x(t) + C_1 h x'(t) + \mathcal{O}(h).$$

Exercise: Verify that the $\mathcal{O}(h)$ terms converge to 0 uniformly in t (after dividing by h) as $h \to 0$: use the uniform continuity of x'(t) on [a, b].

Definition. A k-step LMM

$$\sum \alpha_j x_{i+j} = h \sum \beta_j f_{i+j}$$

is called *convergent* if for each IVP x' = f(t, x), $x(a) = x_a$ on [a, b] $(f \in (C, \text{Lip}))$ and for any choice of $x_0(h), \ldots, x_{k-1}(h)$ for which

$$\lim_{h \to 0} |x(t_i(h)) - x_i(h)| = 0 \quad \text{for} \quad i = 0, \dots, k - 1,$$

we have

$$\lim_{h \to 0} \max_{\{i: a \le t_i(h) \le b\}} |x(t_i(h)) - x_i(h)| = 0.$$

Remarks.

- (i) This asks for uniform decrease in the error on grid as $h \to 0$.
- (ii) By continuity of x(t), the condition on the initial values is equivalent to $x_0(h) \to x_a$.

Fact. If a LMM is convergent, then the zeroes of the (first) characteristic polynomial of the method $p(r) = \alpha_k r^k + \cdots + \alpha_0$ satisfy the Dahlquist root condition:

- (a) all zeroes r satisfy $|r| \leq 1$, and
- (b) multiple zeroes r satisfy |r| < 1.

Example. (Zero Stability) Consider the IVP x' = 0, $0 \le t \le 1$, x(0) = 0, so $f \equiv 0$, and the LMM:

$$\sum \alpha_j x_{i+j} = 0 .$$

(1) Let r be any zero of p(r). Then the solution with initial conditions

$$x_i = hr^i$$
 for $0 \le i \le k - 1$

is

$$x_i = hr^i$$
 for $0 \le i \le \frac{b-a}{h}$.

Suppose $h = \frac{b-a}{m}$ for some $m \in \mathbb{Z}$. Then convergence implies that

$$x_m(h) \approx x(1) = 0.$$

But

$$x_m(h) = hr^m = \frac{b-a}{m}r^m.$$

So

$$|x_m(h) - x(1)| = \frac{b-a}{m}|r^m| \to 0 \text{ as } m \to \infty$$

(i.e., $h \to 0$) iff $|r| \le 1$.

(2) Similarly if r is a multiple zero of p(r), taking $x_i(h) = hir^i$ for $0 \le i \le k-1$ gives

$$x_i(h) = hir^i \quad 0 \le i \le \frac{b-a}{h}$$
.

So if $h = \frac{b-a}{m}$,

$$x_m(h) = \frac{b-a}{m} mr^m = (b-a)r^m,$$

so $x_m(h) \to 0$ as $h \to 0$ iff |r| < 1.

Definition. A LMM is called zero-stable if it satisfies the Dahlquist root condition.

Recall from our discussion of linear difference equations that zero-stability is equivalent to requiring that all solutions of (lh) $\sum_{j=0}^{k} \alpha_j x_{i+j} = 0$ for $i \geq 0$ stay bounded as $i \to \infty$.

Remark. A consistent one-step LMM (i.e., k=1) is always zero-stable. Indeed, consistency implies that $C_0 = C_1 = 0$ which in turn implies that $p(1) = \alpha_0 + \alpha_1 = C_0 = 0$ and so r=1 is the zero of p(r). Thus, in particular, $\alpha_1 = 1$, $\alpha_0 = -1$. That is p(r) = r - 1, and so LMM is zero-stable.

Exercise: Show that if an LMM is convergent, then it is consistent.

Theorem [LMM Convergence]

An LMM is convergent if and only if it is zero-stable and consistent. Moreover, for zero-stable methods, we get an error estimate of the form

$$\max_{a \le t_i(h) \le b} |x(t_i(h)) - x_i(h)| \le K_1 \underbrace{\max_{0 \le i \le k-1} |x(t_i(h)) - x_i(h)|}_{\text{initial error}} + K_2 \underbrace{\frac{\max_i |l(h, t_i(h))|}{h}}_{\text{"growth of error"}}_{\text{controlled by zero-stability}}$$

Remark. If $x \in C^{p+1}$ and the LMM is accurate of order p, then

$$|LTE|/h = \mathcal{O}(h^p).$$

To get p^{th} -order convergence (i.e., $LHE = \mathcal{O}(h^p)$), we need

$$x_i(h) = x(t_i(h)) + \mathcal{O}(h^p)$$
 for $i = 0, ..., k - 1$.

This can be done using k-1 steps of a RK method of order $\geq p-1$.

Lemma. Consider

(li)
$$\sum_{j=0}^{k} \alpha_j x_{i+j} = b_i \quad \text{for} \quad i \ge 0 \qquad \text{(where } \alpha_k = 1),$$

with the initial values x_0, \ldots, x_{k-1} given, and suppose that the characteristic polynomial $p(r) = \sum_{j=0}^k \alpha_j r^j$ satisfies the Dahlquist root condition. Then there is an M > 0 such that for $i \geq 0$,

$$|x_{i+k}| \le M\left(\max\{|x_0|,\ldots,|x_{k-1}|\} + \sum_{\nu=0}^{i} |b_{\nu}|\right).$$

Remark. Recall that the Dahlquist root condition implies that there is an M > 0 for which $||A^k||_{\infty} \leq M$ for all $i \geq 0$, where

$$A = \begin{bmatrix} 0 & 1 & & & \\ & \ddots & \ddots & & \\ & & 0 & 1 \\ -\alpha_0 & \vdots & -\alpha_{k-1} \end{bmatrix}$$

is the companion matrix for p(r), and $\|\cdot\|_{\infty}$ is the operator norm induced by the vector norm $\|\cdot\|_{\infty}$.

Proof. Let $\widetilde{x}_i = [x_i, x_{i+1}, \dots, x_{i+k-1}]^T$ and $\widetilde{b}_i = [0, \dots, 0, b_i]^T$. Then $\widetilde{x}_{i+1} = A\widetilde{x}_i + \widetilde{b}_i$, so by induction

$$\widetilde{x}_{i+1} = A^{i+1}\widetilde{x}_0 + \sum_{\nu=0}^{i} A^{i-\nu}\widetilde{b}_{\nu}.$$

Thus

$$|x_{i+k}| \leq \|\widetilde{x}_{i+1}\|_{\infty}$$

$$\leq \|A^{i+1}\|_{\infty}\|\widetilde{x}_{0}\|_{\infty} + \sum_{\nu=0}^{i} \|A^{i-\nu}\|_{\infty}\|\widetilde{b}_{\nu}\|_{\infty}$$

$$\leq M(\|\widetilde{x}_{0}\|_{\infty} + \sum_{\nu=0}^{i} |b_{\nu}|).$$

Proof of the LMM Convergence Theorem. The fact that convergence implies zero-stability and consistency has already been discussed. Next suppose a LMM is zero-stable and consistent. Let x(t) be the true solution of the IVP x' = f(t, x), $x(a) = x_a$ on [a, b], let L be the Lipschitz constant for f, and

$$\beta = \max_{0 < j < k} |\beta_j|.$$

Hold h fixed, and set

$$e_i(h) = x(t_i(h)) - x_i(h),$$
 $E = \max\{|e_0|, \dots, |e_{k-1}|\},$ $l_i(h) = l(h, t_i(h)),$ $\lambda(h) = \max_{0 \le i \le \frac{b-a}{h}} |l_i(h)|.$

Step 1. The first step is to derive a "difference inequality" for $|e_i|$. The difference inequality referred to here is a discrete form of the integral inequality leading to Gronwall's inequality. For $i \in \mathcal{I}$, we have

$$\sum_{j=0}^{k} \alpha_{j} x(t_{i+j}) = h \sum_{j=0}^{k} \beta_{j} f(t_{i+j}, x(t_{i+j})) + l_{i}$$

$$\sum_{j=0}^{k} \alpha_{j} x_{i+j} = h \sum_{j=0}^{k} \beta_{j} f_{i+j}.$$

Subtraction gives

$$\sum_{j=0}^{k} \alpha_j e_{i+j} = b_i,$$

where

$$b_i \equiv h \sum_{j=0}^k \beta_j (f(t_{i+j}, x(t_{i+j})) - f(t_{i+j}, x_{i+j})) + l_i.$$

Then

$$|b_i| \le h \sum_{i=0}^k |\beta_j| L|e_{i+j}| + |l_i|.$$

So, by the preceding Lemma with x_{i+k} replaced by e_{i+k} , for $i = 1, 2, \ldots$,

$$|e_{i+k}| \leq M[E + \sum_{\nu=0}^{i} |b_{\nu}|]$$

$$\leq M\left[E + \sum_{\nu=0}^{i} \left(h \sum_{j=0}^{k} |\beta_{j}| L |e_{\nu+j}|\right) + |l_{\nu}|\right]$$

$$= M[E + hL\beta \sum_{j=0}^{k} |e_{i+j}| + hL\beta \sum_{\nu=0}^{i-1} \sum_{j=0}^{k} |e_{\nu+j}| + \sum_{\nu=0}^{i} |l_{\nu}|\right]$$

$$\leq M\left[E + hL\beta |e_{i+k}| + hL\beta \sum_{\nu=0}^{k+i-1} |e_{\nu}| + \frac{b-a}{h}\lambda\right],$$

where the final inequality follows from the fact that $0 \le i \le \frac{(b-a)}{h}$. From here on, assume h is small enough to satisfy

$$Mh\beta L \le \frac{1}{2}.$$

Since $\{h \leq b-a: Mh\beta L \geq \frac{1}{2}\}$ is a compact subset of (0,b-a], the estimate in the Theorem is clearly true for those values of h. Moving $Mh\beta L|e_{i+k}|$ to the LHS gives

$$|e_{i+k}| \le 2ME + 2M(b-a)\frac{\lambda}{h} + h(2ML\beta)\sum_{\nu=0}^{i+k-1} |e_{\nu}|$$

$$= hM_1 \sum_{\nu=0}^{i+k-1} |e_{\nu}| + (M_2E + M_3\lambda/h) \qquad i \in \mathcal{I}$$

where $M_1 = 2ML\beta$, $M_2 = 2M$, and $M_3 = 2M(b-a)$. (Note: For explicit methods, $\beta_k = 0$, so we would not have to limit h, and the factor 2 can be dropped.)

Step 2. We now develop a discrete "comparison" argument to bound $|e_i|$. Let y_i be the solution of

(*)
$$y_{i+k} = h M_1 \sum_{\nu=0}^{i+k-1} y_{\nu} + (M_2 E + M_3 \lambda/h) \quad \text{for } i \in \mathcal{I},$$

with initial values $y_j = |e_j|$ for $0 \le j \le k-1$. Then clearly by induction $|e_{i+k}| \le y_{i+k}$ for $i = 1, 2, \ldots$ Now

$$y_k \le h M_1 k E + (M_2 E + M_3 \lambda/h) \le M_4 E + M_3 \lambda/h,$$

where $M_4 = (b-a)M_1k + M_2$. Subtracting (*) for i from (*) for i+1 gives

$$y_{i+k+1} - y_{i+k} = hM_1y_{i+k}$$
, and so $y_{i+k+1} = (1 + hM_1)y_{i+k}$.

Therefore, by induction on $i \in \mathcal{I}$,

$$y_{i+k} = (1 + hM_1)^i y_k$$

$$\leq (1 + hM_1)^{(b-a)/h} y_k$$

$$\leq e^{M_1(b-a)} y_k$$

$$\leq K_1 E + K_2 \lambda/h,$$

where $K_1 = e^{M_1(b-a)}M_4$ and $K_2 = e^{M_1(b-a)}M_3$. Thus, for $i \in \mathcal{I}$,

$$|e_{i+k}| \le K_1 E + K_2 \lambda / h;$$

since $K_1 \geq M_4 \geq M_2 \geq M \geq 1$, also $|e_j| \leq E \leq K_1E + K_2\lambda/h$ for $0 \leq j \leq k-1$. Since consistency implies $\lambda = \mathcal{O}(h)$, we are done. \square Remarks.

- (1) Note that K_1 and K_2 depend only on a, b, L, k, the α_j 's and β_j 's, and M.
- (2) The estimate can be refined we did not try to get the best constants K_1 , K_2 . For example, $e^{M_1(b-c)}$ could be replaced by $e^{M_1(t_i-a)}$ in both K_1 and K_2 , yielding more precise estimates depending on i, similar to the estimate for one-step methods.