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Linear ODE

Let I C R be an interval (open or closed, finite or infinite — at either end). Suppose
A: I —-TF"" and b : I — F" are continuous. The DE
(%) ' = A(t)z + b(t)

is called a first-order linear [system of] ODE[s] on I. Since f(t,z) = A(t)z+b(t) is continuous
int, z on I x F* and, for any compact subinterval [c,d] C I, f is uniformly Lipschitz in  on
[c, d] x F* (with Lipschitz constant max.<;<q|A(t)|), we have global existence and uniqueness
of solutions of the IVP

' = A(t)r + b(t), z(ty) = o

on all of I (where ty € I, zo € F").

If b=0on I, (x) is called a linear homogeneous system (LH).

If b# 0 on I, (%) is called a linear inhomogeneous system (LI).

Fundamental Theorem for LH The set of all solutions of (LH) z' = A(t)x on I form an
n-dimensional vector space over F (in fact, a subspace of C*(I,F")).

Proof. Clearly =} = Az and 2, = Azs imply (c121 + co2)' = A(c121 + c22), so the set of
solutions of (LH) form a vector space over F, which is clearly a subspace of C*(I,F"). Fix
7 € I, and let yi,...,y, be a basis for F*. For 1 < j < n, let z,(t) be the solution of the
IVP 2’ = Az, 2(1) = y;. Then x1(t),...,z,(t) are linearly independent in C'' (I, F"); indeed,

Y ¢zit)=0 in C'(I,F)
7j=1
=

ZCjJ?j(t) =0 Vtel
7j=1

=
D ey = cizi(r) =0
j=1

=

Now if z(t) is any solution of (LH), there exist unique ¢i,..., ¢, such that z(7) = c;y; +
<+« + cpyp. Clearly cix1(t) + - - 4+ cpxn(t) is a solution of the IVP

' =Alt)z, =z(T)=cy+ - Caln,

so by uniqueness, z(t) = c1z1(t) + - - + cpx,(t) for all t € I. Thus z4(),...,z,(t) span
the vector space of all solutions of (LH) on I. So they form a basis for the vector space of
solutions to (LH), and the dimension of this vector space is n. O
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Remark. Define the linear operator L : C*(I,F") — C*(I,F") by Lz = (4 — A(t)) z, i.e.,
[Lz](t) = 2'(t) — A(t)z(t) for z(t) € C*(I,F"). L is called a linear differential operator. The
solution space in the previous theorem is precisely the null space of L. Thus the null space
of L is finite dimensional and has dimension n.

Definition. If ¢, ..., p, are n linearly independent (as elements of C*(I,F")) solutions of
(LH) 2’ = Az, then they form a basis for the vector space of solutions to (LH). Such a basis
is called a fundamental set of solutions of (LH). If ® : I — F™*" is an n X n matrix function
of t € I whose columns form a fundamental set of solutions of (LH), then ®(¢) is called a
fundamental matriz for (LH) 2’ = A(t)z, in which case

O'(t) = A(t)D(t).

Definition. If X : [ — F** is in C'(I,F"**), we say that X is an [n x k] matrix solution
of (LH) if X'(t) = A(t)X(t). Clearly X(¢) is a matrix solution of (LH) if and only if each
column of X (¢) is a solution of (LH). (We will mostly be interested in the case k = n.)

Theorem. Let A : I — F™*" be continuous where I C R is an interval, and suppose
X : I — F"" is an n x n matrix solution of (LH) 2’ = A(t)z on I, i.e., X'(t) = A(t)X(t)
on I. Then

det (X (¢))" = tr (A(¢))(det X (),

and so for all 7,t € I,

det X (£) = (det (X (7)) exp / b (A(s))ds.

Proof Sketch. Let z;;(t) denote the 7™ element of X (t), and let X;;(t) denote the (n —
1) X (n—1) matrix obtained from X (¢) by deleting its ith row and jth column. The co-factor
representation of the determinant gives

n

det (X (1) = Y (1) (t)det (X35(t), i=1,2,....n.

7j=1
Hence d
det (X (1)) = (=1)det (X)),
dx,-j
and so by the chain rule
(det X (1))’
- Z Y (1)t (X (0) + -+ (1), (et (X4, (1)) =
j=1
' ' ' Ti1 ZTiz - Tin ..
Ty Xy - T, (remaining z;;)
det +det | @by why - xh, | +---+det
(remaining z;;) xh, xy e T

(remaining z;;)
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Now by (LH)

[ 21 @ty - 29, | = [Zk0kTe1 - r@ikTen]
= CL11[3U11 T '$1n] + a12[$21 T 'xzn] + -+ am[ﬂ?m e l“nn]

Subtracting aqa[Te1 - + - Top| + + - - + A1, [Tp1 * + - Ty from the first row of the matrix in the first
determinant on the RHS doesn’t change that determinant. A similar argument applied to
the other determinants gives

(det X () =
T11° " T1n

CL11[3311 e '331n]
det +det | ageTar---xon| | +---+det

(remaining z;;)

(remaining z;;)
.. Apn [mnl U xnn]
(remaining z;;)

= (@11 + g + - + apy) det X (£) = tr (A(D))(det X (£)).

Corollary. Let X (¢) be an n x n matrix solution of (LH) 2’ = A(¢)xz. Then either

(Vtel) detX(t)£0 or (Vtel) detX(t)=0.

Corollary. Let X (¢) be an n X n matrix solution of (LH) 2’ = A(t)x. Then the following
statements are equivalent.

(1) X(¢) is a fundamental matrix for (LH) on I.
(2) (37 €I)det X(7)#0 (i.e., columns of X are linearly independent at 7)

(3) (VteI)det X(t) #0 (i.e., columns of X are linearly independent at every ¢ € I).

Definition. If X (¢) is an n X n matrix solution of (LH) 2’ = A(t)z, then det (X (¢)) is often
called the Wronskian [of the columns of X (¢)].

Remark. This is not quite standard notation for general LH systems x' = A(t)z. It is used
most commonly when z' = A(t)r is the 15-order system equivalent to a scalar n'-order
linear homogeneous ODE.

Theorem. Suppose ®(t) is a fundamental matrix for (LH) 2’ = A(¢)z on 1.
(a) If c € T, then z(t) = ®(t)c is a solution of (LH) on I.

(b) If z(t) € C*(I,F™) is any solution of (LH) on I, then there exists a unique ¢ € F"* for
which z(t) = ®(t)c.
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Proof. The theorem just restates that the columns of ®(¢) form a basis for the set of
solutions of (LH). O

Theorem. Suppose ®(¢) is a fundamental matrix (F.M.) for (LH) 2’ = A(t)z on I.
(a) If C € F™*™ is invertible, then X (¢) = ®(¢)C is also a F.M. for (LH) on I.
(b) If X(¢t) € C'(I,F**") is any F.M. for (LH), then there exists a unique invertible
C € F"*" for which X (t) = ®(¢)C.

Proof. For (a), observe that
X'(t) =d'(t)C = A(t)®(t)C = A(t) X (t),

so X (t) is a matrix solution, and det X (¢) = (det ®(¢))(det C') # 0.
For (b), set U(t) = ®(¢)"' X (¢). Then X = &Y, so

OV + OV = (V) = X' = AX = ADV = §'P,

0 on I. So ¥(t) is

which implies that ®¥' = 0. Since ®(¢) is invertible for all ¢t € I, U'(¢) =
= B(1)C. O

a constant invertible matrix C. Since C = ¥ = &' X | we have X (¢)

Remark. If B(t) € C'(I,F**™) is invertible for each ¢t € I, then

Proof. 0= 4(I) = L(B()B-1(t)) = B(t)L(B~1(t)) + B'() B~\(t). O

Adjoint Systems
Let ®(t) be a F.M. for (LH) 2’ = A(t)z. Then
(@) = -0 = —d 7' APPT! = —d 7 A
Taking conjugate transposes, (®~7) = —A#®~H. So & H(¢) is a F.M. for the adjoint
system (LH*) o' = —AH ().

Theorem. If ®(¢) is a F.M. for (LH) 2’ = A(t)z and ¥(¢) € C*(I,F**"), then ¥(t) is a
F.M. for (LH*) 2’ = —A¥ (t)z if and only if U# (¢)®(t) = C, where C is a constant invertible
matrix.

Proof. Suppose U(t) is a F.M. f (LH*). Since ®#(t) is also a F.M. for (LH*), 3 an
invertible C' € ™" 35 U(¢) = &~ ()CH, e, U = C®~! UH® = C. Conversely, if
VA (1)®(t) = C (invertible), then 7 = C P! \Il d~H(C | so U is a F.M. for (LH*). O
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Normalized Fundamental Matrices

Definition. A F.M. ®(t) for (LH) ' = A(t)x is called normalized at time 7 if ®(7) = I,
the identity matrix. (Convention: if not stated otherwise, a normalized F.M. usually means
normalized at time 7 = 0.)

Facts.

(1) For a given 7, the F.M. of (LH) normalized at 7 exists and is unique. (Proof. The j*"
column of ®(t) is the solution of the IVP ' = A(t)z, z(7) =¢;.)

(2) If ®(¢) is the F.M. for (LH) normalized at 7, then the solution of the IVP 2’ = A(?)z,
z(r) = yis z(t) = ®(t)y. (Proof. z(t) = ®(y) satisfies (LH) =’ = A(t)z, and
z(r) = ®(r)y = Iy =y.)

(3) For any fixed 7,t, the solution operator S! for (LH), mapping z(7) into x(t), is linear
on F*, and its matrix is the F.M. ®(¢) for (LH) normalized at 7, evaluated at t.

(4) If ®(t) is any F.M. for (LH), then for fixed 7, ®(t)®'(7) is the F.M. for (LH) nor-
malized at 7. (Proof. It is a F.M. taking the value I at 7.) Thus (a) ®(¢t)® *(7)
is the matrix of the solution operator St for (LH); and (b) the solution of the IVP
¥ =At)r, x(1) =y is x(t) = P()D (7).

Inhomogeneous Linear Systems

We now want to express the solution of the IVP
¥ =At)z +b(t), z(to) =y
for the linear inhomogeneous system
(LI) ' = A(t)z + b(t)
in terms of a F.M. for the associated homogeneous system

(LH) o' = A(t)z.

Variation of Parameters

Let ®(t) be any F.M. for (LH). Then, for any constant vector ¢ € F* ®(¢)c is a solution of
(LH). We will look for a solution of (LI) of the form

(varying the “constants” — elements of ¢). Plugging into (LI), we want

(®c) = ADc + b,
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or equivalently
®'c+ & = AdPc + b.

Since ® = A®, this gives ®c¢’ = b, or ¢ = ®~1b. Set
t
o) = o+ / O (5)b(s)ds
to

for some constant vector ¢ € F", and let x(t) = ®(¢)c(t). These calculations show that x(t)
is a solution of (LI). To satisfy the initial condition z(ty) = vy, we take cg = ® !(¢y)y, and
obtain

z(t) = ®(t)® (to)y + /t O ()01 (s)b(s)ds.

to

In words, this equation states that

soln of (LI) _ soln of (LH) n soln of (LI)
with I.C. z(tg) =y [ | with LC. z(t) =y with homog. I.C. z(ty) =0 [~

Viewing y as arbitrary, we find that the general solution of (LI) equals the general solution
of (LH) plus a particular solution of (LI) stated in terms of the solution operator.

Note: ®(t)®!(tp) is the matrix of S} , and ®(¢)®!(s) is the matrix of S%).

to?
Duhamel’s Principle. If S is the solution operator for (LH), then the solution of the IVP
a' = A(t)x + b(t), z(to) = y is x(t) = SLy + ftz St(b(s))ds.

Remark. So the effect of the inhomogeneous term b(¢) in (LI) is like adding additional IC at
each time s € [ty, t], integrating these solutions S%(b(s)) of (LH) with respect to s € [to, t].

Constant Coefficient Systems

Consider the linear homogeneous constant-coefficient first-order system
(LHC) ' = Az,

where A € ™" is a constant matrix. The F.M. of (LHC), normalized at 0, is ®(t) = e'.
Recall that

V() = L= oAy

pas 7tdt
(7 —1)! Zhaha
j=1 k=0
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We can express e/ using the Jordan form of A: if P~*AP = J is in Jordan form where

P € ™" is invertible (assume F = C if A has any nonreal eigenvalues), then A = PJP™!
so etd = etPIP™! — petd p=1 If

Ji O
J= b
O Js
where each Jj is a single Jordan block, then
etJl O
tJ.
ot — e
O . eth
Finally, if
A O
Ji = A
1
O A
is [ x [, then
B 2 -1 T
Lt g =
1t :
otk — N
2!
t
| O 1

The solution of the inhomogeneous IVP z' = Az + b(t), z(ty) =y is

t
z(t) = et 04y +/ et (s)ds

to

since (e/)™! = e7™ and e!e™4 = elt=9)4,

Another viewpoint

Suppose A € C"™" is a constant diagonalizable matrix with eigenvalues A;,..., A, and
linearly independent eigenvectors vi,...,v,. Then @;(t) = eMv; is a solution of (LHC)
x' = Az since
' d . Azt Ajt
vi = g(eVy) = Neiy = eV ()
= eM'Ay; = A(eM';) = Ap;.
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Clearly ¢, ..., ¢, are linearly independent at ¢t = 0 as ¢;(0) = v;. Thus

() = [p1()pa(t) - - on(t)]

is a F.M. for (LHC). So the general solution of (LHC) (for diagonalizable A) is ®(t)c =
cieMty + - -« + ¢ etty, for arbitrary scalars ci, .. ., c,.

Remark on Exponentials

Let B(t) be a C' n X n matrix function of ¢, and let A(t) = B'(t). Then

—( B(t)) —

d
G I+B+ BB+ ,BBB+ *)

i 3
= A+ (AB+BA) '(ABQ—i—BAB—i—BQA)—i—---.

Now, if for each ¢, A(t) and B(t) commute, then

1
%(eB(t)) =A (I + B+ 5B2 + - ) = B'(t)eB®.

Now suppose We start with a continuous n X n matrix function A(t), and for some t;, we
define B(t ft s)ds, so B'(t) = A(t). Suppose in addition that A(¢) and B(t) commute

for all ¢. Then Dt ) = exp (ft ds) is the F.M. for (LH) 2’ = A(t)z, normalized at ¢,
since ®(ty) = I and ¥'(t) = A(t)@(t) as above. A sufficient (but not necessary) condition
guaranteeing that A(t) and ft s)ds commute is that A(¢) and A(s) commute for all ¢, s.

Remark.Reduction of Order for (LH) ' = A(t)z

In Coddington & Levinson it is shown that if m (< n) linearly independent solutions
of the n x n linear homogeneous system z’ = A(t)z are known, then one can derive an
(n —m) x (n —m) system for obtaining n — m more linearly independent solutions.

Example. D,S! is Invertible at each y.

In this example we show how one can apply the theory of linear systems to the nonlinear
solution operator. Consider the DE z' = f(t,z) where f is C', and let S? denote the solution
operator. For a fixed 7, let z(¢, y) denote the solution of the IVP z' = f(¢,z), z(7) = y. The
equation of variation for the n x n Jacobian matrix Dyx(t,y) is

 (Dyr(t,9) = (Daf (1,2(t,1))) (Dyr(t. 1)

and thus
d

£ (det (Dyr(t,))) = tx (Duf (1, 7(t,1))) det (Dya(t,)),

SO

det (Dyz(t,y)) = det (Dyx(T,y))exp </ tr (D f (s,x(s,y)))) ds

= oo S (D, f (sa(s.0)) ) s
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since
Dyx(r,y) = Dyy = 1.

In particular, det (Dyx(t,y)) # 0, so Dyx(t,y) is invertible. For 7 and ¢ fixed, Dyz(t,y) =
D, St, so we have demonstrated again that D,S? is invertible at each .

Example. The Rate of Change of Volume in a Flow.
Consider an autonomous system z’' = f(z), where f is C' and F =R, so x € R". Fix t,,
and view the family of IVPs
o' =f(z), z(to)=y
for y in an open set Y C R" as a flow: at the initial time ¢y, there is a particle at each point
y € U; that particle’s location at time ¢t > tq is given by z(¢,y), where z(t, y) is the solution
of the IVP 2’ = f(z), z(to) = y (e.g., f can be thought of as a steady-state velocity field).
For t > to, let U(t) = {x(t,y) : y € U}.
tro] Then U(t) = S} [U] and S} : U — U(2)
\ [t]>u(t) is (for fixed t) a C! diffeomorphism (i.e.,
y (ﬂ()\‘ #(ty) for fixed ¢, the map y — x(t,y) is a C*
k,,‘ ’ diffeomorphism on ). In particular,
det Dy z(t,y) never vanishes. Assum-
! ing, in addition, that ¢/ is connected,
det Dyx(t, y) must either be always pos-
itive or always negative; since det Dyx(tp,y) = det =1 > 0, det Dyx(t,y) is always > 0.
Now the volume vol(U(t)) satisfies

vol(U(t)) :/ ldx:/ |detDyx(t,y)|dy=/detDyx(t,y)dy.
Uu(t) u u

z e R?

to

Assuming differentiation under the integral sign is justified (e.g., if ¢ is contained in a
compact set K and S}, can be extended to y € K),

a4 (vol(U(t))) = /u 4 (det Dyz(t,y)) dy = / divf (z(t,y)) det Dyz(t, y)dy

dt dt u
= / divf(z)dz,
u)
by the previous example, where the divergence of f is by definition
. ofi | 0f Ofn
d =—— 4+ —4--- =tr (D, .
ivf(x) o1, + o1 +ot oz, r (Dyf(z))

This gives the rate of change of the volume of U(t) as the integral of the divergence of f over
U(t). In particular, if divf(z) = 0, then £ (vol (14(t))) = 0, and volume is conserved.

Remark. The same argument applies when f = f(¢,z) depends on t as well: just replace
divf(z) by div,f(t,z), the divergence of f (with respect to z):

6.731 &vn

(t,z)
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Linear Systems with Periodic Coefficients
Let A: R — C"*" be continuous, and periodic with period w > 0:
(Vt € R) A(t+ w) = A(t)..

Note that in this case we take the scalar field to be F = C. Consider the periodic linear
homogeneous system
(PLH) ' =A(t)z, teR

All solutions exist (V¢ € R) since f(t,z) = A(t)z is uniformly Lipschitz in z on R x C",
since, by continuity, there exists M > 0 such that
[A(t)| < M VteR.

M is a uniform Lipschitz constant for f(t,z) = A(t)x.
Lemma. If ®(¢) is a F.M. for (PLH), then so also is ¥(t) = ®(t + w).

Proof. For each ¢, ¥(¢) is invertible. Also, U'(t) = ®'(t+w) = A(t+w)P(t+w) = A(t)U(¢),
so ¥(t) is a matrix solution of (PLH). O

Theorem. To each F.M. ®(¢) for (PLH), there exists an invertible periodic C' matrix
function P : R — C™ " and a constant matrix R € C"*" for which ®(t) = P(t)e'E.

Proof. By the lemma, there is an invertible matrix C' € C**" such that ®(t + w) = ®(¢)C.
Since C' is invertible, it has a logarithm, i.e. there exists a matrix W € C"*" such that
e =C. Let R = 2W. Then C = . Define P(t) = ®(¢t)e~*£. Then P(t) is invertible for
all t, P(t) is C', and ®(t) = P(t)e'®. Finally,

Plt+w) = ®(t+w)e TR
= ®(t)Ce “Be R = ®(t)e '® = P(t),
so P(t) is periodic. O

Linear Scalar n"-order ODEs

Let I = [a,b] be an interval in R, and suppose a;(t) are in C(I,F) for j = 0,1,...,n, with
an(t) # 0Vt € I. Consider the n*-order linear differential operator L : C"(I) — C(I) given
by .

‘fltff 4ot al(t)% + ao(t)u,

and the n'-order homogeneous equation (nLH) Lu = 0, ¢t € I. Consider the equivalent n x n
first-order system (LH) 2’ = A(t)z, t € I, where

Lu = a,(t)

0 1 S,
A(t) = O . and = u" €.
—ao ... _Gn-1 :
an an u(nfl)
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Fix ¢y € 1. Appropriate initial conditions for (nLH) are

U(to) Cl
u (:t()) _ :L'(to) _ C = €i2
u(n_l)(to) Cn

Recall that u is a C™ solution of (nLH) if and only if z is a C" solution of (LH), with a
similar equivalence between associated IVP’s. If ®(¢) is a F.M. for (LH), with A(t) as given
above, then ®(t) has the form

¥1 P2 o ¥n
o_| B R
n-1) (n—1 n—1
AP Gl g

where each () satisfies (nLH).

Definition. If (%), ..., ¢, (t) are solutions of (nLH), then the Wronskian of ¢1,..., ¢, (a
scalar function of t) is defined to be

so}(t) 907(15)
W(en . on)(t) = det “01:@) @”:(t) (= det B(1)).
() ()

Since ®(t) is a matrix solution of (LH), we know

det (B(#)) = det (B(to)) exp / r (A(s))ds,

to
SO

W(er, - on)(t) = Wier, - .., ¢n)(to) eXp/ _nmls)

to an(s)

In particular, for solutions ¢, ..., ¢, of (nLH),

either W(p1,...,0,)(t)=0o0n I, or (Vte€I) W(p1,...,pn)(t) #0.

Theorem. Let ¢4, ..., p, be n solutions of (nLH) Lu = 0. Then they are linearly indepen-
dent on I (i.e., as elements of C™([)) if and only if W (¢, ..., ¢,)(t) # 0 on 1.

Proof. If ¢y, ..., ¢, are linearly dependent in C"(I), then there exist scalars c1, ..., ¢, such
that
C1
Cl@l(t)'i“i-cn@n(t)z()on I, with c= 75()’

Cn
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thus ®(t)c =0on I, s0 W(p1,...,0n)(t) = det (¢) = 0 on I. Conversely, if det (¢) = 0 on
I, then the solutions

©1 Pn
QOgn_l) (Pszn_l)
of (LH) are linearly dependent (as elements of C'(I,")), so there exist scalars ci,...,c,

such that

t
cllwl_()]—k---—%cn =0on [,

where not all ¢; = 0. In particular, c1¢1(t)+- - -+ capn(t) =0o0n I, so ¢, ..., @, are linearly
dependent in C™(I). d

on(t) ]

Corollary. The dimension of the vector space of solutions of (nLH) (a subspace of C™([))
is n, i.e., dim N (L) = n, where N (L) denotes the null space of L : C"(I) — C(I).

The differential operator L (normalized so that a,(t) = 1) is itself determined by n
linearly independent solutions of (nLH) Lu = 0.

Fact. Suppose p1(t),...,pn(t) € C*(I) with W(p1,...,0n)(t) # 0 (Vt € I). Then there
exists a unique n'* order linear differential operator
d" drt d
L =— + an,l(t)W + -+ al(t)ﬁ + G,()(t)

(with a,(t) = 1 and each a;(t) € C(I)) for which ¢,..., ¢, form a fundamental set of
solutions of (nLH) Lu = 0, namely,

W((pla <oy Pny U’)

Lu=
W(@l, ceey QDn)

where
Y1 ot Pn U
(P’ <P, ul
W(p1y---ypn,u) = det ! no

RORNNORNG

Sketch. In this formula for Lu, expanding the determinant in the last column shows that L
is an n'™ order linear differential operator with continuous coefficients a;(t) and a,(t) = 1.
Clearly @1, ..., @, are solutions of Lu = 0. For uniqueness (with a,(tf) = 1), note that if

©1,-- ., @y, are linearly independent solutions of Lu = 0 for any L, then
ao(t) (n)
. aq (t) ¥1 (t)
o7 (t) =—|

anf:l (t) Qngn) (t)
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Since W (p1,...,¢n)(t) #0 (Vt € I), ®(t) is invertible V¢ € I, so

a1 (t) ™ (t)
: =-07"(t) :
an—1(t) o (t)

is uniquely determined by ¢4, ..., ©,.
Remark. A first-order system (LH) 2’ = A(t)z is uniquely determined by any F.M. ®().
Since ®'(t) = A(t)®(t), A(t) = &'(t)® (1).

Linear Inhomogeneous n''-order scalar equations

For simplicity, normalize the coefficients a;(t) so that a,(t) =1 in L. Consider (nLI)

Lu = u™ + ap_1 (H)u™ Y + -+ ao(t)u = B(1).

Let
U 0 0 1
u' .
T = , b(t) = , and A ) ,
| ® ® C
fu[(nfl) /B(t) —ay e —Qp_1

then z(t) satisfies (LI) 2’ = A(t)z + b(t). We can apply our results for (LI) to obtain
expressions for solutions of (nLI).

Theorem. If ¢, ..., @, is a fundamental set of solutions of (nLH) Lu = 0, then the solution
¥(t) of (nLI) Lu = B(t) with initial condition u® (to) = (441 (k=0,...,n—1) is

W1, -5 0n)(8)
*Z” ' Wlon o)) %

where ¢(t) is the solution of (nLH) with the same initial condition at ty, and Wy is the
determinant of the matrix function obtained from

(pl e o o (pn
(pl e o o (pl
o) =| " N
n-1 n-1
B

by replacing the k'™ column of ®() replaced by the nth unit coordinate vector e,.

Proof. We know .
2(t) = BB ()70 + (1) / B (s)b(s)ds,

to
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where zo = [C1, -~ (| and b(s) = [0 --- B(s)]", solves the IVP &' = A(t)z, x(to) = o.
The first component of z(¢) is ¢(t), and the first component of ®(¢)®~(¢y)z is the solution
©(t) of (nLH) described above. By Cramer’s Rule,

Wk(gol’ R @n)(s)
W(pL, ..., ¢n)(s)

the k™ component of ®7!(s)e, is

Thus the first component of ®(t) ftz ®~1(s)b(s)ds is

)-8 [ 0 enilo) =3 nt) [ GHE O

Linear n''-order scalar equations with constant coefficients
For simplicity, take a, = 1 and F = C. Consider
Lu=u™ + a,_1u™D + - 4 qu,

where ay, ..., a, 1 are constants. Then

_ao “ .. _an—l
has characteristic polynomial
p(A) = A" + A A" 4 a )\ + ap.

Moreover, since A is a companion matrix it is nonderogatory, i.e., each distinct eigenvalue
of A has only one Jordan block in the Jordan form of A. Indeed, recall that for any A,

-2 1 0
A-A =

—Qo (—(Ln,1 — )\)

has rank > n — 1, so the geometric multiplicity of each eigenvalue is 1 = dim(N (4 — \I)).

Now if \; is a root of p(\) having multiplicity my (as a root of p(A)), then terms of the
form t/e*! for 0 < j < my, — 1 appear in elements of e/ (where P~'AP = J is in Jordan
form), and thus also appear in 4 = Pe*/ P~! the F.M. for (LH) 2’ = Az, normalized at 0.
This explains the well-known result:

Theorem. Let A, ..., )\, be the distinct roots of p(A) = A" + a,_1 A" 1 +---+ag =0, and
suppose A has multiplicity my, for 1 < k < s. Then a fundamental set of solutions of

Lu=u™ +a, 1u™ D+ - 4 aqpu=0,



ODEs 49

where a; € C, is
{the! 11 <k <s5,0<j<my—1}

Standard proof: Show that the functions are linear indepent and then plug in and verify
they are solutions: write
d m d e
L=(——-\ o= = Ag ,
<dt 1) (dt )

d S
(% - )\k) (e =0 for 0<j<my-—1

and use



50 Ordinary Differential Equations (ODEs)

Introduction to the Numerical Solution of IVP for ODE

Consider the IVP: DE 2/ = f(t,z), IC z(a) = z,. For simplicity, we will assume here that
z(t) € R* (so F = R), and that f(¢,z) is continuous in ¢,z and uniformly Lipschitz in z
(with Lipschitz constant L) on [a,b] x R*. So we have global existence and uniqueness for
the IVP above on [a, b].

Moreover, the solution of the IVP 2’ = f(¢,z), x(a) = x, depends continuously on the
initial values x, € R". This IVP is an example of a well-posed problem: for each choice of
the “data” (here, the initial values z,), we have:

(1) Existence. There exists a solution of the IVP on [a, b].
(2) Uniqueness. The solution, for each given z,, is unique.
(3) Continuous Dependence. The solution depends continuously on the data.

Here, e.g., the map z, — z(t, z,) is continuous from R" into (C ([a,b]), || - ||ec)- A well-posed
problem is a reasonable problem to approximate numerically.

Grid Functions

Choose a mesh width A (with 0 < h < b — a, and let

h h N = [%2] (greatest integer < (b—a)/h). Let t; = a+ih
NS . (# =0,1,...,N) be the grid points in ¢ (note: ¢ty = a),
a t, t, - ty b b and let z; denote the approximation to z(¢;). Note that
to t; and z; depend on h, but we will usually suppress this

dependence in our notation.

Explicit One-Step Methods

Form of method: start with z (presumably z¢ & z,). Recursively compute z1,...,zx by
l‘i+1:.’lii+h1/1(h,ti,$i), ’LZO,,N—l

Here, 9(h, t,z) is a function defined for 0 < h < b—a, a <t < b, z € R?, and 9 is associated
with the given function f(t,z).

Examples.
E’U;le’r ’S Method tangent line

x
Ti41
Tip1 = o3 + hf(ts, z;)
solution through (t;,zg)

Here, 1 (h,t,z) = f(t,x). xi

t; tit1 ¢
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Taylor Methods. To see how the Taylor Method of order p (p as in integer > 1) is constructed,
consider the Taylor expansion of a CP*! solution z(t) of z' = f(t,x):

pp+
(p+1)!

-

remainder term

BE+R) = 2(8) + ha' () + -+ g@«(p) () +

2P+1) (0)

In the remainder term, 6 is between ¢ and ¢ + h, so the remainder term is O(hP*!), that is
the magnitude of the remainder term is bounded above by a constant multiple of AP for
all & > 0 sufficiently small. Here we can take the constant to be 5 max,<<s 2P+ (1))

In the approximation, we will neglect the remainder term, and use the DE z' = f(¢,z) to

replace 2'(t),z"(t),... by expressions involving f and its derivatives:
Z'(t) = f(t,z()

4 (nx1) (nxn) (7zi><1)

x

Y0 = GUesO) =D w0 %

(t,x(t)) (t,(t))
= (th+(sz)f) (fOI"flzl,thiS is ft+fwf)
(t,x(t))

For higher derivatives, inductively differentiate the expression for the previous derivative,
and replace any occurrence of % by f(t,z(t)). These expansions lead us to define the Taylor
methods of order p:

p=1:2;01 = xz;+ hf(t;, ;) (Euler’s method, ¢¥(h, t,z) = f(t, z))

2

(ti,zs)

For the case p = 2, we have

blh ) =Talh t.5) = (145 (D + (.1 )

(t,x)

We will use the notation T,(h,t,z) to denote the ¢(h,t,z) function for the Taylor method
of order p.

Remark. Taylor methods of order > 2 are rarely used computationally. They require deriva-
tives of f to be programmed and evaluated. They are, however, of theoretical interest in
determining the order of a method.

Remark. A “one-step method” is actually an association of a function ¢ (h, ¢, z) (defined for
0<h<b—aa<t<bzxeR") toeach function f(¢,z) (which is continuous in ¢,z and
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Lipschitz in z on [a,b] x R*). We study “methods” looking at one function f at a time.
Many methods (e.g., Taylor methods of order p > 2) require more smoothness of f, either for
their definition, or to guarantee that the solution z(t) is sufficiently smooth. Recall that if
f € C? (in t and x), then the solution z(t) of the IVP 2’ = f(¢,z), z(a) = 4 is in CP*[a, b].
For “higher-order” methods, this smoothness is essential in getting the error to be higher
order in h. We will assume from here on (usually tacitly) that f is sufficiently smooth when
needed.

Examples.
Modified Euler’s Method

h h
Tiv1 = T+ hf <ti + o5 T + §f(tia$i))

(so Y(h,t,x) = f<t+g,m+gf(t,x)>).

Here v (h,t, x) tries to approximate

"t h = t h t h
#(1+3) =1 (i ge (7))

using the Euler approximation to z (¢t + %) (= z(t) + 2 f (¢, z(2))).

Improved Euler’s Method (or Heun’s Method)

pn = @t s (02 + S (e, 1 1 2)

(s0 G(h t,7) = %(f(t,x)+f(t+h,m+hf(t,x)))).

Here again ¢ (h,t, x) tries to approximate

o ( h) ~ z'(t) + ' (t + h)

t+ —
+2 2

Or 9(h,t,x) can be viewed as an approximation to the trapezoid rule applied to

Reen—a) =5 [ o'~ 50+ g

Modified Euler and Improved Euler are examples of 2"¢ order two-stage Runge-Kutta
methods. Notice that no derivatives of f need be evaluated, but f needs to be evaluated
twice in each step (from z; to ;41).

Before stating the convergence theorem, we introduce the concept of accuracy.
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Local Truncation Error

Let ;11 = x; + h(h,t;,z;) be a one-step method, and let x(t) be a solution of the DE
x' = f(t,x). The local truncation error (LTE) for x(t) is defined to be

[(h,t) = x(t+ h) — (z(t) + hp(h, t, z(t))),

that is, the local truncation error is the amount by which the true solution of the DE fails to

satisfy the numerical scheme.

Given h, define
l(h,t)
h,t) =
T( Y ) h
and set 7;(h) = 7(h,t;). Also, set

7(h) = max |7(h,t)| for h > 0.

a<t<b

for h > 0,

Note that
Uh,t;) = z(tip1) — (x(t:) + hap(h, 1, 2(t:)),
explicitly showing the dependence of [ on h,t;, and z(t).
Definition. A one-step method is called [formally] accurate of order p (for a positive integer
p) if for any solution z(t) of the DE x’ = f(¢,x) which is CP*'  we have [(h,t) = O(hP*).

Definition. A one-step method is called consistent if ¥(0,t,z) = f(t,z). Consistency is
essentially minimal accuracy:

Proposition. A one-step method
Tit1 = X5 + hw(h, ti: .’L'z'),

where 1 (h,t,z) is continuous for 0 < h < hg, a <t < b, z € R" for some hg € (0,b — al, is
consistent for the DE 2’ = f(¢,z) if and only if 7(h) — 0 as h — 07.

Proof. Suppose the method is consistent. Fix a solution z(t). For 0 < h < hg, let
Z(h) = max Yk, 1, 2(t) — (0,8 + k, 2(t + k))|.

" {(k,t)] a<t<b,a<t+k<b,0<k<h,}
By uniform continuity, Z(h) — 0 as h — 0*. For some 6 € (0,h) and a <t < b,
z(t+h) = z(t+h)=xz(t)+ha'(t+0)
= z(t)+hf(t+0,2(t+0))
= z(t) + hp(0,t + 0, z(t + 0)).
Combining this with the definiton of I(h,t) gives
[[(h, 1) = hl9(0,t + 0, 2(t + 0)) — b(h, L, 2(1))| < hZ(h),
so 7(h) < Z(h) — 0. Conversely, if 7(h) — 0, then for any ¢ € [a,b) and any h € (0,b — t],

x(t + h})l —a(t) _ Y(h,t, z(t)) +1(h,t).

Taking the limit as h | 0 gives f(t,z) = 2/(t) = ¥(0,t,z(t)). O
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Convergence Theorem for One-Step Methods

Theorem. Let f(t,z) be a continuous mapping from [a,b] x F* into ", and assume that
f is uniformly Lipschitz in z on [a,b] X R". Let z(¢) be the solution of the IVP 2’ = f(¢, z),
z(a) = x, on [a,b]. Suppose that the function ¢ (h,¢,z) in the one step method satisfies the
following two conditions

1. (Stability) 1(h,t, x) is continuous in h, ¢, z and uniformly Lipschitz in  (with Lipschitz
constant K) on 0 < h < hg, a <t < b, z € R" for some hy > 0 with hy < b — a, and

2. (Consistency) ¥(0,t,x) = f(t, ).

Given h € (0,b — al, recursively define

h—
zisa(h) = ai(h) + hap(h, ti,xs(h)) Tor 0 < i < — “
as in the one-step method. Define
b—a
tr(h) =a+kh for0<k< P
and set
b—a

ex(h) = z(tx(h)) —xk(h) for 0 <k < T

The vector eg(h) is the error in estimating the true solution to the IVP at a + kh, namely
z(a+kh), by the approximation given by the one-step method, zx (k). In particular, eg(h) =
xq — To(h) is the error in the initial value x¢(h). With these definitions, we have

K(ti(h)y=a) _ 1
es()] < KO0 ey ()] +7(h) (—) ,

K

SO
K(b—a) __ 1

K
Moreover, 7(h) — 0 as h — 0. Therefore, if eq(h) — 0 as h — 0, then

lei(h)] < eX0=9eg(h)| + & 7(h).

max |e;(h)] -0 as h—0,
0<i<lze

which implies the uniform convergence of the iterates on the grid.
Proof. Hold h > 0 fixed, and ignore rounding error. Subtracting
Ti+1 = T4 + h/w(ha ti; xl)

from

o(tiy1) = x(t;) + hp(h, ti, x(t;)) + hr,
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gives
leiv1] < leil + hlp(h, ti, (L)) — Y (h, ti, i) | + bl
< le;| + hK|e;| + hr(h).
So
les] < (1+hK)|eg|+ hr(h), and
lea] < (14 hK)|ei| + hr(h)
< (1+hK)?|eg| + h7(h)(1 + (1 + hK)).

By induction,

les] < (1+hK) e +hr(h)(1+ (1 +hK)+(1+hK)?+ -+ (1+hK)™)

= (1+hK)'|eo| + ’”(h)%
= (14 hK)'|e| +T(h)%

Now use (1+ hK)# 1 eX as h — 0F (for K > 0), and i = Lzt 0 obtain

K(ti—a) _ 1
lei| < XD |eg| + 7(h)

K
since . .
(1+hKY = (1+hK) " <eftimo),
The preceding proposition shows 7(h) — 0, and the theorem follows. O

The theorem implies that if a one-step method is accurate of order p and stable [i.e.
is Lipschitz in z], then for sufficiently smooth f, z(t) € CP™!, so

I(h,t) = O(h**') and thus 7(h) = O(hP).
If, in addition, ey(h) = O(hP), then
max [e;(h)| = O(h?),

i.e. p'* order convergence.

Example. The “Taylor method of order p” is accurate of order p. If f € CP, then z € CP*1,

and
hp-l-l

(p+ 1)V

I(h,t) =2(t+h) — (m(t) Fha'(t) 4+ -+ %l«(p) (t)) = 21 (p)

So
ppt1

(b < M

h M. ., = P+1) (4)].
where - My, = max |27 7(2)]
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Fact. A one-step method ;11 = x; + hto(h, t;, z;) is accurate or order p if and only if
where T}, is the “¢)” for the Taylor method of order p.

Proof. Since
2t + h) = o(t) = WT(h,t, 2(t) + O(W*),

we have for any given one-step method that

I(h,t) = z(t+h) —z(t) — hp(h, t, z(t))
= hT,(h,t,z(t)) + ORP*") — hap(h,t, z(t))
= h(Ty(h,t,z(t)) — ¥(h,t,z(t))) + O(RPT).

So I(h, 1) = O(WPHY) iff h(T(h, t,2(t)) — Y(h, t, () = O iff = T, + O(R?). O

Remark. The controlled growth of the effect of the local truncation error (LTE) from previous
steps in the proof of the convergence theorem (a consequence of the Lipschitz continuity of
¥ in z) is called stability. The theorem states:

Stability + Consistency (minimal accuracy) = Convergence.

In fact, here, the converse is also true.

Explicit Runge-Kutta methods

One of the problems with Taylor methods is the need to evaluate higher derivatives of f.
Runge-Kutta (RK) methods replace this with the much more reasonable need to evaluate f
more than once to go from z; to z;41. An m-stage (explicit) RK method is of the form

Tiy1 = T + ’W(h, tia xi)a
with
Y(h,t,x) =Y ajk;(h,t,z),
j=1
where a4, ..., a,, are given constants,
ki(h,t,z) = f(t,z)

and for 2 < 7 < m,

j—1

kj(h,t,z) = f(t+ azh,z + 1Y Byrke(h,t,7))

r=1
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with s, ..., and B, (1 <r < j < m) given constants. We usually choose 0 < a; < 1,
and for accuracy reasons we choose

(*) =Y B (2<j<m).

Example. m =2
Tit1 = Xy —+ h(alkl(h, ti, l‘z) + asz(h, ti, .731))

where
ki(h ti,zi) = f(ti, 73)
ko(h,tiyx;) = f(t; + agh,x; + hfoki(h, t;, x;)).
For simplicity, write « for ay and S for 55, and set & = § as in (*). Expanding in A,
ko(h,t,x) = f(t+ah,x+hBf(t, x))
f(t,@) + ahDif(t, ) + (Daf (1, 2)) (RBf (t, 7)) + O(A)
[f + h(aD:f + B(D=f) )] (t, ) + O(R?).

So
Y(h,t,2) = (a1 + a2) f + h(azaDyf + a2 (D f) f) + O(h?).

Recalling that
h
L= f+5(Duf + (Daf) f),

and that the method is accurate of order two if and only if
w =T, + O(hQ):

we obtain the following necessary and sufficient condition on a two-stage (explicit) RK
method to be accurate of order two:

1
= 1 = — d = —.
a1 + ao , Qo0 5 and aof3 5

Since we have already chosen oo = 3 (we now see why), these conditions become:

a; +as =1, aser = 3 |

Therefore, there is a one-parameter family (e.g., parameterized by «) of 2°¢ order, two-stage
(m = 2) explicit RK methods.

Examples.
(1) Setting o = 3 gives ap = 1, a; = 0, which is the Modified Euler method.
(2) Choosing oo =1 gives ay = %, a; = %, which is the Improved Euler method, or Heum’s

method.

Remark. Note that an m-stage explicit RK method requires m function evaluations (i.e.,
evaluations of f) in each step (z; to z;—1).
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Attainable Orders of Accuracy for Explicit RK methods

# of stages (m) highest order attainable

< Euler’s method

CO O Uk W N
N O Ol ik W~

Explicit RK methods are always stable: 1) inherits its Lipschitz continuity from f.

Example.
Modified Fuler. Let L be the Lipschitz constant for f, and suppose h < hg (for some
ho <b—1).

h h
Tiv1 = xi+hf (ti + o, %+ —f(tz',ﬂfi))

2 2

vt h,x) = f (t-i— g,x-l— gf(t,@)

So

(b, t,z) —p(h,t,y)] Ll(z+24f(tz) — (y+ 2f(t.y))
Lz —y| + %L\f(t, z) — f(t,y)]
Llz —y|+ 5 L%z — y|

K|z -yl

VANIVANRVANRVAN

where K = L + % L? is thus the Lipschitz constant for 1.

Example. A popular 4" order four-stage RK method is

h
Tit1 = X4 + —(kl + 2]-132 + 2k3 + k‘4)

6
where
kl = f(tzaxz)
h h
ky = f (ti + 5,3%‘ + 5’%)

h h
ks = f (ti + o5 i + 5132)
k4 = f(tZ + h, x; + hkg)

The same argument as above shows this method is stable.
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Remark. RK methods require multiple function evaluations per step (going from z; to z;41).
One-step methods discard information from previous steps (e.g., z; 1 is not used to get x;,1
— except in its influence on z;). We next study a class of multi-step methods. But first, we
make a few observations about linear difference equations.

Linear Difference Equations (Constant Coefficients)

In this discussion, z; will be a (scalar) sequence defined for i > 0. Consider the linear
difference equation (k-step)

(LDE) Titk + Qp—1Tirk—1 + *+ + T; = b; (i>0).

If b; = 0, the linear difference equation (LDE) is said to be homogeneous, in this case we
will refer to it as (lh). If b; # 0 for some i > 0, the linear difference equation (LDE) is said
to be inhomogeneous , in this case we refer to it as (/7).

Initial Value Problem (IVP): Given z; fori = 0,...,k—1, determine z; satisfying (LDE)
for z > 0.

Theorem. There exists a unique solution of (IVP) for (Ih) or (I7).
Proof. An obvious induction on i. The equation for i = 0 determines x;, etc. O

Theorem. The solution set of (k) is a k-dimensional vector space (a subspace of the set of
all sequences {z;}i>0).

Proof Sketch. For j = 1,2, ...k, initialize the (LDE) sequence by setting

[330, X1, ., fEk_l]T =e€; € Rk

Then solving (lh) for each j =1,2,...k gives basis of the solution space of (lh). O
In (LDE) we may assume with no loss in generality that ag # 0. Indeed, if ag = 0, (LDE)

isn’t really a k-step difference equation since we can shift indices and treat it as a E—step
difference equation for a £ < k, namely £k = k — v, where v is the smallest index with a,, # 0.
Thus, henceforth we assume that ag # 0.

Let 71, ...,75 be the distinct zeroes of p, with multiplicities my, ..., m, (note: each r; # 0
since oy # 0, and my + -+ ms = k.

Define the characteristic polynomial of (lh) to be

plr) = % + ar™ 4+ o,

Let us assume that ag # 0. Let rqi,...,7s be the distinct zeroes of p, with multiplicities
mi,...,ms. Note that each r; # 0 since ap # 0, and my + --- + ms; = k. These zeros
generate the following basis of solutions of (lh):

{{ilrj 20 1< <s, Oglgmj—l}.
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Example. Fibonacci Sequence:
E+2—E+1—E:O, F():O, F1:].
The associated characteristic polynomial 7> — r — 1 = 0 has roots

IRE=SVE
2

Ty (ry = 1.6,r_ ~ —0.6).

The general solution of (lh) is
) i - i

- i
C_< \/§> — 0 as i — oo.

Since |r_| < 1, we have

2

The initial conditions Fy = 0 and £} = 1 imply that C} = % and C_ = —%. Hence,
7
asymptotically, the Fibonacci sequence behaves like the sequence % (1+2_\/5) .
Remark. f cy = a1 =--- =@, 1 = 0 and o, # 0 (i.e., 0 is a root of multiplicity v), then
Zo,T1,-..,T,_1 are completely independent of z; for i > v. So x;y x4+ -+ a;1, = b; fori >0
with x; given for i > v behaves like a (k — v)-step difference equation.
Remark. Define z; = [x;, Tit1, -- -, $i+k_1]T. Then z;,; = Ax; for i > 0, where
0 1
A= N ,
0 1
-Gy ... — k1
T
and Ty = |z, T1, :, 37k1:| is given by the I.C. So (lh) is equivalent to the one-step vector

difference equation

Tip1 = Az, 12>0,
whose solution is 7; = A%T. The characteristic polynomial of (/h) is the characteristic
polynomial of A. Because A is a companion matrix, each distinct eigenvalue has only one
Jordan block. If A = PJP~! is the Jordan decomposition of A (J in Jordan form, P
invertible), then .

%i == PJZP_I.”E().

Let J; be the m; x m; block corresponding to r; (for 1 < j <s), so J; =r;I + Z;, where Z;
denotes the m; x m; shift matrix:
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Then

1 i : (A=
Ji=(riI + Z;)' = (l)rﬁ 1ij__
=0

Since (;) is a polynomial in 7 of degree [ and Z;-nj = 0, we see entries of the form (constant)

ilréforoglgmj—l.

Remark. (li) becomes
51'4_1 = A.,fz + bi, 1> 0,
where b; = [0,...,0, bi]T. This leads to a discrete version of Duhamel’s principle (exercise).

Remark. All solutions {z;};> of (lh) stay bounded (i.e. are elements of [*°)

& the matrix A is power bounded (i.e., 3 M so that ||A’|| < M for all i > 0)

< the Jordan blocks Ji, ..., J, are all power bounded
(a) each |r;| <1 (for1 <j<ys)
and (b) for any j with m; > 1 (multiple roots), |r;| <1

If (a) and (b) are satisfied, then the map T — {z;};>o is a bounded linear operator from R*
(or CF) into I*° (exercise).

Linear Multistep Methods (LMM)
A LMM is a method of the form

k k
Zajl"iﬂ' = hZ/ijz’Jrja 120
j=0 §=0
for the approximate solution of an ODE IVP

7= f(t,x), z(a) =z, .

Here we want to approximate the solution z(t) of this IVP for ¢ < t < b at the points
t; = a+ih (where h is the time step), 0 < j < ”‘T“ The term x; denotes the approximation
to a solution of the IVP at ¢;, z(¢;). Similarly, f;;; denotes f(ti;;,i+;). We normalize the
coefficients so that a, = 1. The above is called a k-step LMM whenever at least one of the
coefficients oy and [, is non-zero. One can view the equation above as a difference equation,
solving for x;, from x;, Z;y1, ..., i1 k_1- Assume as usual that f is continuous in (¢, x) and
uniformly Lipschitz in z. For simplicity of notation, assume that z(¢) is real and scalar; the
anaysis that follows applies to z(t) € R™ or z(t) € C* (viewed as R?" for differentiability)
with minor adjustments.

Example. (Midpoint rule) (explicit)

tito
ot +2) — o(ty) = / 2(s)ds & 2ha' (ti1) = 2h f(tisr, 2(tisn)).
t

i
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This approximate relationship suggests the LMM
Midpoint rule: Tiyo — T; = 2hfiiq .
Example. (Trapezoid rule) (implicit)

The approximation

>

tit1
2(tin) — (t;) = / #(s)ds 5 (& (tinr) + /(1)
t;
suggests suggests the LMM

h
Trapezoid rule: Tip] — T = 5(fz’+1 + fi) -

Explicit vs Implicit.

If B = 0, the LMM is called explicit: once we know x;, x; 11, ..., Titk—1, We compute imme-
diately
k—1
Tivk = Y _(hBjfirj — iisj) -
§=0

On the other hand, if G # 0, the LMM is called implicit: knowing x, Tiy1,--., Titg—1, We
need to

e
|
—

solve Tivk = hﬂkf(tﬂ_k, xi—l—k) — (ozjx,-ﬂ- - h,BJf(Z + ]) for Titk -
J

Il
)

Remark. If h is sufficiently small, implicit LMM methods also have unique solutions given h
and g, x1,...,2_ 1. To see this let L be the Lipschitz constant for f. Given x;, ..., %1% 1,
the value for z;,; is obtained by solving the equation

Tivk = hBef (tivk, Tivk) + i)
where

k-1

g9:=Y_(hB;fir; — ajmiry)

j=0

is constant as far as x;, is concerned. That is, we are looking for a fixed point of

®(x) = hBif(tivk,x) + gi -

Note that if h|Sg|L < 1, then ® is a contraction:

|@(z) — @(y)| < hlB||f ik, ) — f(tisw,¥)| < h[Bu| L]z —yl.
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So by the Contraction Mapping Fixed Point Theorem, ® has a unique fixed point. Any initial
guess for x; . leads to a sequence converging to the fixed point using functional iteration

xﬁi,j’ = hfBf(titk, 335219) + gi

which is initiated at some initial point mfi’k In practice, one chooses to either
(1) iterate to convergence, or
(2) a fixed number of iterations.

In both approaches one typically uses an explicit method to get the initial guess xﬁﬂ’r)k This
pairing is often called a Predictor-Corrector Method.

Function Evaluations. One FE means evaluating f once.
Explicit LMM: 1 FE per step (after initial start)
Implicit LMM: ? FEs per step if one iterates to convergence, and

usually 2 FE per step for a Predictor-Corrector Method.

Initial Values. To start a k-step LMM, we need zg, x1,...,2r_1. We usually take xq = z,,
and approximate z1,...,Z, 1 using a one-step method (e.g., a Runge-Kutta method).

Local Truncation Error. For a true solution z(t) to 2’ = f(¢,x), define the LTE to be
k k
I(h,t) =) aja(t+jh) —h_ Bz (t + jh).
=0 =0

If z € CP*1) then

)P
z(t+jh) = z(t) +jha'(t) +---+ (]3) P (t) + O(hP*')  and
jp—lhp
ha!(t+ jh) = ha'(t) + jh%2"(t) +--- + - 1)'35(?)(15) + O(h?t1)
and so
I(h,t) = Coz(t) + CLha!(t) + - - - + CphPzP) (1) + O(RPT),
where

C() = a0+---—|—ak
C; = (g+20+---+kag) — (Bo+---+ Br)

1
c, = a(a1+2qa2+...+kqak)_ (51+2q*1ﬁ2+"'+kq71ﬁk)'

1
(¢ —1)!
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Definition. A LMM is called accurate of order p if [(h,t) = O(hP*!) for any solution of
x' = f(t,z) which is CP*!.

Fact. A LMM is accurate of order at least p iff Co =C, =--- = C, = 0.

Remarks.

(i) For the LTE of a method to be O(h) for all f’s, we must have Cy = C; = 0: for any f
which is C', all solutions z(t) are C?, so

I(h,t) = Coz(t) + Ciha'(t) + O(h?) is O(h) iff Co=Ci=0.

(ii) Note that Cy, C1, ... depend only on «y, ..., ak, Bo, - - -, Bk, not on f. So here, “minimal
accuracy” is 1%%-order.

Definition. A LMM is called consistent if Cy = C; = 0 (i.e., at least first-order accurate).

Remark. If a LMM is consistent, then any solution xz(t) for any f (continuous in (,z),
Lipschitz in z) has I(h,t) = O(h): since z € C',

z(t + jh) = z(t) + jha'(t) + O(h) and ha'(t + jh) = ha'(t) + O(h),

” l(h,t) = Cox(t) + Ciha'(t) + O(h).

Exercise: Verify that the O(h) terms converge to 0 uniformly in ¢ (after dividing by h) as
h — 0: use the uniform continuity of z'(¢) on [a, b].

Definition. A k-step LMM
Z jTip; =h Z Bj fi+i

is called convergent if for each IVP a' = f(t,z), z(a) = z, on [a,b] (f € (C,Lip)) and for
any choice of zg(h), ..., zr_1(h) for which

lim |z(¢;(h)) —z;(h)| =0 for i=0,...,k—1,

h—0

we have
lim  max |z(t(h)) —zi(h)|=0.

h=0 {i:a<t;(h)<b}
Remarks.
(i) This asks for uniform decrease in the error on grid as h — 0.
(ii) By continuity of x(t), the condition on the initial values is equivalent to zo(h) — 4.

Fact. If a LMM is convergent, then the zeroes of the (first) characteristic polynomial of the
method p(r) = ayr* + - - - + « satisfy the Dahlquist root condition:
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(a) all zeroes r satisfy |r| < 1, and

(b) multiple zeroes r satisfy |r| < 1.

65

Example. (Zero Stability) Consider the IVP 2’ =0,0<t¢ <1, z(0) =0, so f =0, and the

LMM:

E Q545 = 0.

(1) Let r be any zero of p(r). Then the solution with initial conditions

z;=hrt for 0<i<k-—1

1S

; . _b—a
x; = hr'  for nggT.
Suppose h = ”T_n—“ for some m € Z. Then convergence implies that

zm(h) ~ x(1) = 0.

But

b—a

T (h) = hr™ = —

So

b—a

m - 1) = m
|Zm(h) — z(1)] - Ir™ — 0 as

(Le., h — 0) iff |r| < 1.

(2) Similarly if 7 is a multiple zero of p(r), taking x;(h) = hir’ for 0 <4 < k — 1 gives

So if h =2,

SO0 T (h) — 0 as h — 0 iff |r] < 1.

Definition. A LMM is called zero-stable if it satisfies the Dahlquist root condition.

Recall from our discussion of linear difference equations that zero-stability is equivalent
to requiring that all solutions of (lh) Z?:o a;z;+; = 0 for ¢ > 0 stay bounded as ¢ — oco.

Remark. A consistent one-step LMM (i.e., k = 1) is always zero-stable. Indeed, consistency
implies that Cy = C7 = 0 which in turn implies that p(1) = ag+ @ =Co =0and sor =1
is the zero of p(r). Thus, in particular, oy = 1,9 = —1. That is p(r) = r — 1, and so LMM

is zero-stable.

Exercise: Show that if an LMM is convergent, then it is consistent.
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Theorem | LMM Convergence]
An LMM is convergent if and only if it is zero-stable and consistent. Moreover, for zero-stable
methods, we get an error estimate of the form

max; |I(h, t;(h))]
h

- 7

) — 7 < . — T
Jax | |o(ti(h)) x“(h)|—K13§?5%’51|$(tz(h)) zi(h)| +Ka

vl

-~

initial error “growth of error’
controlled by
zero-stability

Y

Remark. If x € CP*! and the LMM is accurate of order p, then
|LTE|/h = O(h?).
To get p't-order convergence (i.e., LHE = O(hP)), we need
zi(h) = z(t;(h)) + O(R?) for i=0,...,k—1.
This can be done using k£ — 1 steps of a RK method of order > p — 1.

Lemma. Consider
k
(13 Z%‘iﬂiﬂ' =0 for i>0 (where oy = 1),
j=0

with the initial values xg,...,7x_1 given, and suppose that the characteristic polynomial
p(r) = Zj:o a;r? satisfies the Dahlquist root condition. Then there is an M > 0 such that
for s > 0,

|Tik| < M (max{|x0|, e o]} Z |bu|) :
v=0

Remark. Recall that the Dahlquist root condition implies that there is an M > 0 for which
|A¥||c < M for all 4 > 0, where

0 1
A= 0 1
—Q : —O—1
is the companion matrix for p(r), and || - || is the operator norm induced by the vector
norm || - ||co-
Proof. Let z; = [z, i1, - -, x,-+k_1]T and E =0, ..., 0, bi]T. Then z;,, = Az; +E~, SO

by induction

i
Tip = AT+ ) AT,

v=0
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Thus

IN

%4100

i
1A ool Zolloo + D 1A lloolbulloc

v=0

M(||Zolloo + > [b])-
v=0

‘$i+k|

IN

IN

0

Proof of the LMM Convergence Theorem. The fact that convergence implies zero-
stability and consistency has already been discussed. Next suppose a LMM is zero-stable
and consistent. Let x(t) be the true solution of the IVP 2’ = f(¢,z), z(a) = z, on [a, b], let
L be the Lipschitz constant for f, and

B = Oliljizc |IBJ|
Hold A fixed, and set
ei(h) = z(ti(h)) — zi(h), E = max{leo|, ..., lex-1]},
li(h) = (h, t:(h)), A(h) = max [l;(h )\

0<i<tza

Step 1. The first step is to derive a “difference inequality” for |e;|. The difference inequality
refered to here is a discrete form of the integral inequality leading to Gronwall’s inequality.
For 1 € Z, we have

k
Zajx(tiﬂ-) = hZBJ tivj, @ Z+j))+li
=0

k
> "z = hE Bjfi+j-
j=0 7=0

Subtraction gives

k
E ajeiy; = b,
=0

where
k

bi = Y Bi(f(tirgs w(tisg) — Fltirs, wieg)) + .

=0

Then \
il <R 1B;|Llei ] + [1i].

J=0
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So, by the preceeding Lemma with ;. replaced by e;1x, fori =1,2,...,
ekl < M[E+ " [b]]
v=0
i k
£+ 3 (13 itk + 1
v=0 7=0

k i-1 k 4
= M[E+hLB lei| + LB levss| + > |0l ]
j=0 v=0

v=0 j=0

IN

M

k+i—1

b_
M |E + hLBleis| + hIB Y |e,,|+—“A],

IA

h

v=0
where the final inequality follows from the fact that 0 <17 < % From here on, assume h
is small enough to satisfy
1
MhBL < 7

Since {h <b-—a:MhBL > %} is a compact subset of (0,b—al, the estimate in the Theorem
is clearly true for those values of h. Moving MhfSL|e; x| to the LHS gives

1+k—1
leik] < 2ME +2M(b— a)% +h(2MLB) > ey
v=0

i+k—1
= hM; Y e+ (MoE + M3A/h) ieT.

v=0

where My = 2M LS, My = 2M, and M3 = 2M (b — a). (Note: For explicit methods, 8 = 0,
so we would not have to limit A, and the factor 2 can be dropped. )

Step 2. We now develop a discrete “comparison” argument to bound |e;|. Let y; be the
solution of

i+k—1
(*) Yirk = hM; Z Yy + (MoE + M3A/h) forieZ,
v=0

with initial values y; = |e;| for 0 < j < k — 1. Then clearly by induction |e; x| < y;4x for
i=1,2,.... Now

Yr < hMKE + (MyE + M3 A/h) < MyE + M3\ /h,
where My = (b — a)Mik + M,. Subtracting (*) for 7 from (x) for i + 1 gives

Yitk+1 — Yitrk = hM1Yivg, and so  yigkp1 = (1 + hM1)Yigk.
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Therefore, by induction on ¢ € Z,

(1 + hMl)(b_a)/h'yk
eMl(b*a)yk

K\E + Ko\/h,

Yit+k

VANVANRPVAN

where K, = eM(®=9) )1, and K, = M9 )f,. Thus, for i € Z,
|€i+k| S KlE + Kg)\/h,

since K1 > My > My > M > 1, also |ej| < E < K\E + KyA/h for 0 < j < k — 1. Since
consistency implies A = O(h), we are done. O

Remarks.
(1) Note that K; and K, depend only on a,b, L, k, the ;’s and S;’s, and M.

(2) The estimate can be refined — we did not try to get the best constants K;, K,. For
example, M=% could be replaced by e (*~% in both K; and K,, yielding more
precise estimates depending on i, similar to the estimate for one-step methods.
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