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Ordinary Differential Equations
(ODEs)

ODEs
Let F be R on C. Throughout this discussion, | - | will denote the Euclidean norm (i.e
?*-norm) on F" (so || - || is free to be used for norms on function spaces). An ODE is an

equation of the form
g(t,z,2',...,z(™) =0

where g maps a subset of R x (F")™*! into F". A solution of this ODE on an interval I C R
is a function x : I — F" for which 2/, ", ..., z(™ exist at each t € I, and

(Vtel) g(t,z(t),2'(t),..., 2™ () =0.

We will focus on the case where z(™ can be solved for explicitly; i.e., the equation takes
the form
™ = f(t,z ', ... ™Y,

and where the function f mapping a subset of Rx (F")™ into " is continuous. This equation
is called an m'™-order n x n system of ODE’s. Note that if 2 is a solution defined on an
interval I C R then the existence of (™ on I (including one-sided limits at the endpoints
of I) implies that 2 € C™ *(I), and then the equation implies 2™ € C(I), so x € C™(I).

Reduction to First-Order Systems

Every m'-order n x n system of ODE’s is equivalent to a first-order mn x mn system of
ODE’s. Defining
yi(t) =2V () € for 1<j<m

and
Y1 ()
y(t) = : e ",
Ym (t)

the system
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is equivalent to the first-order mn x mn system

Y2
Ys
Ym
f(tayla"'aym) i

Relabeling if necessary, we will focus on first-order n x n systems of the form z' = f(t, z)
where f maps a subset of R x " into F" and f is continuous.

Example. Consider the n x n system z'(t) = f(t) where f : I — F* is continuous on an
interval I C R. (Here f is independent of x.) Then calculus shows that for a fixed ¢, € I,
the general solution of the ODE (i.e., a form representing all possible solutions) is

z(t) =c+ /t:f(s)ds,

where ¢ € F" is an arbitrary constant vector (i.e., ¢i, ..., c, are n arbitrary constants in F).

Provided f satisfies a Lipschitz condition (to be discussed soon), the general solution of
a first-order system 2’ = f(t, z) involves n arbitrary constants in IF [or an arbitrary vector in
] (whether or not we can express the general solution explicitly), so n scalar conditions [or
one vector condition] must be given to specify a particular solution. For the example above,
clearly giving z(t9) = zo (for a known constant vector xy) determines ¢, namely, ¢ = zo. In
general, specifying x(ty) = o (these are called initial conditions (IC), even if ¢y is not the
left endpoint of the t-interval I') determines a particular solution of the ODE.

Initial-Value Problems (IVP’s) for First-order Systems
An IVP for the first-order system is the differential equation

DE : ' = f(t,z),
together with initial conditions

IC: z(ty) = xo .

A solution to the IVP is a solution z(t) of the DE defined on an interval I containing %,
which also satisfies the IC), i.e., for which z () = zo.

Ezamples:

(1) Let n = 1. The solution of the IVP:

[

DE: z' =
IC: z(l)=1

—_
8

is z(t) = 5=, which blows up as t — 2. So even if f is C* on all of R x F", solutions

of an IVP do not necessarily exist for all time ¢.
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(2) Let n = 1. Consider the IVP:

For any ¢ > 0, define z.(t) = 0 for ¢t < ¢ and z.(t) = (t — ¢)? for t > c. Then every
z(t) for ¢ > 0 is a solution of this IVP. So in general for continuous f(¢,z), IVP’s may
have non-unique solutions. (The difficulty here is that f(t,z) = 24/|z| is not Lipschitz

near z = 0.)

An Integral Equation Equivalent to an IVP
Suppose z(t) € C*(I) is a solution of the IVP:

DE : ' = f(t, )
1C : .’L'(t()) =Ty

defined on an interval I C R with t; € I. Then for all t € I,
t
z(t) = z(to) +/ z'(s)ds
to

=m0+ [ F(s2(s))ds,

to

so z(t) is also a solution of the integral equation

(IE) z(t) = xo + /t f(s,z(s))ds (tel).

Conversely, suppose z(t) € C(I) is a solution of the integral equation (IE). Then f(¢, z(t)) €

C(I), so
2(1) =x0+/t F(s,2(s))ds € C'(I)

and z'(t) = f(¢,z(t)) by the Fundamental Theorem of Calculus. So z is a C* solution of the
DE on I, and clearly z(ty) = x¢, so z is a solution of the IVP. We have shown:

Proposition. On an interval I containing to, = is a solution of the IVP: DE : 2’ = f(t,x);
IC : z(ty) = mo (where f is continuous) with x € C*(I) if and only if z is a solution of the

integral equation (IE) on I with z € C(I).

The integral equation (IE) is a useful way to study the IVP. We can deal with the function
space of continuous functions on I without having to be concerned about differentiability:
continuous solutions of (IE) are automatically C'. Moreover, the initial condition is built

into the integral equation.
We will solve (IE) using a fixed-point formulation.
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Definition. Let (X, d) be a metric space, and suppose g : X — X. We say that g is a
contraction [on X| if there exists ¢ < 1 such that

(Va,y e X)) d(g(2),9(y)) < cd(z,y)
(¢ is sometimes called the contraction constant). A point z, € X for which
g(r.) =z
is called a fized point of g.

Theorem.(The Contraction Mapping Fixed-Point Theorem)

Let (X, d) be a complete metric space and g : X — X be a contraction (with contraction
constant ¢ < 1). Then ¢ has a unique fixed point z, € X. Moreover, for any zo € X, if we
generate the sequence {z} iteratively by functional iteration

Tgy1 = g(zg) for k>0
(sometimes called fized-point iteration), then zp — .
Proof. Fix zy € X, and generate {zy} by 211 = g(zx) Then for k > 1,
d(Zrs1, k) = d(9(7k), 9(7k—1)) < cd(Tk, Tp—1).

By induction
d(l‘k_H, iEk) S de(ﬂil, .’Eo).

So for n < m,

m—1 m—1
AT, xn) < Zd(xj+1,xj) < (Z c’) d(zq,xo)
ji=n j=n
o o
S (Z 07) d(I1,$0) = 1 cd(l‘1,.’l30).
J

n

Since ¢ — 0 as n — oo, {zx} is Cauchy. Since X is complete, xy — z, for some z; € X.
Since g is a contraction, clearly ¢ is continuous, so

g9(z,) = g(limzy) = limg(zy) = limzg 1 = .,
so x, is a fixed point. If x and y are two fixed points of g in X, then
d(z,y) = d(9(z),9(y)) < cd(z,y),
so (1 —¢)d(z,y) <0, and thus d(z,y) = 0 and z = y. So g has a unique fixed point. [0 O

Applications.

(1) Iterative methods for linear systems.
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(2) The Inverse Function Theorem If ® : N — R" is a C' mapping on a neighborhood
N C R" of zy € R satisfying ®(zg) = yo and ®'(xy) € R**" is invertible, then there
exist neighborhoods Ny C N of xy and M of yy and a C' mapping ¥ : My, — N, for
which ®[Ny] = My and ® o ¥ and ¥ o & are the identity mappings on My and Np,
respectively.

Remark. Applying the Contraction Mapping Fixed-Point Theorem (C.M.F.-P.T.) to a func-
tion usually requires two steps:

(1) showing there is a topologically complete set S for which ¢(S) C S, and

(2) showing that g is a contraction on S.

To apply the C.M.F.-P.T. to the integral equation (IE), we need a further condition on
the function f(t,z).

Definition. Let I C R be an interval and Q C F*. We say that f(¢,2) mapping I x Q) into
F™ is uniformly Lipschitz continuous with respect to x if there is a constant L (called the
Lipschitz constant) for which

Vie H(Vz,yeQ)  [f(tz) = f(ty)] < Llz—yl.

We say that f isin (C,Lip) on I x Q if f is continuous on I x Q and f is uniformly Lipschitz
continuous with respect to z on I x €.

For simplicity, we will consider intervals I C R for which t; is the left endpoint. Virtually
identical arguments hold if ¢, is the right endpoint of I, or if ¢y is in the interior of I. (See
Coddington & Levinson.)

Theorem (Local Existence and Uniqueness for (IE) for Lipschitz f)
Let I = [to,to + B] and Q = B,(zo) = {x € F" : |z — x| < r}, and suppose f(t,x) is in
(C,Lip) on I x Q. Then there exists a € (0, 5] for which there is a unique solution of the

integral equation

(IE) z(t) = o +/ f(s,z(s))ds

to

in C(Iy) where I, = [to,to + «]. Moreover, we can choose « to be any positive number
satisfying

1
a<f, a< %, and o < T where Mz(t’ir)lgﬁn\f(t,mﬂ

and L is the Lipschitz constant for f in I x €.
Proof. For any a € (0, 5], let || - ||o denote the max-norm on C(,):

for ze€C(l.), |7|lo= x| lz(t)] .
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Although this norm clearly depends on «, we do not include « in the notation. Let Z, denote
the constant function zy(t) = zo in C(I,). For p > 0 let

Xap ={z € C(la) : |7 = Zolloo < p}-

Then X, , is a complete metric space since it is a closed subset of the Banach space (C(1,), ||-
lo). For any a € (0, f], define g : X, , — C(I,) by

(9(2))(t) = o + / F(s,2(s))ds -

g is well-defined on X, , and g(z) € C(I,) for z € X, , since f is continuous on I x B,(x).
Fixed points of g are solutions of the integral equation (IE).

Claim. Suppose o € (0,4], @ < L, and a < 7. Then g maps X,, into itself and g is a
contraction on X, .

Proof of Claim: If z € X, ,, then for t € 1,,

|(9(2))(t) — 20| < /t £ (s,2(s))|ds < Mo <'r,

50 g: Xor =+ X, f 2,y € X4, then for t € 1,

[(g(2)(®) = (g(w)(®)] < /t\f(s,x(S))—f(s,y(S))\dS

IN

/ Lla(s) — y(s)ds

to
Lao||z — y||w,

AN

S0
l9(x) = 9(¥)]loo < La||z — ylloo, and Lo < 1.

So by the C.M.F.-P.T., for «a satisfying 0 < a < 3, a < 47, and a < %, g has a
unique fixed point in X, ,, and thus the integral equation (IE) has a unique solution z,(t) in
Xoyr ={2 € C(1,) : ||z — Zo|lw < r}. This is almost the conclusion of the Theorem, except
we haven’t shown z, is the only solution in all of C'(1,). This uniqueness is better handled
by techniques we will study soon, but we can still eke out a proof here. (We could say that
f is only given on I x B,.(z), but f can have a continuous extension to I x F".) Fix such
an a. Then clearly for 0 < v < a, z,[r, is the unique fixed point of g on X, ,. Suppose
y € C(1,) is a solution of (IE) on I, (using perhaps an extension of f) with y #Z z, on I,.

Let

71 = inf{y € (0,a] : y(to + ) # z.(to +7)}-

By continuity, ; < a. Since y(ty) = o, continuity implies

dv0 € (0,a] y\I70 € Xoom
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and thus y(t) = z.(t) on I,. So 0 <y < a. Since y(t) = z.(t) on I,,, y[r,, € X, Let

p= DM, ;then p < Ma <r. Fortel,,

ww—wdzumwxn—mnsAWﬂaMQWBSAMq:m

s0 Y1, € X, ,- By continuity, there exists v € (v1,0] 3 y|1,, € X, . But then y(t) = z.(t)

on I,,, contradicting the definition of ;. 0 O

The Picard Iteration

Although hidden in a few too many details, the main idea of the proof above is to study the
convergence of functional iteration of g. If we choose the initial iterate to be zo(t) = xo, we
obtain the classical Picard iteration:

{ .Io(t) = Xy
T (t) = xo—i-f;f(s,xk(s))ds for k>0

The argument in the proof of the C.M.F.-P.T. gives only uniform estimates of, e.g., zy1 —xy:
|lZks1 — Zklloo < Lat||zk — T41]|0o, leading to the condition o < . For the Picard iteration
(and other iterations of similar nature, e.g., for Volterra integral equations of the second
kind), we can get better results using pointwise estimates of xy1 — 2. The condition o < %
turns out to be unnecessary (we will see another way to eliminate this assumption when we
study continuation of solutions). For the moment, we will set aside the uniqueness question
and focus on existence.

Theorem (Picard Global Existence for (IE) for Lipschitz f) Let I = [ty,to + (], and
suppose f(t,x) is in (C,Lip) on I x F". Then there exists a solution x.(t) of the integral
equation (IE) in C(I).

Theorem (Picard Local Existence for (IE) for Lipschitz f) Let I = [to,to + (] and

Q= B,(x9) = {z € T : |z — x| <1}, and suppose f(t,x) is in (C,Lip) on I x Q. Then
there exists a solution x.(t) of the integral equation (IE) in C(I,) where I, = [ty,to + @],
o = min (ﬁ, ﬁ), and where M = max »erxq | f(t, 7).

Proofs. We prove the two theorems together. For the global theorem, let X = C(I) (i.e.,
C(I,F")), and for the local theorem, let

X=Xor={r€C(lL) : ||z — zo|lc <7}

as before (where z4(t) = o). Then the map

(me=m+[f@amw

maps X into X in both cases, and X is complete. Let

zo(t) = x9, and gy =g(xg) for k£ >0.
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Let
M, = max |f(t, zo)] (global thm),
M, = max |f(t, zo)] (local thm).

Then for ¢ € I (global) or t € I, (local),

() 20| < / (s, z0)lds < Mo(t — to)

a5(t) — ()] < / F(5,21(5)) — F (5, 20(5))|ds

< /|x1 — zo(s)|ds

MyL(t — t9)?
< MOL/(S_tO)d %

to
By induction, suppose |zx(t) — zx_1(t)| < M L’“lw. Then

@ = a0 < [ 170 - Ssani(o)s

< L/t 24 (5) — g1 (5)|ds

t _t)k (t_t)k-i—l
< mrr [ttt
= Mo /to R (A §Y
So
M. 0 t—t k+1
I
=0
M,
— _(eL(t to) 1)
L
< %(e“—l)

where 7 = (3 (global) or v = « (local). Hence the series 2o + >, o(zr+1(t) — 2 (¢)), which
has zy1 as its N partial sum, converges absolutely and uniformly on I (global) or I,
(local) by the Weierstrass M-test. Let x.(t) € C(I) (global) or € C(I,) (local) be the limit

function. Since
[f (£, 2 (1)) — (£, 2.(2))] < Ll (t) — 2.(2)];
f(t, zx(t)) converges uniformly to f(¢,z.(t)) on I (global) or I, (local), and thus
t

g(z.)(t) = zo+ f(s ,(s))ds

= hm 330+/f8.’13k dS

= hm $k+1(t) = 2,(t),
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for all ¢ € I (global) or I, (local). Hence x,(t) is a fixed point of g in X, and thus also a
solution of the integral equation (IE) in C'(I) (global) or C(1,) (local.) O

Corollary. The solution z,(t) of (IE) satisfies
M, -
fra(t) — o] < 20 (eH0) 1)

fort € I (global)ort € I, (local), where My = maxes |f(, xo)| (global), My = max,—z_ |f (¢, zo)|
(local).

Proof. This is established in the proof above. O O

Remark. In each of the statements of the last three Theorems, we could replace “solution of
the integral equation (IE)” with “solution of the IVP: DE : 2’ = f(t,z); IC : xz(ty) = zo”
because of the equivalence of these two problems.

Ezxamples.

(1) Consider a linear system z' = A(t)x + b(t), where A(t) € C**" and b(t) € C* are in
C(I) (where I = [ty,to+ 5]). Then f isin (C,Lip) on I x F:

$6.0) = 1(t)] < 40z ~ A0y < (max 14O ) 2 -

Hence there is a solution of the IVP: 2’ = A(t)x + b(t), z(ty) = zo in C'(I).

(2) (n=1) Consider the IVP: 2’ = z?, z(0) = 7y > 0. Then f(¢,z) = z? is not in (C, Lip)
on I x R It is, however, in (C,Lip) on I x Q where Q = B,(zy) = [xg — 7,20 + 7]

T

for each fixed r. For a given 7 > 0, M = (29 +r)? and o = I = oz in the local
1

theorem is maximized for r = zy, where o = oy So the local theorem guarantees a

solution in [0, ﬁ} The actual solution z,(t) = (z5' — )" exists in [O, %)

Local Existence for Continuous f

A condition similar to the Lipschitz condition is needed to guarantee that the Picard iterates
converge; it is also needed for uniqueness, which we will return to shortly. It is, however,
still possible to prove a local existence theorem assuming only that f is continuous, without
assuming the Lipschitz condition. We will need the following form of Ascoli’s Theorem:

Theorem (Ascoli) Let X andY be metric spaces with X compact. Let { fr} be an equicon-
tinuous sequence of functions fr : X =Y, i.e.,

(Ve >0)(36>0) suchthat (Vk>1)(Vxi,ze € X)
dx (71, 72) <0 = dy(fe(z1), fr(z2)) <&

(in particular, each fy is continuous), and suppose for each v € X, {fe(z): k> 1} is a
compact subset of Y. Then there is a subsequence { f, };";1 and a continuous f : X — Y
such that

fv; = [ uniformly on X.
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Remark. If Y =", the condition (Vz € X) {fi(x) : £ > 1} is compact is equivalent to the
sequence { fi} being pointwise bounded, i.e.,

(Vz € X)(3M,) suchthat (Vk>1) |fi(z)| < M,.

Ezample. Suppose fi : [a,b] — R is a sequence of C' functions, and suppose there exists
M > 0 such that
(VE>1) fello + Nl fillc < M

(where || f|loo = max,<z<p | f(x)]). Then for a <z < 29 < b,

Z2

fulen) = few) < [ |fi(@ldo < Mo - |,
Z1

so {fkx} is equicontinuous (take ¢ = +%), and || fi||cc < M certainly implies { fi} is pointwise

bounded. So by Ascoli’s Theorem, some subsequence of {fx} converges uniformly to a

continuous function f : [a,b] — R.

Theorem. The Cauchy-Peano Existence Theorem
Let I = [to,to + B] and Q = B,(z9) = {z € F" : |z — zo| < r}, and suppose f(t,x) is
continuous on I x Q. Then there exists a solution x,(t) of the integral equation

(IE) z(t) = xo —i—/t f(s,z(s))ds

in C(I,) where I, = [ty,to + ], @ = min (ﬁ, ﬁ), and M = maxggyerxa |f(t, )| (and thus
7,(t) is a C' solution of the IVP: ' = f(t,z); x(ty) = x¢ in ).

Proof. The idea of the proof is to construct continuous approximate solutions explicitly (we
will use the piecewise linear interpolants of grid functions generated by Euler’s method), and
use Ascoli’s Theorem to take the uniform limit of some subsequence. For each integer k£ > 1,
define z4(t) € C(I,) as follows: partition [tg, ¢y + ¢ into k equal subintervals (for 0 < ¢ < k,
let 2, =ty + £% (note: t, depends on k too)), set zx(to) = T, and for £ = 1,2,...,k define
xk(t) in (tg—1,ts| inductively by zx(t) = zg(te—1) + f(te—1, Tk(te—1))(t — te—1). For this to be
well-defined we must check that |zx(t—1) — xo| < r for 2 < £ < k (it is obvious for £ = 1);
inductively, we have

-1

[ok(ter) — ol <D Jwn(ts) — w(tioa)]
=1
-1

= 3 [f i @r(tin))] - [t — b

=1

-1
< MZ(tz —ti1)
i—1

= M(tgfl—t()) SM&ST



ODEs 17

by the choice of a. So zx(t) € C(I,) is well defined. A similar estimate shows that for
t,T € [to, to + af,
|2k (t) — zx(7)| < M|t — 7).

This implies that {z} is equicontinuous; it also implies that
(VE>1)(Vte I, |zp(t) —xo] < Ma <,

so {zy} is pointwise bounded (in fact, uniformly bounded). So by Ascoli’s Theorem, there
exists 7.(t) € C(I,) and a subsequence {x,}32, converging uniformly to z.(t). It remains
to show that z.(t) is a solution of (IE) on I,. Since each zx(t) is continuous and piecewise
linear on I,,

¢

zi(t) = zo +/ z,.(s)ds

to
(where x}(t) is piecewise constant on I, and is defined for all ¢ except t, (1 < ¢ < k — 1),
where we define it to be z}(¢])). Define

Ag(t) =z (t) = f(t,zx(t)) on I,

(note that Ag(tg) =0 for 0 < £ < k — 1 by definition). We claim that Ag(¢) — 0 uniformly
on I, as k — oo. Indeed, given k, we have for 1 < ¢ < k and t € (t;_1,1,) (including ¢ if
¢ =k), that

|23,(8) — f (&, 2k()] = | f(te—r, Th(te—1)) — F(t z(2))]-

Noting that [t —#,_;| < ¥ and
o'
k() =z (be-1)| < Mt —te| < ME?

the uniform continuity of f (being continuous on the compact set I x Q) implies that

max |Ag(t)] =0 as k — oo.

Thus, in particular, A, (¢) — 0 uniformly on /,. Now

t
T (1) = xo-l—/ . (s)ds

to
t t

= xzo+ [ f(s,mx,(s))ds+ [ A (s)ds.

to to
Since xy; — x, uniformly on I,, the uniform continuity of f on I x Q now implies that

[,z (t)) = f(t,2.(t)) uniformly on I,, so taking the limit as j — oo on both sides of this
equation for each t € I, we obtain that z, satisfies (IE) on I, O O

Remark. In general, the choice of a subsequence of {x;} is necessary: there are examples
where the sequence {z;} does not converge. (See Problem 12, Chapter 1 of Coddington &
Levinson.)
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Uniqueness

Uniqueness theorems are typically proved by comparison theorems for solutions of scalar
differential equations, or by inequalities. The most fundamental of these inequalities is
Gronwall’s inequality, which applies to real first-order linear scalar equations.

Recall that a first-order linear scalar initial value problem

IVPp: u' = a(t)u+0b(t), wu(ty) = uo

t t
can be solved by multiplying by the integrating factor e fio (i.e., e Jio a#)45) " and then
integrating from ¢, to ¢. That is,

d

= (e amun) = e Foao),

implies that
t
~fiya = / i —Jipa
e totu(t) —uy = e tou(s) | ds
(t) 0 to ds ( )

t
= /e_ﬁoab(s)ds
to

which in turn implies that

t t +
u(t) = ugedn ® + / els ab(s)ds.

to

Since f(t) < g(t) on [c, d] implies fcd ft)dt < fcdg(t)dt, the identical argument with “="
replaced by “<” gives

Theorem (Gronwall’s Inequality - differential form) Let I = [ty,t1]. Supposea: I —
R and b: I — R are continuous, and suppose u.: I — R is in C'(I) and satisfies

u'(t) < a(t)u(t) +b(t) for tel, and wu(ty) = uo.

Then .
u(t) < upetio® +/ el b(s)ds.

to
Remarks.

(1) Thus a solution of the differential inequality is bounded above by the solution of the
equality (i.e., differential equation v’ = au + b).

(2) The result clearly still holds if u is only continuous and piecewise C!, and a(t) and b(t)
are only piecewise continuous.



ODEs 19

(3) There is also an integral form of Gronwall’s inequality (i.e., the hypothesis is an integral
inequality): if ¢, ¥, € C(I) are real-valued with & > 0 on I, and

o(t) < (1) +/ a(s)e(s)ds for tel,

then
o(t) < (1) + / e 2 a(s)p(s)ds.

to

In particular, if ¢(t) = ¢ (a constant), then ¢(t) < cedio®, (The differential form is
applied to the C! function u(t) = ftz a(s)p(s)ds in the proof — see problem 4 on Prob.
Set. 9.)

(4) For a(t) > 0, the differential form is also a consequence of the integral form: integrating
o <a(t)u+b(t) from t, to ¢

gives
u(t) < (1) + /t a(s)u(s)ds,
where .
»(t) = ug -i—/?t b(s)ds,

so integration by parts gives

B(t) + / els 2a(s)(s)ds

to

t t t
= ...= uoefto a + / efs ab(S)dS.
to

u(?)

IA

(5) Caution: a differential inequality implies an integral inequality, but not vice versa:

f[<g# [ <4

(6) The integral form doesn’t require ¢ € C* (just ¢ € C(I)), but is restricted to a > 0.
The differential form has no sign restriction on a(t), but it requires a stronger hypothesis
(in view of (5) and the requirement that u be continuous and piecewise C').

Uniqueness for Locally Lipschitz f

We start with a one-sided local uniqueness theorem for the initial value problem

IVP: = f(t,z); =z(to) = zo.
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Theorem. Suppose for some o > 0 and some r > 0, f(t,x) is in (C,Lip) on I, X B,(xo),
and suppose z(t) and y(t) both map I, into B,(zy) and both are C' solutions of (IVP) on
I, = [to,to + ]. Then z(t) = y(t) fort € I,.

Proof. Set
u(t) = lz(t) —y@)° = (@(t) — y(t), 2(t) — y(2))
(in the Euclidean inner product on F*). Then u : I, — [0,00) and u € C*(I,) and for ¢ € I,,

ul

(z—y, 2" =)+ @' =y, z—y)
2Re(x —y, o' — ') < 2/{x —y, 2’ — ¢')]
2(z —y, (f(t,2) — f(t,9)))]

|z —yl-|f(t2) = f(tv)|

2L|x — y|* = 2Lu .

IN A

Thus v' < Lu on I, and u(ty) = x(to) — y(to) = xo — ¢ = 0. By Gronwall’s inequality,
u(t) < upe! =0 on I, so since u(t) > 0, u(t) =0 on I,. O O
Corollary.

(i) The same result holds if I, = [ty — «, to]-

(ii) The same result holds if I, = [ty — «a, to + af.

Proof. For (i), let Z(¢) = z(2to — t), §(t) = y(2to — t), and f(t,z) = —f(2to — t,x). Then f

is in (C, Lip) on [to, to + a] X B.(xy), and = and y both satisfy the IVP

¥ = f(t,z); 2'(to) =z on [to,to+ .

So by the Theorem, z(t) = y(t) for t € [to, to+ ], i.e., x(t) = y(t) for t € [ty —, t]. Now (ii)
follows immediately by applying the Theorem in [tg, ¢y + «] and applying (ii) in [ty — o, to).
Il O

Remark. The idea used in the proof of (i) is often called “time-reversal.” The important
part is that z(t) = z(c — t), for some constant ¢, so that z'(t) = —z'(c — t), etc. The choice
of ¢ = 2t; is convenient but not essential.

The main uniqueness theorem is easiest to state in its two-sided version (i.e., where tg
is in the interior of the interval of definition of a solution of the IVP). One-sided versions
(where % is the left endpoint or right endpoint of the interval of definition of a solution of
the IVP) are true and have the same proof, but require a more delicate statement. (Exercise:
State one-sided theorems corresponding to the upcoming theorem precisely.)

Definition. Let D be an open set in R x F*. We say that f(¢,z) mapping D into F" is
locally Lipschitz continuous with respect to x if for each (t1,x1) € D there exists

a>0, r>0, and L>0
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for which [t; — o, t1 + o] X By(z1) C D and
(Vte[ti—a,t1+a])(Va,y € Be(x1)) |f(t,z) — f(t,y)] < L|z — 9

(i.e., f is uniformly Lipschitz continuous with respect to z in [t; — a, t1 + « X B.(z1)). We
will say f € (C, Lip,,.) (not a standard notation) on D if f is continuous on D and locally
Lipschitz continuous with respect to  on D.

Ezample. Let D be an open set of R X F". Suppose f(t,z) maps D into F*, f is continuous
on D, and for 1 < 14,5 <mn, gf;? exists and is continuous in D. (Briefly, we say f is continuous
J

on D and C' with respect to x on D.) Then f € (C,Lip,,.) on D. (Exercise.)

Main Uniqueness Theorem. Let D be an open set in R X F", and suppose f € (C, Lip,,.)
on D. Suppose (to, o) € D, I C R is some interval containing ty (which may be open or
closed at either end), and suppose z(t) and y(t) are both solutions of the initial value problem

IVP: x':f(t,x): x(to) = Yo
in CY(I) which satisfy (t,z(t)) € D and (t,y(t)) € D fort € I. Then z(t) = y(t) on I.

Proof. We first show z(t) = y(t) on {t € [ : t > t,}. If not, let
ty=inf{tel:t>t, and xz(t)#y(t)}.

Then z(t) = y(t) on [ty,?1) so by continuity z(¢,) = y(t1) (if t; = to, this is obvious). By
continuity and the openness of D (as (t1,z(t1)) € D), there exist @« > 0 and r > 0 such
that [t; — o, t; + o] X B,(x1) C D, f is uniformly Lipschitz continuous with respect to z in
[t1 — a,t; + a] X B.(z1), and z(t) € B.(z1) and y(t) € B,(x;) for all t in I N [t; — o, 1 + @f.
By the previous theorem, z(t) = y(t) in I N [t; — o, t1 + o], contradicting the definition of
t1. Hence z(t) = y(t) on {t € I : t > to}. Similarly, z(t) = y(¢) on {t € I : t < 1y}. Hence
z(t) = y(t) on I. O O

Remark. ty is allowed to be the left or right endpoint of I.

Comparison Theorem for Nonlinear Real Scalar Equations

Theorem. Let n = 1, F = R. Suppose f(t,u) is continuous in t and u and Lipschitz
continuous in u. Suppose u(t), v(t) are C' for t >ty (or some interval [to,b) or [to,b]) and
satisfy

u'(t) < f(t u(?)), v(t) = f(t v(t))
and u(ty) < v(ty). Then u(t) < v(t) fort > to.

Proof. By contradiction. If u(7) > v(T) for some T > ty, then set t; =sup{t:to <t <T
and u(t) < wv(t)}. Then to < t; < T, u(t;) = v(t1), and u(t) > v(t) for ¢t > ¢; (by continuity
of u—v). Fort; <t <T, |u(t) —v(t) = u(t) — v(t), so we have

(u—v) < f(tw) — F(t0) < Lju— v| = L{u—v).

By Gronwall’s inequality (applied to w—wv on [¢t1, T], with (u—wv)(¢;) = 0, a(t) = L, b(t) = 0),
(v —v)(t) <0 on [t1,T], a contradiction. O
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Remarks. (1) as with the differential form of Gronwall’s

inequality a solution of the differential inequality u' < v
f(t,u) is bounded above by the solution of the equality
(i.e., the DE v' = f(t,v)). (2) It can be shown under the u

same hypotheses that if u(ty) < v(ty), then u(t) < v(t)
for t > to. (3) Caution: It may happen that u'(t) > v'(t)
for some t > to: u(t) < v(t) A u'(t) < V'(¢).

to

Corollary. Let n = 1, F = R. Suppose f(t,u) < g(t,u) are continuous in ¢ and u, and
one of them is Lipschitz continuous in u. Suppose also that u(t), v(t) are C* for ¢t > t, (or
some interval [tg, ) or [to,b]) and satisfy v' = f(¢,u), v' = g(t,v), and u(ty) < v(ts). Then
u(t) < wv(t) for t > .

Proof. Suppose first that g satisfies the Lipschitz condition. Then u' = f(t,u) < g(¢,u).
Now apply the theorem. If f satisfies the Lipschitz condition, apply the first part of this

proof to u(t) = —v(t), v(t) = —u(t), f(t,u) = —g(t,—u), g(t,u) = —f(t, —u). O

Remark. Again, if u(ty) < v(tp), then u(t) < v(t) for t > .

Continuation of Solutions

We consider two kinds of results
e local continuation (continuation at a point — no Lipschitz condition assumed)

e global continuation (for locally Lipschitz f)

Continuation at a Point

Suppose z(t) is a solution of the DE z' = f(¢,z) on an interval I and that f is continuous
on some subset S C R x F" containing {(¢,z(t)) : t € I}. (Note: no Lipschitz condition is
assumed.)

Case 1. I is closed at the right end, i.e., I = (—o0,b], [a,b], or (a,b]. —> Assume further
that (b, z(b)) is in the interior of S. Then the solution can be extended (by the Cauchy-Peano
Existence Theorem) to an interval with right end b + 8 for some 8 > 0. (Solve the IVP
x' = f(t,x) with initial value z(b) at t = b on some interval [b, b+ §] by Cauchy-Peano. To
show that the connectlon 1s 01 at t = b, note that the extended z(t) satisfies the integral
equation x(t b) + fb ))ds on the extended interval I |J[b,b+ 5].)

Case 2. [ is open at the rlght end, ie, I = (—o0,b), [a,b), or (a,b) with b < c0. —>
Assume further that f(¢,z(t)) is bounded on [t,b) for some to < b with [ty,b) C I, say
|f(t,z(t))| < M on [tg,b).

[Remarks. (1) If this is true for any t, € I, it is true for all ¢, € I (where of course M
depends on ty): for t, < to, f(t,z(t)) is cont. on [to,%e]. So this assumption is a condition



ODEs 23

on the behavior of f(t,z(t)) near t = b. (2) This assumption can be restated with a slightly
different emphasis: for some tq € I, {(t,z(t)) : to < t < b} stays within a subset of S on
which f is bounded. For example, if {(¢,z(t)) : to < t < b} stays within a compact subset of
S, this condition is satisfied.] Then the integral equation (%) z(t) = z(to) + f;ti) f(s,z(s))ds
holds for ¢ € I. In particular, for to <7 <t < b,

|z(t) — 2(7)| =

/f(s,x(s))ds g/ (s, 2(5))|ds < Mt — 7.

Thus, for any sequence t, 1 b, {z(t,)} is Cauchy. This implies lim; ,,- () exists; call it
z(b”). So z(t) has a continuous extension from I to I U {b}. If in addition (b, z(b7)) is in
S, then (x) holds on I U {b} as well, so z(t) is a C' solution of ' = f(t,z) on I U {b}. (Of
course, if now in addition (b, z(b")) is in the interior of S, we are back in Case 1 and can
extend the solution z(t) a little beyond ¢ = b.)

Case 3. [ is closed at the left end — similar to Case 1.

Case 4. [ is open at the left end — similar to Case 2.

Global Continuation

Now suppose f(t,x) is continuous on an open set D C R x F* and suppose f is locally
Lipschitz continuous with respect to  on D. (For example, if f is C! with respect to z in D,
ie., gg exists and is continuous in D for 1 < 4,5 < n, then f is locally Lipschitz continuous
with respect to z on D.) For brevity, we will write f € (C, Lip,,.) on D. Let (o, z¢) € D. We
want to continue in ¢ solutions of the IVP 2’ = f(¢,z), z(to) = x¢. Part of being a solution
is that (¢,z(t)) € D (we are only assuming f is defined in D). We know local existence of
solutions and uniqueness of solutions on any interval.

Define T'; = sup{t > to : 3 a solution of the IVP on [ty,t)}. By uniqueness, two solutions
must agree on their common interval of definition, so 3 a solution on [tg, 7). Define 7_
similarly. So (7_,77) is the maximal interval of existence of the solution of the IVP. It is
possible that T = oo and/or 7_ = —oo. Note that the maximal interval (7_,7) is open:
if the solution could be extended to 7', (or 7_), then since D is open, the results above
on continuation at a point imply that the solution could be extended beyond T (or 7_),
contradicting the definition of T’y (or T_).

The ideal situation would be T}, = 400 and 7_ = —oo, where the solution exists for
all time t. Another “good” situation is if f(¢, ) is not defined for ¢ > T,. For example, if
a(t) = 5 (which blows up at ¢ = 1), and 2/(t) = a(t), we don’t expect the solution to exist

beyond ¢ = 1. Here, if t =0 and D = [0,1) X R, then T, = 1.
Other less desirable behavior occurs for 2’/ = 22, £(0) = 29 > 0, t, =0, and D =R x R.
The solution z(t) = 2 = f_t blows up at 7}y = wl—o (note that 7_ = —o0). Observe that

— 1—xot
0
z(t) = oo as t — (T)~. So the solution does not just “stop” in the interior of D. This is
the general behavior in this situation.

Theorem. Suppose f € (C,Lip,,.) on an open set D C R x F*. Let (ty,z9) € D, and
let (T",T;) be the maximal interval of existence of the solution of the IVP z' = f(¢,z),
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x(to) = xo. Given a compact set K C D, there exists a T < T, for which (¢,z(t)) ¢ K for
t>T.

Proof. If not, 3¢; — T, with (¢;,2(¢;)) € K for all j. By taking a subsequence, we may

assume that z(¢;) also converges, say to z; € F*, and (¢;,2(¢;)) — (T4,z4) € K C D.
o0

We can thus choose r, 7, N > |J {(t,z) : [t —t;| < 7, ]z — z(t;)| < r} is contained in a
j=N

compact subset of D. There is an M for which |f(¢,z)] < M on this compact set. By the

local existence theorem, the solution of &' = f(¢, ) starting at the initial point (¢;,z(¢;))

exists for a time interval of length 7" = min {7’, ﬁ}, independent of 7. Choose j for which

t; >ty —T'. Then (t,z(t)) exists in D beyond time 77, which is a contradiction. O

Autonomous Systems

The system of ODE’s z'(t) = f(t, z) is called an autonomous system if f(¢,z) is independent
of t, i.e., the ODE is of the form z' = f(x).

Remarks.

(1) Time translates of solutions of an autonomous system are again solutions: if x(¢) is a
solution, so is z(t — ¢) for constant c.

(2) Any system of ODE’s o’ = f(t,z) is equivalent to an autonomous system. Define

“Ta1 =17 as follows: let & = (2u11,7) € F™*, f(7) = f(ansn,0) = [ o ] e
n+1,

F"+1. and consider the autonomous IVP & = f(Z), Z(ty) = [;0 } This IVP is
0

equivalent to the IVP z' = f(t,z), z(ty) = xo-

Special case for continuation for autonomous systems z’ = f(x)

Suppose f(x) is defined and locally Lipschitz continuous on T
an open set Y C F*. Take D = R x U. Suppose T, < o0 u{_c kK
and C is a compact subset of Y. Take K = [ty, 1] x C in the - T - - — =
previous theorem. T Ty t

It follows that 37" < T, for which z(t) ¢ Cfor T < t < T,.
Picture in F": We may say that z(t) — o U{oo} as t — (T'1)~, meaning that (V Cmpact C
UET <T,)>fort e (T,Ty), z(t) ¢ C. Stated briefly, eventually z(t) stays out of any
given compact set.
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Contrapositive

If x(t) stays in a compact set C' C U, then T, = co.

Ezample. We may interpret f(x) as a vector field. Suppose there
is a smooth compact hypersurface (n — 1 dim. manifold) § C U for
which f(z) is tangent to S for all z € S. Then if 2y € S, the solution -
of the IVP 2/ = f(x), x(to) = xo stays on S, and Ty = co. (Details: g
exercise: locally patch together.) Generalization: compact manifolds.

Application of continuation theorem to linear systems

Consider the linear system 2'(t) = A(t)z(t) + b(t) for ¢ < t < b where A(t) € F**" and
b(t) € F* are continuous on (a,b), with initial value z(ty) = zo (where t; € (a,b)). Let
D = (a,b) x F*. Then f(t,z) = A(t)z + b(t) € (C, Lipy,,) on D. Moreover, for ¢, d satisfying
a<c<ty<d<b, fis uniformly Lipschitz cont. with respect to x on [¢,d] x F" (we can
take L = max,<;<4|A(t)|). The Picard global existence theorem implies there is a solution
of the IVP on [c, d], which is unique by the uniqueness theorem for locally Lipschitz f. This
implies that 7_ = a and T, = b. We now give an alternate proof using the continuation
theorem.

Idea: prove an a priori estimate on the solution to show that z(t) stays in a compact set
in F* for each compact subinterval of (a, b).

Given c¢,d satisfying a < ¢ < ty) < d < b, let M = max.<;<q(2|A(t)| + [b(t)]). Let
u(t) = |z(t)|* = (x(t),z(t)). Then by Schwarz,

u'(t) = (x,2')+ (2, z) = 2Re(x, 2"y < 2{(z,2")| < 2|z|- |2
2lz| - |A(t)z + b(t)| < 2/ A(t)] - [=]” + 2[b(t)] - |2]
< 20AQ@)| - 2 + B[ (J2* +1) < M(|2 +1) = M(u+1)

(since 2|z| < [z +1).

By Gronwall’s inequality (applied to v’ < Mu + M with a(t) = M, b(t) = M), u(t) <
ugeM(t=to) 4 ft'; MeMt=9)ds = yoeMt=to) 4 eMt=to) _ 1 < R for ty < t < d, where uy = u(tp)
and R = (ug+1)eM®=%) 1. So x(¢) must lie in the compact set {z : |z|> < R} fort; < t < d.
So if Ty < b, we would get a contradiction with the continuation theorem, taking d = T
and K = [to,T,] x {x : |z|> < R}. (Strictly speaking, the logic is: for any ¢ € [to,d] for
which z(t) exists, we must have |z(¢)|*> < R.) A similar argument shows that 7_ = a.

Continuity and Differentiability of Solutions

We now study the dependence of solutions of IVPs on (a) initial values, and (b) parameters
in the DE. We begin with a fundamental estimate.
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Definition. We say that z(¢) is an e-approzimate solution of the DE z' = f(¢,x) on an

interval [ if
|x'(t) — flt,z(t))| <e Vtel.

Here, we consider only C' functions z(t¢) (see Coddington & Levinson to extend this
concept to piecewise C! functions, etc.)

Fundamental Estimate

Let f(t,z) be continuous in ¢ and z, and uniformly Lipschitz

continuous in z with Lipschitz constant L. Suppose z;(t) is /ﬂ/
an e1-approx. soln. of 2/ = f(¢,z) and x4(t) is an e9-approx. P /_/
soln. of ' = f(t,z) on an interval I with tq € I, and suppose a1(t)
|£L‘1(t0) — $2(t0)| S 6. Then

[ %

AL il ) Vel

|z1(t) — 2o (t)| < dellt—tol

Remarks.

(1) The first term on the RHS bounds the difference between the solutions of the IVPs
with initial values z;(ty) and zo(to) at to.-

(2) The second term on the RHS accounts for the fact that x;(¢) and x4(t) are only approx.
solutions. Note that this term is 0 at ¢t = ;.

(3) If ey = &9 =0 = 0, we can recover the uniqueness theorem for Lipschitz f.

Proof. We may assume &1, £9,0 > 0 (otherwise, take limits as e — 07, g — 07, § — 07).
Also for simplicity, we may assume ¢y = 0 and we are considering ¢t > 0 (do time reversal for
t <0). Set

u(t) = |z1(t) — 22(8)|* = (21 — T2, 72 — T2).

Then

v = 2Re(w) — 19,2 — xh) < 2|z — To| - 2] — Y|
= 2z — xo| |2} — f(t, 1) — (25 — f(L, 22)) + f(t,21) — f(L, 72)]
< 2|z, — x2|(e1 + &2 + LTy — 20]) = 2Lu + 26/,

where € = &1 + &9.
We want to use the Comparison Theorem to compare u to the solution v of

v’ = 2Lv + 2ev/v, v(0) =62 > 0.

But _
f(v) =2Lv + 2e\/v
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is not Lipschitz on v € [0,00); it is, however, for a fixed 6 > 0, uniformly Lipschitz on
v € [6%, 00) since

iF

df _ 2L + —— is bounded forv € [6%, 00),

dv NG

and C? functions with bounded derivatives are uniformly Lipschitz:

v1 df
—d
/112 dv v

Although u(t) may leave [62,00), in the proof of the Comparison Theorem we only need f
to be Lipschitz to conclude that 4 > v cannot occur. Note that since v’ > 0, v(t) stays in
[62,00) for ¢t > 0. So the Comparison Theorem does apply, and we conclude that u < v for
t > 0. To solve for v, let v = w?. Then

[F(or) = flvg)] = S@mﬁ%ﬂwmm—WL

2uw’ = (w?) = v' = 2Lw* + 2ew.

Since w > 0, we get w' = Lw + €, w(0) = §, whose solution is

w = e + %(e” —-1).
Since |21 — 22| = y/u < /v = w, the estimate follows. O

Corollary. For j > 1, let x;(t) be a solution of x; = f;(¢,z;), and let x(t) be a solution
of ' = f(t,z) on an interval [a, b], where each f; and f are continuous in ¢ and z and f is
Lipschitz in z. Suppose f; — f uniformly on [a,b] x F* and z;(ty) — z(t9) as j — oo for
some ty € [a,b]. Then z;(t) — z(¢) uniformly on [a, b].

Remark. The domain on which f; — f uniformly can be reduced: exercise.

Proof. Given e > 0

|25(t) = f(t, 25 (0)] < |w5(8) = f(8 25 + 152, 25(8) — £(E 25(2)))]

will be < € for all j sufficiently large, uniformly in ¢ € [a, b]. So z(t) is an exact solution and
x(t) is an e-approx. solution of 2’ = f(¢,z) on [a,b]. By the Fundamental Estimate,

5 (8) = 2(0)| < [ (t0) = (1) 2=+ (M=ol 1),
and thus |z;(t) — z(¢)| — 0 uniformly in [a, b]. O

Remark. Also f;(t,z;(t)) — f(t,z(t)) uniformly, so 2%(t) — 2'(t) uniformly. Thus z; — z
in C'[a,b] (with norm ||z||c1 = [|Z]|eo + ||7']|00)-



28 Ordinary Differential Equations (ODEs)

Parameters in the DE

Now consider a family of IVPs

xlzf(t,x,/j,), $(t0) =Y

where p € F™ is a vector of parameters and y € F". Assume for each value of p, f(t,z, u)
is continuous in ¢ and z and Lipschitz in  with Lipschitz constant L locally independent of
u. For each fixed pu,y, this is a standard IVP, which has a solution: call it x(¢, i, y).

Theorem. If f is continuous in ¢, z, u and Lipschitz in z with Lipschitz constant independent
of t and p, then x(t, u,y) is continuous in (¢, u, y) jointly.

Remark: See Coddington & Levinson for results saying that if z(, po, yo) exists on [a, b],
then x(t, i, y) also exists on [a, b for p,y near pg, yo.

Proof. The argument of the Corollary shows that z is continuous in p,y, uniformly in ¢.
Since each z(t, i, y) is continuous in ¢ for given p,y, we can restate this result as saying
the map (i, y) — z(t, u, y) mapping a subset of F” x F”* into (C[a, b], || - ||s) is continuous.
Standard arguments now show x is continuous in ¢, y, y jointly. O

We have thus established continuity of solutions in their dependence on parameters and
initial values. We now want to study differentiability. By transforming problems of one
type into another type, we will be able to reduce our focus to a more restricted case. These
transformations are useful for other purposes as well, so we will take a detour to study these
transformations.

Transforming “initial conditions” into parameters >
Suppose f(t,xz) maps an open subset D C R x F" into ", /o__/
where f is continuous in ¢ and x and locally Lipschitz in /_//

x on D. Consider the IVP 2’ = f(t,2), z(r) = y, where *°
(1,y) € D. Think of 7 as a variable initial time ty, and y as

a variable initial value zo. Viewing (7,y) as parameters, let T 1, to+ b
z(t, 7,y) be the solution of this IVP.

t

Remark. One can show that if (¢9,x0) € D and x(t, o, xo) exists in D on a time interval
[to, to+b], then for (7, y) in some sufficiently small open neighborhood of (to, z¢), the solution
x(t,T,y) exists on I, = [min(7, tp), max(7,ty) + b] (which contains [¢, o + b] and [7, 7 +b]),
and moreover {(t,z(t,7,y)) : t € L4, (7,y) € O} is contained in some compact subset of D.

Define _

[z, my)=f(r+te+y) and z(t,7y)=a(r+1,7y) —y.
Then z(t,7,y) is a solution of the IVP

7 =f(tz,7y), z(0)=0

with n + 1 parameters (7,y) and fixed initial conditions. This IVP is equivalent to the
original IVP 2’ = f(t, ), z(7) = .

Remarks.
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(1) f is continuous in ¢, z, 7,y and locally Lipschitz in z in the open set

W={(tz,ry):(t+t,c+y) €D, (r,y) € D} CRxF* xR x F".

(2) If fis C¥int,z in D, then f is C¥ in t,z, 7,y in W.

Transforming Parameters into “Initial Conditions”

Suppose f(t,z,u) is continuous in t,xz, u and locally Lipschitz in z on an open set W C
Rx F" x ™. Consider the IVP 2’ = f(t,x, u), z(to) = xq, with solution z(¢, 1). Introduce a
new variable z € ' which we think of as the solution to the IVP 2’ = 0, z(¢y) = u, so that
z(t) = u. Define

7= [ﬂ ™ and  F(4,7) = [f(t’o‘”’z) }

Counsider the IVP

7= f), #=| "],

(e, ' = f(t,z,2), 2’ =0, z(ty) = x9, 2(ty) = p), with solution z(¢, ). Then

= | 700 ).

and the two IVPs are equivalent.

Remarks.

(1) If f is continuous in ¢, x, 4 and locally Lipschitz in 2 and p (jointly), then fis continuous

in ¢,z and locally Lipschitz in z. (However, for this specific f, Lipschitz continuity in
z is not needed for uniqueness.)

(2) If fis C* in t,x, p, then f is C* in ¢, 7.

(3) One can show that if (¢y, zo, o) € W and the solution z(t, p) exists in W on a time
interval [tg,to + b], then for u in some sufficiently small open neighborhood U of g in
™ the solution x(t, ) exists on [tg, ¢y + b], and, moreover, the set

{(t,x(t, ), ) : t € [to,to + b, p € U}
is contained in some compact subset of W.

(4) An IVP o' = f(t,z, u), z(7) = y with parameters p € ™ and variable initial values
T € R, y € F* can be transformed similarly into either IVPs with variable IC and no
parameters in the DE or IVPs with fixed IC and variable parameters in the DE.
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The Equation of Variation

A main tool in proving the differentiability of z when f is C* is the equation of variation,
commonly also called the linearization of the DE (or the linearized DE), or the perturbation
equation, etc. This is a linear DE for the (leading term of the) perturbation in the solution
x due to, e.g., a perturbation in the parameters. Or it can be viewed as a linear DE for the
derivative of z with respect, e.g., to the parameter(s).

The easiest case to describe is when there is one real parameter s in the DE; we will also
allow the initial value z(¢y) to depend on s. Let z(t, s) be the solution of the IVP

= f(t,z,s), z(ty) = zo(s),

where f is continuous in ¢,z, s and C! in z, s, and z(s) is C! in s. If z(¢, s) is differentiable
in s, then (formally) differentiating the DE and the IC with respect to s gives the following
IVP for 2(t,s):

oz’ 9

(a—ﬁ) - Dmf(t,ac(t,s),s)a—i—i—Dsf(t,a:(t,s),s)
or _dzxg

%™ = g

where
orY' _d (0r
ds) dt\09s)’

D, f is the n x n Jacobian matrix having (i, j)-element ‘ggﬁ, and D, f is the n x 1 derivative
J

having ith element %. Evaluating at a fixed so, we get that 22(¢, sq) satisfies
Ox
Os

This is a linear DE for %

8_:1:
0s

dﬂ?o
) =G5

50

> = sz(tax(t: 80)7 So)g_i + Dsf(t,$(t, 80)’ 80)7

S0 S0 S0

of the form 2’ = A(t)z + b(t), where both the coefficient matrix

S0

A(t) = Dy f(t,z(t, so), So) and the inhomogeneous term b(t) = D, f(t, z(t, So), So) are known
if f and x(¢, s¢) are known.

The theoretical view is this: if z(, s) is C* in s, then 22

5s| satisfies this linear DE. Now,

S0
we start from this linear DE, which has a solution by our previous theory. This “gets our

. We then prove (see theorem below) that
50
x(t, so + As) — z(t, so)
As

hands on” what ought to be %

converges as As — 0 to this solution, which we can now say is % . It then follows (from

S0
continuity with respect to parameters) that % is continuous in ¢ and s. The original DE
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implies % is continuous in ¢ and s. We conclude then that z(¢,s) is C' with respect to ¢

and s jointly.
An alternate view of the equation of variation comes from the “tangent line approxima-
tion”: formally, for s near sy, we expect

0
2(t,s) ~ z(t, 50) + (5 — so)a—g;(t, s0),
with error of order O(|s — s|)?. Setting As = s — sy and Az = z(t, s) — z(¢, s9), we expect
Az ~ %(t, 50)As. We could either multiply the linear DE above by As, or proceed formally

as follows: suppose z(t,s) = z(t, so) + Az(t,s) (which we abbreviate as © = =, + Az), and
suppose |Az| = O(|As|) where As = s — s5. Substitute into the DE, and formally drop
terms of order |As|?.

(xsy + Az)' = f(t, 25, + Az, 50 + As)
neglect

= f(t,Tsy, 80) + Do f(t, 75y, 50)Ax + Dy f(t, 75y, 50)As +| O(|As|?)

so, since 2 = f(, sy, 50),
Az’ = D, f(t, x4, 50) Az + Dy f (¢, Zs,, S0)As.

(This is equivalent to As times (%)I =D,f (%) + D, f, when we take Az to mean the

“tangent line approximation” %As).
Ezample. Consider the IVP 2/ = f(t, z, u) where u € F™ with fixed IC z(ty) = 2. Then for
1<k <m,

Ox )' Ox
a :Dwft,.’ll't, 9 —+D ft,.’l?t, )
(auk (t, z(t, 1) u)auk wef (&, (8, 1), 1)
is the equation of variation with respect to p, with IC aaka(tO) = 0. Put together in matrix
form,

(Dux)l = (sz)(Dux) +D,f, D;ﬁ(to) =0.

Here, D,z is the n X m Jacobian matrix having elements gZ?, D, f is the n x m Jacobian
J

matrix having elements gﬁ{? , and as above D, f is the n X n Jacobian matrix having elements
J

Ofi
Oxj*

Initial Conditions for Equation of Variation

(1) Variable parameters, fixed IC:
¥ = f(t,z,p), =z(to) =mz¢: take aa—x(to) =0.
(2) Variable IC (with ¢, fixed):

= f(t,z), =z(t) =vy: take ——(ty) = e.
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We can now prove differentiability. From our discussion showing that dependence on
parameters can be transformed into IC, it will suffice to prove the following.

Theorem. Suppose f is continuous in ¢,z and C' in z, and z(t,y) is the solution of the
IVP ' = f(t,z), (to) = y (say on an interval [a,b] containing ¢, for y in some closed ball
B={yelF" :|y—mxy <r}). Then z is a C* function of ¢ and y on [a,b] x B.

Proof. By the previous theorem, x(¢,y) is continuous in [a, b] x B, so
K = {(t,2(t,)) : ¢ € [0,b],y € B}

is compact, and thus f is uniformly Lipschitz in # on K, say with Lipschitz constant L.
From the DE, 2(t,y) = f(t,z(t,y)), and so Z(t,y) is continuous on [a,b] x B. Now fix j
with1 <j<n.If g—;j exists, it must satisfy the linear IVP

(%) Z'=A(t,y)z on [a,b], z(to) = e;,

where A(t,y) = D,f(t,z(t,y)). Let z(t,y) be the solution of the IVP (x). Since A(¢,y) is
continuous on the compact set [a,b] x B, it is bounded on [a,b] X B. Let M > 0 be such
a bound, i.e. |A(t,y)| < M for all (t,y) € [a,b] x B. The DE in (x) is linear, with RHS
uniformly Lipschitz in z with Lipschitz constant M. By the global existence theorem for
linear systems and the previous theorem, z(t,y) exists and is continuous on [a,b] x B. For
h € R with |h| small [strictly speaking, for fixed y € B°, assume h is small enough that
By (y) C B, set
z(t,y + he;) — z(t,y)

O(t,y,h) = Y i

By the Fundamental Estimate (applied to 2’ = f(¢,z) with 6 = |h| and &; = €3 = 0),

[@(t,y + hej) — 2(t,y)| < [a(to,y + he;) — (to, y) ™"~ = [Ale""~
so [0(t,y, h)| < e~ Also by the DE,

f@t,z(t,y + hey)) = f(t,2(t,y))
h

0'(t,y,h) =
Let
w(0) = sup{|Dyf(t,x1) — Do f(t,22)| : (t,21) € K, (t,22) € K, |21 — 2| < 6},
the modulus of continuity of D, f (with respect to z) on K. Since D, f is continuous on the

compact set K, it is uniformly continuous on K, so w(d) — 0 as § — 07. Clearly w(d) is an
increasing function of 0. Also, whenever the line segment from (¢, z1) to (¢, x2) stays in K,

|f(t,2) = [f(t,21) + D f(t, 1) (22 — 21)]|
= |/0 (Dyf(t,z1 4+ s(xe — 1)) — Dypf(t, 1)) (22 — x1)ds| < w(|zg — 21]) - |22 — 21].



ODEs 33

We apply this bound with z; = z(t,y) and z2 = z(t,y + he;), for which the line segment is
in K if |h| is small enough, to obtain

‘Ol(t’ Y, h) - A(t, y)@(t, Y, h)|
— %U’(t, z(t,y + he;)) — f(t,x(t,y)) — Daf(t, x(t,y)) (x(t, y + he;) — z(t,y))]

1
Ww(\x(t, y+ hej) — 2t y) )ty + hej) — x(t,y)| < w(lhle=)et e,

since |z(t, y + he;) — z(t,,y)| < |hleX?=%; where
e(h) = w(|h|etP=Nellb=al 50 as h— 0.

We have shown that 6(t,y, h) is an €(h)-approximate solution to z' = A(t,y)z. Moreover,
6(to,y, h) = ej. So by the Fundamental Estimate applied to (x), with Lipschitz constant M,

E(h) M|b—a
6t y, k) = 2(t,y)| < -~ (e o=l _ 1),

This shows that lim, ,o0(¢,y,h) = 2(t,y) (including the existence of the limit). Thus

g—;j(t, y) = z(t,y), which is continuous in [a,b] x B. We conclude that z(t,y) is C' in

t,y on [a,b] X B. O
We obtain as a corollary the main differentiability theorem.

Theorem. Suppose f(t,z, 1) is C¥ in (¢, z, u) for some k > 1, and z(¢, i, 7, y) is the solution

of the IVP z' = f(t,z, ), x(7) = y. Then z(t, u, 7,y) is a C* function of (¢, i, T,y).

Proof. By the transformations described previously, it suffices to consider the solution

z(t,y) to the IVP 2’ = f(t,x), x(to) = y. The case k = 1 is the previous theorem. Suppose

k > 1 and the result is true for £ — 1. Then g—; satisfies (x) above with A(t,y) € C* !, and
J

% satisfies
w, = th(ta .Z‘(t, y)) + Dmf(ta .Z‘(t, y))f(ta :C(t, y))7 ’U)(to) = f(toa .T(to, y))
By induction, % and (f;’—;; (for 1 < j <n) € C*¥ 1 thus z € CF, O

Nonlinear Solution Operator

Consider the DE z' = f(t,z) where f is continuous in t,z, Lipschitz in z. Let z(¢,7,y)
be the solution of the IVP 2’ = f(¢,z), z(7) = y (say, on an interval ¢ € [a,b], for some
T € [a,b], and we assume all solutions we consider exist on [a,b]). For a fized pair 7 (the
“initial time”) and ¢ (the “final time”) in [a,b], define a function S! mapping an open set
U C F* into F" by

Si(y) = z(t, 7,y),

so S'! maps the initial value y (at time 7) into the solution z(¢,7,y) at time t.
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Due to the continuity of z(¢,7,y) in (¢, 7,y), St is continuous

on the open set  C F*. By uniqueness, S¢ is invertible, and

its inverse is ST (say, defined on W = St[U]), which is also .54
continuous. So St : U — W is a homeomorphism (i.e., one- (T,W" [
to-one, onto, continuous, with continuous inverse). [Note: *

the set W depends on t.| If f is C* in t, z, then by our dif-

ferentiability theorem, St : U — W is a C* diffeomorphism | - ;
(i.e., S and its inverse ST are both bijective and C¥).

Remarks.

(1) If f is at least C', then the chain rule applied to I = S o S¢ (for fixed 7,¢) implies
that the Jacobian matrix D,S! is invertible at each y € U. We will see another way
to show this in the following material on linear systems. [Note: S!(y) = z(¢,7,y), so

for fixed 7,t, the 15" element of D,S! is g;]%' (t,7,9).]

(2) Conversely, the inverse function theorem implies that any injective C* mapping on U
whose Jacobian matrix is invertible at each y € U is a C* diffeomorphism.

(3) Caution: For nonlinear f, S is generally a nonlinear operator.

Group Property of the Nonlinear Solution Operator

Consider the two-parameter family of operators {S! : 7,¢ € [a,b]}. For simplicity, assume
they all are defined for all y € F*. (Otherwise, some consistent choice of domains must be
made, e.g., let U, be an open subset of ", and define U, = S][U,] for 7 € [a,b]. Choose the
domain of S! to be U,. Then St[U,] = U;.) This two-parameter family of operators has the
following “group properties”:

(1) ST =1 for all T € [a, b], and
(2) S7 oSt =57 for all 7,t,0 € [a,b].

Stated in words, mapping the value of a solution at time 7 into its value at time ¢, and then
mapping this value at time ¢ into the value of the solution at time ¢ is equivalent to mapping
the value at time 7 directly into the value at time o.

Special Case — Autonomous Systems

For an autonomous system 2’ = f(z), if 7, t1, 7, 1o satisfy t; — 7 =t — 7, then SI! = S»
(exercise). So we can define a one-parameter family of operators S, where S, = S. (for any
T,t with t — 7 = ). The one parameter ¢ here is “elapsed time” (positive or negative) t — 7,
as opposed to the two parameters 7 (“initial time”) and ¢ (“final time”) above. The two
properties become

(1’) S() = I
(21) 502 o SUI = 502-1-01'



