80 Linear Algebra and Matrix Analysis

Resolvent

Let V be a finite-dimensional vector space and L € L(V). If ( € o(L), then the operator
L — (I is invertible, so we can form

R(Q) = (L - ¢I)™

(which we sometimes denote by R((,L)). The function R : C\o(L) — L(V) is called the
resolvent of L. It provides an analytic approach to questions about the spectral theory of L.
The set C\o(L) is called the resolvent set of L. Since the inverses of commuting invertible
linear transformations also commute, R((;) and R((2) commute for (;,(, € C\o(L). Since
a linear transformation commutes with its inverse, it also follows that L commutes with all

R(Q).

We first want to show that R(() is a holomorphic function of ( € C\o(L) with values in
L(V). Recall our earlier discussion of holomorphic functions with values in a Banach space;
one of the equivalent definitions was that the function is given by a norm-convergent power
series in a neighborhood of each point in the domain. Observe that

R(¢) = (L-¢I)™
= (L=Cl—(C~¢)Nn™
= (L=GD)I = (¢~ RG]
Let || - || be a norm on V| and || - || denote the operator norm on £(V') induced by this norm.
If

<=6l < e

then the second inverse above is given by a convergent Neumann series:

(e o]

R() = R(G)>_ R(C) (¢ —G)F

k=0
= ) R(GQ)F (¢ - Q).
k=0

Thus R(C) is given by a convergent power series about any point (, € C\o(L) (and of course
the resolvent set C\c(L) is open), so R(() defines an £(V')-valued holomorphic function on
the resolvent set C\o(L) of L. Note that from the series one obtains that

() mo

(%)k R(C) = KIR(C)*.

This can be remembered easily by noting that it follows formally by differentiating R({) =
(L — ¢)~! with respect to ¢, treating L as a parameter.

= kIR((o)" .
o

Hence for any ¢ € C\o(L),
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The argument above showing that R(() is holomorphic has the advantage that it gen-
eralizes to infinite dimensions. Although the following alternate argument only applies in
finite dimensions, it gives stronger results in that case. Let n = dimV/, choose a basis for
V', and represent L by a matrix in C"*", which for simplicity we will also call L. Then the
matrix of (L — ¢I)~! can be calculated using Cramer’s rule. First observe that

det (L — (1) = (—=1)"pL(Q).

Also each of the components of the classical adjoint matrix of L — (I is a polynomial in ¢
of degree at most n — 1. It follows that each component of (L — ¢I)~! is a rational function
of ¢ (which vanishes at 00), so in that sense R(() is a rational £(V)-valued function. Also
each eigenvalue \; of L is a pole of R(¢) of order at most m;, the algebraic multiplicity of A;.
Of course R(() cannot have a removable singularity at ( = \;, for otherwise letting ( — A;
in the equation (L — (I)R(¢) = I would show that L — )\;I is invertible, which it is not.

We calculated above the Taylor expansion of R({) about any point ¢, € C\o(L). It is also
useful to calculate the Laurent expansion about the poles. Recall the spectral decomposition
of L: if Ay, ..., \; are the distinct eigenvalues of L with algebraic multiplicities m, ..., my,
and B

are the generalized eigenspaces, then
k ~
V=DE.
i=1

and each E, is invariant under L. Let Pi,..., P be the associated projections, so that

Let Ny, ..., N; be the associated nilpotent transformations. We may regard each N; as an
element of £(V) (in which case
N; = PNP,

where
N =N+ + N,

SO

or we may regard /V; as its restriction to E, with
Now

k
L=) MP+Nj
=1
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SO

L—¢I=) [(Ai—{)Pi+ Ni.

=1

Clearly to invert L — (I, it suffices to invert each (\; — {)P; + N; on E;. But on Ei,
A= QP+ Ni= N — QU — (¢ —N) Ny
For a nilpotent operator N with N™ = 0,
(I-N)'=I+N+N°*+---+N™L
This is a special case of a Neumann series which converges since it terminates. Thus

) MmO S (= AN = = S (¢ = A

£=0 £=0

([(Ai — Q)P+ Ni]

E;

The direct sum of these operators gives (L — (I)™!, so we obtain

RO ==Y [@ AP Y (- )\i)“‘le] |

=1

This result is called the partial fractions decomposition of the resolvent. Recall that any
rational function ¢(¢)/p(¢) with degq < degp has a unique partial fractions decomposition
of the form

where a;; € C and

is the factorization of p (normalized to be monic, r; distinct). The above is such a decom-
position for R(().

Observe that the partial fractions decomposition gives the Laurent expansion of R(()
about all of its poles all at once: about ¢ = A; the holomorphic part of R(() is the sum over

all other eigenvalues, and the negative powers of ( — \; are given explicitly. In particular,
for the coefficients of (¢ — A;)™! and ({ — \;) ™ we have

Res|R(C)]=~F  and Res((C = M) R(Q)] = —Ni.

So the full spectral decomposition of L is encoded in R({). It is in fact possible to give a
complete treatment of the spectral problem — including a proof of the spectral decomposition
— based purely on a study of the resolvent and its properties. Beginning with the fact that
R(¢) has poles at the );’s, one can show that for each i, —7(36)\5[}3({)] is a projection and
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—’é%_e)\s[(C — X\)R(Q)] is nilpotent, that the sum of the projections is the identity, etc. See

Kato for such a treatment.

The special case of the partial fractions decomposition in which L is diagonalizable is
particularly easy to derive and remember. If L is diagonalizable then each E; = FE), is the
eigenspace and each N; = 0. If v € V| we may write

k
v= Zvi (uniquely) where v; = Pv € Ej,.
i=1

Then Lv = Zle AiV;, SO
so clearly

and thus \
R() =) (N—0'P.
=1

The powers (\; — ()™t arise from inverting (A; — ¢)I on each F),.

We discuss briefly two applications of the resolvent — each of these has many ramifi-
cations which we do not have time to investigate fully. Both applications involve contour
integration of operator-valued functions. If M(¢) is a continuous function of { with values
in £(V) and « is a C* contour in C, we may form [ M(({)d¢ € L(V). This can be defined
by choosing a fixed basis for V', representing M ({) as matrices, and integrating componen-
twise, or as a norm-convergent limit of Riemann sums of the parameterized integrals. By
considering the componentwise definition it is clear that the usual results in complex anal-
ysis automatically extend to the operator-valued case, for example if M(¢) is holomorphic
in a neighborhood of the closure of a region bounded by a closed curve v except for poles

Gy ey Gy then 5k [ M(Q)dC = 30, Res(M, G;).

Perturbation of Eigenvalues and Eigenvectors

One major application of resolvents is the study of perturbation theory of eigenvalues and
eigenvectors. We sketch how resolvents can be used to study continuity properties of eigen-
vectors. Suppose A; € C**™ is a family of matrices depending continuously on a parameter
t. (In our examples, the domain of ¢ will be a subset of R, but in general the domain of ¢
could be any metric space.) It is a fact that the eigenvalues of A; depend continuously on ¢,
but this statement must be properly formulated since the eigenvalues are only determined
up to order. Since the eigenvalues are the roots of the characteristic polynomial of A;, and
the coefficients of the characteristic polynomial depend continuously on ¢, (since, by norm
equivalence, the entries of A; depend continuously on ¢), it suffices to see that the roots of a
monic polynomial (of fixed degree) depend continuously on is coefficients. Consider first the
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case of a simple root: suppose zy € C is a simple root of a polynomial ps. We may choose a
closed disk about z; containing no other zero of py; on the boundary « of this disk py does
not vanish, so all polynomials with coefficients sufficiently close to those of py also do not
vanish on 7. So for such p, p’(z)/p(z) is continuous on 7y, and by the argument principle,

1 [7P(2)

2ri ), ple)

is the number of zeroes of p (including multiplicities) in the disk. For py, we get 1. Since
p # 0 on 7, & varies continuously with the coefficients of p, so

1 [
2mi )., p(z)

also varies continuously with the coefficients of p. As it is integer-valued we conclude that
it must be the constant 1, so all nearby polynomials have exactly one zero in the disk. Now
the residue theorem gives that
1 [7()
2mi J., p(2)
is the unique root of p in the disk. As the left hand side varies continuously with p, it follows
that its simple root 2, does too.

One can also obtain information near multiple zeroes using such arguments. If z; is a
root of py of multiplicity m > 1, then it follows as above that in any sufficiently small disk
about zp, any polynomial p sufficiently close to py (where “sufficiently close” depends on the
radius of the disk) will have exactly m zeroes in that disk (counting multiplicities). This is
one sense in which it can be said that the eigenvalues depend continuously on the coefficients.
There are stronger senses as well.

However, eigenvectors do not generally depend continuously on parameters. Consider for
example the family given by

At:[é _Ot:| fortEOandAtZ[

zdz =z,

0 ¢

<
. 0:| for ¢t <0.

For each ¢, the eigenvalues of A; are ¢, —t. Clearly A; is diagonalizable for all £. But it is
impossible to find a continuous function v : R — R? such that v(t) is an eigenvector of A,
for each t. For t > 0, the eigenvectors of A; are multiples of

o] = [7]

while for ¢ < 0 they are multiples of

HEIRE

clearly it is impossible to join up such multiples continuously by a vector v(¢) which doesn’t
vanish at ¢ = 0. (Note that a similar C* example can be constructed: let

A, = [‘/’((]t) _£(t) } for t >0, and A, = [(p(()t) ‘P(()t) } for £ < 0,
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where
o(t) =e Y for t # 0 and p(0) =0 .)

In the example above, Ay has an eigenvalue of multiplicity 2. We show, using the re-
solvent, that if an eigenvalue of A, has algebraic multiplicity 1, then the corresponding
eigenvector can be chosen to depend continuously on ¢, at least in a neighborhood of ¢ = 0.
Suppose Aq is an eigenvalue of Ay of multiplicity 1. We know from the above that A; has a
unique eigenvalue \; near Ay for ¢ near 0; moreover ); is simple and depends continuously
on t for ¢ near 0. If 7y is a circle about A\ as above, and we set

Ry(¢) = (A4 — D),
then
1
5 i

Rt(C)dC = _RGSC:)\th(C) = Pta

where P; is the spectral projection onto the 1-dimensional eigenspace of A; corresponding
to A;. Observe that for ¢ near 0 and ¢ € 7, A; — ([ is invertible, and it is clear that R;(()
depends continuously on t (actually, uniformly in ¢ € 7). So P, depends continuously on ¢
for ¢ near 0. We can obtain a continuously-varying eigenvector by projecting a fixed vector:
let vy be a unit eigenvector for Ay corresponding to Ag, and set

1
Vs = Pt’U() = —Q—M/Rt(C)’U()dC .
Y

The right hand side varies continuously with ¢, so v; does too and

Vg = p-

t=0

Hence v; # 0 for ¢ near 0, and since v; is in the range of P, v; is an eigenvector of A;
corresponding to )\, as desired.

Remark. These ideas can show that if A; is a C* function of ¢, i.e. each a;;(¢) has k continuous
derivatives, then also \; and v, are C* functions of ¢.

This approach using the resolvent indicates that it is possible to obtain something con-
tinuous even when there are multiple eigenvalues. As long as no eigenvalues of A; hit ~,
the expression —%m. f7 R.(¢)d(¢ depends continuously on t. By the Residue Theorem, for
each t this is the sum of the projections onto all generalized eigenspaces corresponding to

eigenvalues in the disk enclosed by 7, so this sum of projections is always continuous.

Spectral Radius

We now show how the resolvent can be used to give a formula for the spectral radius of an
operator which does not require knowing the spectrum explicitly; this is sometimes useful.
As before, let L € L(V') where V is finite dimensional. Then

R(¢)=(L-¢I)
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is a rational £(V') - valued function of ¢ with poles at the eigenvalues of L. In fact, from
Cramer’s rule we saw that 00
R(¢) =

~ pr(€)’

where (¢) is an L(V) - valued polynomial in ¢ of degree < n—1 and p,, is the characteristic
polynomial of L. Since degp;, > deg @, it follows that R(() is holomorphic at co and vanishes
there; i.e., for large (|, R(C) is given by a convergent power series in % with zero constant
term. We can identify the coefficients in this series (which are € £(V')) using Neumann
series: for |(] sufficiently large,

R(Q)= (I = (D)™ = =1 YRR = = Y LR
k=0 k=0

The coefficients in the expansion are (minus) the powers of L. For any submultiplicative
norm on L£(V), this series converges for ||[(7'L|| < 1, i.e., for || > ||L]|-
Recall from complex analysis that the radius of convergence r of a power series

o
E akzk
k=0

can be characterized in two ways: first, as the radius of the largest open disk about the
origin in which the function defined by the series has a holomorphic extension, and second
directly in terms of the coefficients by the formula

1

. 1
— = limg_ 00| ag | *.
r
These characterizations also carry over to operator-valued series

ZAkzk (where A € L(V)).
k=0

Such a series also has a radius of convergence r, and both characterizations generalize: the
first is unchanged; the second becomes

1 . 1

Note that the expression
T 1
limy, ;0| Ag|[ *

is independent of the norm on £(V') by the Norm Equivalence Theorem since £(V') is finite-
dimensional. These characterizations in the operator-valued case can be obtained by con-
sidering the series for each component in any matrix realization.

Apply these two characterizations to the power series Y oo L*¢™% in (7' for —CR(C).
We know that R(() is holomorphic in |{| > p(L) (including at co) and that R({) has poles
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at each eigenvalue of L, so the series converges for |(| > p(L), but in no larger disk about
00. The second formula gives

T 1
{¢: 1< > hmk—>oo||Lk||k}
as the largest disk of convergence, and thus

p(L) = Timy, o0 || L¥|| .

Lemma. If L € L(V) has eigenvalues \i,..., \,, repeated with multiplicities, then the
eigenvalues of L® are \{,... ..

Remark. This is a special case of the Spectral Mapping Theorem which we will study soon.

Proof. If L has spectral decomposition

k
L= (uP;+ N,

i=1
where pq, ..., g are the distinct eigenvalues of L, then
k k
Lf= Z(,U'ipi + N = Z(pri + N;),
i=1 i=1
where
(0
P
N=Y () uoN
j=1
is nilpotent. The result follows from the uniqueness of the spectral decomposition. O

Remark. Alternate proofs can be based on the Schur Triangularization Theorem, or on the
Jordan form, using a basis of V' for which the matrix of L is upper triangular. The diagonal
elements of a power of a triangular matrix are that power of the diagonal elements of the
matrix. The result follows.

Proposition. If dimV < oo, L € L(V), and || - || is any norm on £(V'), then

p(L) = lim [|L¥||%.
k—o0

Proof. We have already shown that
p(L) = Timy, o0 || L] 7,

so we just have to show the limit exists. By norm equivalence, the limit exists in one norm
iff it exists in every norm, so it suffices to show the limit exists if || - || is submultiplicative.
Let || - || be submultiplicative. Then p(L) < ||L||.- By the lemma,

p(L¥) = p(L)F so p(L)* = p(L¥) < ¥
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Thus L .
p(L) < Tim [IL¥|F < TmeoollZHIIF = p(L),

k—00

so the limit exists and is p(L). O

This formula for the spectral radius p(L) of L allows us to extend the class of oper-
ators in L£(V) for which we can guarantee that certain series converge. Recall that if
©(z) = D opoyarz” is holomorphic for |z| < r and L € L(V) satisfies |L|| < r for some
submultiplicative norm, then ¢(L) can be defined as the limit of the norm-convergent series
S oarLF. In fact, this series converges under the (apparently weaker) assumption that

p(L) < r: choose € > 0 so that p(L) + ¢ < r; for k sufficiently large, ||L¥||* < p(L) + ¢, so
Do lanL¥ <) lal(p(L) +€)* < co.
k large

For example, the Neumann series

(I-L)y "= iL’“

converges whenever p(L) < 1. It may happen that p(L) < 1 and yet ||L|| > 1 for certain
natural norms (like the operator norms induced by the /2 norms on C*, 1 < p < 00). An
extreme case occurs when L is nilpotent, so p(L) = 0, but ||L|| can be large (e.g. the matrix

0 1017
0 0 |’

in this case, of course, any series > o, axL* converges since it terminates finitely.

The following question has arisen a couple of times in the discussion of the spectral radius:
given a fized L € L(V'), what is the infimum of ||L|| as || - || ranges over all submultiplicative
norms on L£(V)? What if we only consider operator norms on £(V') induced by norms on
V? How about restricting further to operator norms on £(V') induced by inner products on
V? We know that p(L) < ||L|| in these situations. It turns out that the infimum in each of
these situations is actually p(L).

Proposition. Given A € C™*" and € > 0, there exists a norm || - || on C" for which, in the
operator norm induced by || - ||, we have [|A|| < p(A) + e.

Caution: The norm depends on A and e.

Proof. Choose an invertible matrix S € C**" for which
J=871AS
is in Jordan form. Write J = A + Z, where
A =diag(Ay,. .., An)

is the diagonal part of J and Z is a matrix with only zero entries except possibly for some
one(s) on the first superdiagonal (i = j + 1). Let

D = diag (1,¢,€%,...,¢" ).
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Then

D 'JD=A+¢€Z.
Fix any p with 1 < p < co. Then in the operator norm ||| - |||, on C**" induced by the
¢P-norm || - ||, on C*,

I[Alll, = max{[A;] : 1 <5 < n} = p(A4)
and ||| 2]l < 1, 50
I[A+€eZl]l, < p(A) +e.
Define || - || on C* by
=]l = [[D7S ™ .
Then
[Az|| _ [|ASDy|| _ ||ID~'STASDy|l,

1Al o =S T =
20 |12l yzo [ISDyll yzo 1yl

= A +eZ]ll, < p(A) +¢.

O
Exercise: Show that we can choose an inner product on C* which induces such a norm.

Remarks.
(1) This proposition is easily extended to L € L(V) for dimV < co.

(2) This proposition gives another proof that if ¢(z) = Y7~ ax2z* is holomorphic for
z| <r and L € L(V) satisfies p(L) < r, then the series > _p ; axL* converges: choose
e > 0 so that p(L) + ¢ < r, and then choose a submultiplicative norm on £(V') for
which ||L|| < p(L) + ¢; then ||L|| < r and the series converges.

(3) One can use the Schur Triangularization Theorem instead of Jordan form in the proof;
see Lemma 5.6.10 in H-J.

We conclude this discussion of the spectral radius with two corollaries of the formula
p(L) = lim IL¥||* for L€ L(V)
)

with dim V' < oo.
Corollary. p(L) < 1iff L¥ — 0.

Proof. By norm equivalence, we may use a submultiplicative norm on L(V). If p(L) < 1,
choose € > 0 with p(L) + ¢ < 1. For large k, || L*|| < (p(L) +€)¥ — 0 as k — oco. Conversely,
if L¥ — 0, then 3k > 1 with ||L*|| < 1, so p(L¥) < 1, so by the lemma, the eigenvalues
AL, ..., Ap of L all satisfy [A\¥| < 1 and thus p(L) < 1. O

Corollary. p(L) < 1 iff there is a submultiplicative norm on £(V') and an integer k > 1
such that || L¥|| < 1.



90 Linear Algebra and Matrix Analysis

Functional Calculus

Our last application of resolvents is to define functions of an operator. We do this using a
method providing good operational properties, so this is called a functional “calculus.”

Let L € L(V) and suppose that ¢ is holomorphic in a neighborhood of the closure of a
bounded open set A C C with C! boundary satisfying o(L) C A. For example, A could
be a large disk containing all the eigenvalues of L, or the union of small disks about each
eigenvalue, or an appropriate annulus centered at {0} if L is invertible. Give the curve 0A
the orientation induced as the boundary of A (i.e. the winding number n(0A,z) = 1 for
z € A and = 0 for z € C\A.) We define ¢(L) by requiring that the Cauchy integral formula
for ¢ should hold.

Definition.

o(L) =~ [ WORQ)dC = = /a POT- 1),

21t Jon 2mi

We first observe that the definition of ¢(L) is independent of the choice of A. In fact,
since ¢(¢)R(() is holomorphic except for poles at the eigenvalues of L, we have by the residue
theorem that

=2 Resen[p(QREQ),

which is clearly independent of the choice of A. In the special case where A; C Ay, it follows
from Cauchy’s theorem that

/aA PORQAC— | @(OR(Q)dC = S(OR(C)dC = 0

6A1 a(A2\A1)

since ¢(¢)R(¢) is holomorphic in Ay\A;. This argument can be generalized as well.
Next, we show that this definition of ¢(L) agrees with previous definitions. For example,
suppose ¢ is the constant function 1. Then the residue theorem gives

k k
- Resc-\R(()=> Pi=1
=1 =1

If p(¢) = (™ for an integer n > 0, then take A to be a large disk containing o(L) with
boundary +, so

o) = o [ erwer -yt

S 1=+ 2yt - tac

i

- 2m/z< )LJCI L)"7d¢
- Z(?’) /7(§I—L)”_j‘1d§.

Jj=0
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For j < n, the integrand is holomorphic in A, so by Cauchy theorem
/ (I — Ly"'d¢ = 0.
gl

For 7 = n, we obtain

Jr-pac=1

7
as above, so ¢(L) = L" as desired. It follows that this new definition of ¢(L) agrees with
the usual definition of ¢(L) when ¢ is a polynomial.

Consider next the case in which

0
= Z a’kcka
k=0

where the series converges for || < r. We have seen that if p(L) < r, then the series
Y neoakL® converges in norm. We will show that this definition of ¢(L) (via the series)
agrees with our new definition of ¢(L) (via contour integration). Choose

AC{¢:|¢|<r}witho(L) CAandy=0A C{(:|¢| <}

We want to show that
—1
¢)d¢ = Z apLF.

2m

Set
N
Q)= Z arC*.
k=0

Then ¢y — © uniformly on compact subsets of {¢ : [(| < r}; in particular o — ¢ uniformly
on . If A(t) is a continuous £(V')-valued function of ¢ € [a, b], then for any norm on L(V),

bA(t)dtH < /ab IIA(t) || dt

(this follows from the triangle inequality applied to the Riemann sums approximating the
integrals upon taking limits). So

[0 - ex@r@| < [ 160 - en(O1- IR

Since ||R(¢)|| is bounded on 7, it follows that

lim [ on(ORQ)dC = / #(O)R

in norm. But ¢y is a polynomial, so

— L onOR©QC = on(L)

2T ~
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as above. Thus

1

2T . 2T ~

P(OR(C)dC = lim (—i. / soN(oR(Odc) ~ lim pn(D) = Y aulh,
k=0
and the two definitions of ¢(L) agree.

Operational Properties

Lemma. (The First Resolvent Equation)
IfLeL(V), G, G ¢&o(L), and (i # (o, then

R(G) = R(G)

R(¢1) o R(G2) = G — G

Proof.

R(¢1) — R(G2) = R(G)(L — QI R(C) — R(G)(L — GI)R(C) = (G — ) R(G)R(C)-
O

Proposition. Suppose L € £(V) and ¢; and ¢, are both holomorphic in a neighborhood
of 0(L). Then

(a) (a1 + agp2)(L) = a1p1(L) + azpz(L), and
(b) (p1p2)(L) = p1(L) o pa(L).

Proof. (a) follows immediately from the linearity of contour integration. By the lemma,

p1(L)o (L) = (2;2)2/ 901(41)R(Cl)dC10/ 2(C2) R(C2)dCy
= ©(C1)p(C2) R(G1) 0 R(C2)dC2dG
_ (G) — R(G)
= ] el c =g dada.

Thus far, 71 and 75 could be any curves encircling o(L); the curves could cross and there is

no problem since
R(G) — R(G)
G =G
extends to (; = (o. However, we want to split up the R((;) and R((z) pieces, so we need to

make sure the curves don’t cross. For definiteness, let 7, be the union of small circles around
each eigenvalue of L, and let 5 be the union of slightly larger circles. Then

p1(L)ops(L) = #[ / @R [ 2 agac, - / pr(&)R(G) [ 2

(27i)? v G — G2 - y G — G dgld@] '
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Since (; is inside v, but (5 is outside 7,

1 p2(C2) ;. 1 e1(G) .
. G Cld@ = ¢2(¢1) and i G C2d€1 =0,
SO .
oL o ea(l) === [ @GR = (pig)(L),
7
as desired. 0

Remark. Since (p102)(C) = (p201)(C), (b) implies that ¢;(L) and @o(L) always commute.
Ezample. Suppose L € L(V) is invertible and ¢(¢) = . Since o(L) C C\{0} and ¢ is

holomorphic on C\{0}, ¢(L) is defined. Since ¢ - % = % (=1, Lo(L) = (L)L = I. Thus
o(L) = L7, as expected.
Similarly, one can show that if
p()
¢ =28
P0=7 9

as expected.

To study our last operational property (composition), we need to identify o(¢(L)).

The Spectral Mapping Theorem

Suppose L € L(V) and ¢ is holomorphic in a neighborhood of o(L) (so ¢(L) is well-defined).
Then

o(p(L)) = ¢(o(L)) including multiplicities,

i.e., if py,..., py, are the eigenvalues of L counting multiplicities, then ¢(u1), ..., ¢(u,) are
the eigenvalues of ¢(L) counting multiplicities.

Proof. Let \q,..., \; be the distinct eigenvalues of L, with algebraic multiplicities

my, ..., Mg,
respectively. By the residue theorem,
1
L) = ——— R(()d
o) = —5= | elORQ

= — Z Resc—x[p(C)R(()]-

By the partial fractions decomposition of the resolvent,

~R() =Y ( s > Ai)“Nf> |

i=1
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It follows that

m;—1

~Resca0(ORKQ) = @M)P+ D Rescn,[0(C)(C = \) ™|V

1
= )P+ Y e MNY.
=1

Thus
(¥ o)=Y Te)P+ Y eIV
i=1 =1

This is an explicit formula for ¢(L) in terms of the spectral decomposition of L and the
values of ¢ and its derivatives at the eigenvalues of L. (In fact, this could have been used
to define (L), but our definition in terms of contour integration has the advantage that it
generalizes to the infinite-dimensional case.) Since

is nilpotent for each 4, it follows that (%) is the (unique) spectral decomposition of ¢(L).
Thus

a(p(L)) ={p(A1),. .., 0(M)} = @(a(L)).

Moreover, if {¢(A1),...,¢(\)} are distinct, then the algebraic multiplicity of ¢();) as an
eigenvalue of (L) is the same as that of \; for L, and they have the same eigenprojection
P;. In general, one must add the algebraic multiplicities and eigenprojections over all those
i with the same @();). O

Remarks.

(1) The special case in which L is diagonalizable is easy to remember:

k k
if L= MNP, then o(L)=> o(\)P.
i=1 i=1
(2) Other consequences of (k) are
k k
tro(L) = Z mie(N;) and detp(L) = H ()™
i=1 i=1

We now study composition.
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Proposition. Suppose L € L(V), ¢; is holomorphic in a neighborhood of o(L), and ¢,
is holomorphic in a neighborhood of o(p;(L)) = ¢1(c(L)) (so g2 o ¢, is holomorphic in a
neighborhood of ¢(L)). Then

(2 0 01)(L) = p2(p1(L)).

Proof. Let A, contain o(pi(L)) and let 5 = 0Ay. Then

1

erlor(L) =5 [ @G - (D) G

2

Here, (CoI — 1(L))™" means of course the inverse of (o1 — ¢;(L). For fixed ¢, € 72, we can
also apply the functional calculus to the function ({, — ¢1(¢1)) ! of ¢; to define this function
of L: let A; contain o(L) and suppose that ¢;(A;) C Ay; then since (; € 7, is outside
¢1(A}), the map

G (G — ()

is holomorphic in a neighborhood of A;, so we can evaluate this function of L; just as for

1
¢ Z
in the example above, we obtain the usual inverse of (5 — ¢1(L). So
B _ —1
(G—w(L) " = oni )., (G —¢1(G)) R(G1)dG.
Hence
eao0) = e [ 2@ [ (G i€ RIG)GCy
1 p2(C2)
- (27mi)? [ﬂ ey v G2 — @1((1)d€2d€1
= o [ BOele@)ia (s nln o) = 1)
71
= (p200p1)(L).

Logarithms of Invertible Matrices

As an application, let L € L(V) be invertible. We can choose a branch of log( which is
holomorphic in a neighborhood of (L) and we can choose an appropriate A in which log ¢
is defined, so we can form

1
log L = ~5mz [ylog{R(C)dC (where v = 0A).
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This definition will of course depend on the particular branch chosen, but since €8¢ = ( for
any such branch, it follows that for any such choice,

elsl — .

In particular, every invertible matrix is in the range of the exponential. This definition of
the logarithm of an operator is much better than one can do with series: one could define

log(I + A) Z “’1
=1

but the series only converges absolutely in norm for a restricted class of A, namely {4 :
p(4) < 1}.



