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Norms on Operators

If V., W are vector spaces then so is the space of linear transformations from V' to W denoted
L(V,W). We now consider norms on L(V,W). When V =W, L(V,V) = L(V) is an algebra
with composition as multiplication; norms on £(V') which have a relationship to composition
are particularly useful. A norm on £(V) is said to be submultiplicative if ||AoB|| < ||A||-|| B]|-
(H-J calls this a matrix norm in finite dimensions.)

Ezample. For A € C*", define ||A|| = sup;<; <, |aij|- This norm is not submultiplicative:
1 -1

ifA=B=| : : |, then ||A]| = ||B|| =1, but AB = A? =nA so ||AB|| = n.
1 -1

Ezercise. Show that although the norm ||Al| = sup,; ;< lai;| on C**™ is not submultiplica-
tive, the norm A — nsup;; ;<, |ay| is submultiplicative.

Bounded Linear Operators and Operator Norms

Let (V|| -|lv) and (W, || - ||w) be normed linear spaces. An L € L(V, W) is called a bounded
linear operator if sup,, —; [[Lv|lw < oo. Let B(V,W) denote the set of all bounded linear
operators from V to W. In the special case W = F we have bounded linear functionals,
and we set V* = B(V,F). If dimV < oo, then L(V,W) = B(V,W), so also V* = V'. In
fact, if we choose a basis {vi,...,v,} for V and let {fi,..., fn} be the dual basis, then
Yoi i |fi(v)| is a norm on V (see exercise below), so by the Norm Equivalence Theorem,

AM 3350 | fi(w)] < MlJv||y; then
i=1 w

< ST - Lol

=1
< (e |va||w) > 15

< (max Izudw ) Mol

[Lvllw =

SO
sup (1ol /o) < (Do ) - M < o

1<i<n
(Recall that if v = Y"1 | ;v;, then z; = f;(v).)

Caution. A bounded linear operator doesn’t necessarily have {||Lv||y : v € V} being a
bounded set of R: in fact, if it is, then L = 0. Similarly, if a linear functional is a bounded
linear functional, it does not mean that there is an M for which (Vv € V) |f(v)| < M.

FEzxercise.
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(1) Suppose V is a finite dimensional vector space and let {vy, ..., v,} be a basis for V with
associated dual basis {fi,..., f,}. Show that the mapping v — >, |fi(v)| defines a
norm on V.

(2) Let L € L(V,W) and show that supy,, =1 [|Lv|lw = supyy, <1 [Lvllw = sup,. ([ Lvllw/[[v][v)-

Ezxamples.

(1) Let V = P be the space of polynomials with norm ||p|| = supy<,<; [p(z)|. The differen-
tiation operator -& : P — P is not a bounded linear operator: [|z"|| =1 for all n > 1;
but || Lz = [|nz""|| = n.

(2) Let V = Fe with fP-norm for some p, 1 < p < oco. Let L be diagonal, so Lz =
(A171, AaT2, 323, .. .)T for z € FP, where \; € C, 4 > 1. Then L is a bounded linear
operator iff sup; |\;| < oc.

FEzercise. Verify the claim in example (2) above.
We have already proved:

Proposition. Let L : V — W be a linear transformation between normed vector spaces.
Then L is bounded iff L is continuous iff L is uniformly continuous.

Definition. Let L : V — W be a bounded linear operator between normed linear spaces,
i.e., L € B(V,W). Define the operator norm of L to be

1Ll = sup [|Lolw (= sup IILUIIW=Sup(||Lv||w/||v||v))-

[[vllv <1 [[vllv=1 v#0

Remark. (Vv € V) ||Lvllw < ||L]| - ||v|lv- In fact, ||L|| is the smallest constant with this
property: ||L|| = min{C >0: (Vv € V) || Lv|lw < C|v||v}-

We can now show that B(V, W) is a vector space (a subspace of L(V,W)). If L € B(V, W)
and o € T, clearly oL € B(V,W) and ||aL| = |o| - ||L||. If Li,Ly € B(V,W), then
(L1 + Lo)vllw < [[Livllw + [ Lovllw < (IL1]] + IL2[Dlv]lv, so Ly + Lo € B(V, W), and
|IL1 + Lo|| < ||L1]| + || L2||- It follows that the operator norm is indeed a norm on B(V,W).
|| - || is sometimes called the operator norm on B(V,W) induced by the norms || - ||y and
|| - |lw (as it clearly depends on both || - ||y and || - ||w)-

In the special case W = F, the norm || f|| = sup,, <1 [f(v)| on V* is called the dual
norm to that on V. If dimV < oo, then we can choose bases and identify V' and V* with
F". Thus every norm on F* has a dual norm on F*. We sometimes write F™" for F* when

it is being identified with V*. Consider some examples.

Ezamples.

(1) If F* is given the £'-norm, then the dual norm is ||f|| = max)g,<1 > 1 fizi| for
f=(f1,--., fa) € T, which is easily seen to be the /*-norm ||f||o (exercise).
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(2) If F* is given the ¢*°-norm, then the dual norm is || f|| = maxg <1 |> i, fizs| for
f=(f1,--., fa) € ', which is easily seen to be the f!-norm || f||; (exercise).

(3) The dual norm to the £2-norm on F" is again the £2-norm; this follows easily from the
Schwarz inequality (exercise). The ¢?-norm is the only norm on F" which equals its
own dual norm; see the homework.

(4) Let 1 < p < oo. The dual norm to the #’-norm on F" is the £%-norm, where % + l =
1. The key inequality is Hélder’s inequality: |1 fizi] < || fllq - [lz]l,- We Wlll be
primarily interested in the cases p = 1,2,00. (Note: 1+ % =1 in an extended sense
when p = 1 and ¢ = oo, or when p = oo and ¢ = 1; Holder’s inequality is trivial in
these cases.)

It is instructive to consider linear functionals and the dual norm geometrically. Recall
that a norm on F"* can be described geometrically by its closed unit ball B, a compact
convex set. The geometric realization of a linear functional (excluding the zero functional)
is a hyperplane. (A hyperplane in F* is a set of the form {z € F* : Y " | fz; = c}, where
fi € F and not all f; = 0; sets of this form are sometimes called affine hyperplanes if the
term “hyperplane” is being reserved for a subspace of F" of dimension n — 1.) In fact,
there is a natural 1 — 1 correspondence between F""\{0} and the set of hyperplanes in
F* which do not contain the origin: to f = (fi,..., f.) € F*", associate the hyperplane
{r € T : f(x) = fiz1 + - + faxn = 1}; since every hyperplane not containing 0 has a
unique equation of this form, this is a 1 — 1 correspondence as claimed.

If F = C it is often more appropriate to use real hyperplanes in C* = R?"; if 2 € C" and
we write z; = x; + iy;, then a real hyperplane not containing {0} has a unique equation of
the form Y7 | (a;z; + bjy;) = 1 where a;,b; € R, and not all of the a;’s and b;’s vanish.

Observe that this equation is of the form Re (Z?Zl ijj) = 1 where f; = a; — 1b; is

uniquely determined. Thus the real hyperplanes in C* not containing {0} are all of the form
Ref(z) =1 for a unique f € C* \{0}.

Proposition. If (V|| - ||) is a normed linear space and f € V*, then the dual norm of f
satisfies || f|| = sup,;<; Ref(v).

Proof. Since Ref(v) < |f(v)], sup, <1 Ref(v) < supj, <1 |f(v)| = [|f]. For the other

direction, choose a sequence {v;} from V with ||v;|| = 1 and |f(v;)| — ||f]|. Taking 0; =
—arg f(v;) and setting w; = ev;, we have ||w;|| = 1 and f(w;) = [f(vj)] — |||, so
supjy <1 Ref(v) > ||l -

With these observations, we can give a description of the dual unit ball in terms of the
geometry of the hyperplanes and the unit ball in the original norm. By the above, f € F*’
satisfies || f|| < 1 iff supj,j<; Ref(v) < 1, ie., iff the unit ball B C F* is contained in the
closed half-space Ref(v) < 1 (the real hyperplane {Ref(v) = 1} divides F* into two half-
spaces; this is the one containing the origin). Moreover, by linearity, if || f|| < 1 and ||v|| =
p < 1, then Ref(v) < p < 1, so the open unit ball B® C {f : Ref(v) <1Vwv € B}. So we
have a description of the dual unit ball on those functionals corresponding to hyperplanes
lying outside the open unit ball B® = {f : ||f|| < 1}. It is interesting to translate this into
a geometric dual unit ball in specific examples; see the homework.
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Proposition. If (V|| -||) is a normed linear space and v € V, then

@revy)slflf=1  and  f(v) =[]

In general, this is an immediate consequence of the Hahn-Banach theorem (see, e.g.,
Royden Real Analysis or Folland Real Analysis), and for convenience we will refer to it here
as the Hahn-Banach theorem. In finite dimensions, there are more geometric proofs based
on relating hyperplanes to the closed unit ball. See, e.g., Corollary 5.5.15 in H-J (see also
Appendix B in H-J).

Consequences of the Hahn-Banach theorem

The Second Dual

Let (V|| - ||) be a normed linear space, V* be its dual equipped with the dual norm, and
V** be the dual of V* with the norm dual to that on V*. Given v € V, define v** € V**
by v (f) = f(v); since [v™(f)] < [|f]| - [loll, v € V** and [[o**|| < |lv[|]. By the Hahn-
Banach theorem, 3 f € V* with ||f|| = 1 and f(v) = ||[v|], i.e., v™*(f) = ||v]|, so ||[v**] =
supy z=1 [v**(f)| > ||v]|. Hence [[v**|| = [[v]|, so the mapping v > v** from V" into V** is an
isometry of V' onto the range of this map. In general, this embedding is not surjective; if it
is, then (V|| - ||) is called reflexive

In finite dimensions, dimension arguments imply this map is surjective. Thus the dual
norm to the dual norm is just the original norm on V.

Adjoint Transformations

Recall that if L € L(V, W), the adjoint transformation L* : W' — V' is given by (L*g)(v) =
g(Lv).

Proposition. Let V, W be normed linear spaces. If L € B(V,W), then L*[W*] C V*.
Moreover, L* € B(W*,V*) and || L*|| = || L||-

Proof. For g € W*, |(L*g)(v)| = [9(Lv)| < [lg|| - [IL]| - [[v]l, so L*g € V™, and ||L7g|| <
llgll- 1| L]|- Thus L* € B(W*,V*) and ||L*|| < ||L||. Now given v € V', apply the Hahn-Banach
theorem to Lv to conclude that 3¢g € W* with ||g|| = 1 and (L*g)(v) = g(Lv) = ||Lv||.
ﬁo ||||L*”||:||Sup“glgl IL79]l = supjjg<1 supjuyi<t [(L79) (W) 2 supjyy<t [ Lof] = [|L]]. Hence
L*|| = ||L]|. U

Completeness of B(V,W) when W is complete

Proposition. If W is complete, the B(V,W) is complete. In particular, V* is always
complete (since F is), whether or not V' is.

Proof. If {L,} is Cauchy in B(V, W), then (Vv € V){L,v} is Cauchy in W, so the limit
lim,, ,o L,v = Lv exists in W. Clearly L : V — W is linear, and it is easy to see that
L e B(V,W) and ||L, — L|| — 0. 0O
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Analysis with Operators

Throughout this discussion, let V' be a Banach space. Since V' is complete, B(V) = B(V,V)
is also complete (in the operator norm).

Fact. Operator norms are always submultiplicative.

In fact, if U, V, W are normed linear spaces and L € B(U,V) and M € B(V, W), then for
uelU,
(M o L)(u)|lw = M (Lu)llw < [|M][ - | Lully < [[M][-[|L]] - ||u]|v,

so MoL € B({UW) and ||[MoL|| < ||M||-||L||. The special case U =V = W shows that the
operator norm on B(V') is submultiplicative (and L, M € B(V) = M oL € B(V)). We want
to define functions of an operator L € B(V'). We can compose L with itself, so we can form
powers L* = Lo---oL, and thus we can define polynomialsin L: if p(2) = ap+az+- - -+a,2",
then p(L) = aol + a;L + --- + a,L™. By taking limits, we can form power series, and thus
analytic functions of L. For example, consider the series X = > 77 LLF = I+ L+1L?+- ..
(note LY is the identity I by definition). This series converges in the operator norm on B(V):
by submultiplicativity, || L*|| < [|L||*, so Y5 o HlILFl < Yopy mllLIIF = €l < oo; since the
series converges absolutely and B(V') is complete (recall V' is a Banach space), it converges
in the operator norm to an operator in B(V') which we call e* (note that ||e”|| < ell”). In
the finite dimensional case, this says that for A € F"*", each component of the partial sum

o mAF converges as N — oo; the limiting matrix is e”.

Another fundamental example is the Neumann series.

Proposition. If L € B(V) and ||L|| < 1, then I — L is invertible, and the Neumann series
> e o L¥ converges in the operator norm to (I — L)L

Remark. Formally we can guess this result since the power series of ﬁ centered at z = 0 is
Y e o 2F with radius of convergence 1.

Proof. If ||L|| < 1, then Y 22 |IL*|| < Y202, IL|IF = m < 00, so the Neumann series
> o2 o L¥ converges to an operator in B(V). Now if S;, 8,7 € B(V) and S; — S in B(V),
then [|S; — S|l = 0, so [|S;T" = ST|| < [|S; = S| - T[]l — 0 and [[T'S; — TS| < |[T]| -
|S; = S|l = 0, and thus S;T — ST and T'S; — T'S in B(V). Thus (I — L) (352, LF) =
limy oo (I—=L) S0 LF = limy oo (I = LN*1) = T (as || LN 1| < ||L||¥*! — 0), and similarly
(32, IF) (I = L) = I. So I — L is invertible and (I — L)~' = Y.2° ¥, 0

This is a very useful fact: a perturbation of I by an operator of norm < 1 is invertible.
This implies, among other things, that the set of invertible operators in B(V') is an open
subset of B(V) (in the operator norm).

Our terminology above is that an operator in B(V') is called invertible if it is bijective
(i.e., invertible as a point-set mapping from V onto V', which implies that the inverse map
is well-defined and linear) and that its inverse is also in B(V).

Note: B(V') has aring structure using the addition of operators, and composition of operators
as the multiplication; the identity of multiplication is just the identity operator I. Our
concept of invertibility is equivalent to invertibility in this ring: if L € B(V) and 3 M €
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B(V)> LM = ML =1, then ML = I = L injective and LM = I = L surjective. Note
that this ring in general is not commutative.

It is a consequence of the closed graph theorem (see Royden or Folland) that if L € B(V)
is bijective (and V is a Banach space), then its inverse map L' is also in B(V).

Clearly the power series arguments used above can be generalized. Let f(z) be analytic
on the disk {|z| < R} C C, with power series f(z) = >, ,axz® (which has radius of
convergence at least R). If L € B(V) and ||L|| < R, then the series >, axL* converges
absolutely, and thus converges to an element of B(V) which we call f(L) (recall V is a
Banach space). It is easy to check that usual operational properties hold, for example
(f9)(L) = f(L)g(L) = g(L)f(L). However, one must be careful to remember that operators
do not commute in general. So, for example, eZ*M £ eLeM in general, although if L and M
commute (i.e. LM = ML), then eltM = eleM.

Let L(t) be a 1-parameter family of operators in B(V'), where t € (a,b). Since B(V) is a
metric space, we know what it means for L(¢) to be a continuous function of ¢. We can define
differentiability as well: L(t) is differentiable at ¢t = ty € (a,b) if L'(ty) = lim; 4, %fo(to)
exists in the norm on B(V). For example, it is easily checked that for L € B(V), e is
differentiable in ¢ for all ¢t € R, and 4t = Le't = eV L.

We can similarly consider families of operators in B(V') depending on several real param-
eters or on complex parameter(s). A family L(z) where z = z +iy € QP C C (z,y € R) is
said to be holomorphic in Q if the partial derivatives 2 L(z), %L(z) exist and are con-

tinuous in , and L(z) satisfies the Cauchy-Riemann equation (% +ia%) L(z) = 0 in
Q. As in complex analysis, this is equivalent to the assumption that in a neighborhood
of each point 2z, € Q, L(z) is given by the B(V)-norm convergent power series L(z) =
S0 iz~ 20)* ()" L),

One can also integrate families of operators. If L(¢) depends continuously on ¢ € [a, b],
then it can be shown using the same estimates as for F-valued functions (and the uniform
continuity of L(t) since [a, b] is compact) that the Riemann sums 222 SV LL (a+ £(b—a))
converge in B(V)-norm (recall V' is a Banach space) as N — oo to an operator in B(V), de-
noted fab L(t)dt. (More general Riemann sums than just the left-hand “rectangular rule” with
equally spaced points can be used.) Many results from standard calculus carry over, includ-
ing HfabL(t)dtH < fab ||L(t)||dt which follows directly from Hb_T“ ML (a+£(0b- a))) <

ba ZkN;Ol |L (a+ £(b—a))||- By parameterizing paths in C, one can define line integrals

of holomorphic families of operators. We will discuss such constructions further as we need
them.

Operators in Finite Dimensions

In the next part of the course we will study in greater detail operators in finite dimensions
and the matrices which represent them.



Norms on Operators 43

Transposes and Adjoints

If A€ C™" we denote by AT € C**™ the transpose of A, and by A¥ = AT the conjugate-
transpose (or hermitian transpose) of A. (Many books, including H-J, use the notation A*

for AZ.) If 2,y € C* are represented in terms of matrix multiplication as (x,y) = yx, then
for A € C**" we then have (Az,y) = (z, Afy) since y Az = (Afy)"z.

Caution: The notation A*, or L* for a linear transformation, is used with two different,
sometimes contradictory meanings, particularly if F = C. Recall that if L € B(V,W) then
L* € B(W*,V*) and in the finite dimensional case, we saw that if L corresponds to matrix
multiplication on column vectors from the left by the matrix 7', then L* corresponds to matrix
multiplication on row vectors from the right by the matrix 7', or equivalently by transposition
to left-multiplication by the transpose matrix 77 on column vectors. On the other hand, in
the presence of an inner product, the usual definition (Lz, y) = (x, L*y) identifies L* with left-
multiplication by the conjugate-transpose matrix. These two definitions are related by the
identification V' = V* induced by the inner product, but the conjugation in this identification
gives rise to the two inequivalent definitions of L*. So you must be careful to be sure which
is meant in a given context. (Some authors use the notation V' for V* = B(V,F) and the
notation L' € B(W’, V') for the transpose operator, reserving the notation L* for use with
inner products.)

Norms on Matrices

Commonly used norms on C"*" are the following. (We use the notation of H-J.)

Al = szzl |aij] (the ¢'-norm on A as if it were in C*")

|Alleo = max;;|a;] (the £*°-norm on A as if it were in an)
1

|All2 = (szzl \aij|2) ’ (the £2-norm on A as if it were in C*")

The norm ||A||2 is called the Hilbert-Schmidt norm of A, or the Frobenius norm of A,
and is often denoted ||A|r. It is sometimes called the Euclidean norm of A. This norm
comes from an inner product (A, B) = > 7, ai;by; = tr (B*A).

We also have the following p-norms for matrices: let 1 < p < oo, then

Al = max ll4cl, (= max lAel, = max(lel/lal,)) -

ll=llp=1 ll=llp<1

Caution:|||A|||, is a quite non-standard notation; the standard notation is || A||,, and a more
standard notation for the Frobenius norm is ||A||r, particularly in numerical analysis. We
will, however, go ahead and use the notation of H-J.

Using arguments similar to those identifying the dual norms to the ¢!- and £*°-norms on
Cm, it can be easily shown that

IA[lL = maxicj<n Y iy | (maximum (absolute) column sum)

[Alllw = maxicicn D, [ai] (maximum (absolute) row sum)
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Il A]|]2 is often called the spectral norm (we will show later that it equals the square root
of the largest eigenvalues of A% A.)

All of the above norms are submultiplicative except for || - ||eo, Which we have previously
discussed.

Consistent Matrix Norms

The concept of submultiplicativity can be extended to rectangular matrices.
Definition. Let : C™" = R, v: C"** 5 R, p: C™** — R be norms. We say that u, v, p
are consistent if VA € C™" and V B € C**¥,

p(AB) < u(A)v(B)

Definition. A norm on F"*" is called consistent if it is consistent with itself, i.e., the
definition above with m = n = k and p = u = v. So by definition a norm on F"*" is
consistent iff it is submultiplicative.

In this discussion of consistent matrix norms, we identify F* with F"*! (i.e., nx 1 matrices
or column vectors).
Ezamples.

(1) Let k= 1. Then p is a norm on F™ (2 F™*!)  is a norm on F* (2 F**!) and px is a
norm on F™*™_ If g is the operator norm induced by v and p, then VA € F™*" and
Ve e, p(Az) < po(A)v(x), so po, v, and p are consistent.

(2) Again, let k¥ = 1, and p and v be norms on F™ and F", respectively. Let p be a
norm on F™*™_ Then u, v, p are consistent iff u > py where g is the operator norm
on F™*" induced by v and p. (For each A € F™*" (Vz € F*) p(Azx) < p(A)v(z) iff

(Vz # 0)p(Az) /v(z) < p(A) iff po(4) < p(A).)
Families of Matrix Norms

A collection {vy,, : m > 1,n > 1}, where vy, ,, : F*" — R is a norm on F™*" is called a
family of matriz norms (we temporarily discard the H-J assumption of submultiplicativity
on the “matrix norms” v, ).

Definition. A family {vy,, : m > 1,n > 1} of matrix norms is called consistent if

(Vm,n, k> 1)(YA € F™) (VB € F**) vy 1(AB) < vy (A)vni(B).

Facts: Let {v;,,} be a consistent family of matrix norms. Then

(1) (Vn > 1) vy is submultiplicative.
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(2) (Vm,n>1) (VA € F™") v n(A) > pmn(A), where g, is the operator norm on
F™*" induced by v, and v, ;.

Ezxamples.

(1) For m > 1, let vy, 1 be any norm on F™. For m,n > 1, let v, , be the operator norm
on F™*" induced by v,1 and vy, (to avoid contradicting definitions of v, 1, we take
vy 1 to be the usual absolute value on F). Then {v,,,} is a consistent family of matrix
norms.

(2) (maximum (absolute) row sum norm) For m,n > 1 and A € F™", let vy, (A) =
MAaX1<i<m Z?Zl la;;|. Then v, is the ¢*°-norm on F’, and v, ,(A) is the operator
norm induced by the ¢*°-norms on F* and F™ (exercise), which we denote by ||| 4|/
(even for m # n). This is a special case of example (1), so it is a consistent family of
matrix norms.

(3) (maximum (absolute) column sum norm) For m,n > 1 and A € F™*", let vpyn(A) =
maxi<j<n ¥ ooy |@ij|- Then v, is the £-norm on F*, and v, ,(+) is the operator norm
induced by the ¢'-norms on F* and F™ (exercise), which we denote by |||A|||; (even
for m # n). This again is a special case of example (1), so it is a consistent family of
matrix norms.

(4) (¢*-norm on F™*" as if it were F™) For m,n > 1 and A € F™", let vy ,(A) =
> ey D=1 laij|. Then {vy,} is a consistent family of matrix norms (exercise). We
denote vy, ,(A) by ||A|l: (even for m # n). Note that v, is the £!-norm on F*. This
is not a special case of example (1). Note also that the obvious fact ||All; > |||4||x
agrees with Fact (2) above.

(5) (#>-norm on F™" as if it were F™", i.e., the Hilbert-Schmidt or Ij’robenius norm)
For m,n > 1 and A € F™", let v, ,(A) = (Z:’;l Z?:1‘aij|2>2- Then v, is
the /2-norm on F*. If A € F™*® and B € F***  then by the Schwarz inequality,
(rma(AB)2 = ST S8 (S0 aubey [P < S A (0 laae®) (S [bisf?) =
(Vi (A k(B))?, 80 {vmn} is a consistent family of matrix norms. This is not a
special case of example (1): for example, for n > 1, v,,(I) = y/n but the operator
norm of [ is 1. We denote vy, ,,(A) by ||A||2 (even for m > n) (although most authors
use ||A||r for the Frobenius norm). For A € F™*" and x € F*, we have the inequality
|Az||2 < [|All2 - ||z|l2. For A € F™*™ and B € F**k, ||AB|]2 < ||All2 - ||B|l2- Fact
(2) above gives the important inequality: for A € F™"  |[|A]|l2 < ||All2- Thus the
operator norm induced by the /?-norms on F™ and F*, which is not trivial to compute,
is dominated by the Frobenius norm, which s easy to compute.

Condition Number and Error Sensitivity

Throughout this discussion A € C**" will be assumed to be invertible. We are interested
in determining the sensitivity of the solution of the linear system Az = b (for a given
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b € C") to perturbations in the right-hand-side (RHS) vector b or to perturbations in A. One
can think of such perturbations as arising from errors in measured data in computational
problems, as often occurs when the entries in A and/or b are measured. As we will see,
the fundamental quantity is the condition number k(A) = ||A]| - ||[A7L]| of A, relative to
a submultiplicative norm || - || on C**™. Since ||| > 1 in any submultiplicative norm
(N = 122 < HIPP = 12l > 1), 6(A) = IA - [[AH > [[A - A7 = ]| > 1.

Suppose || -|| is a norm on C**™ consistent with a norm ||-|| on C* (i.e. ||Az|| < ||A]-||z]]
as defined previously). Suppose first that the RHS vector b is subject to error, but the
matrix A is not. Then one actually solves the system AZ = b for Z, where D is presumably
close to b, instead of the system Az = b for z. Let x, Z be the solutions of Az = b, AZ = b,
respectively. Define the error vector e = x — 7, and the residual vector r =b—b=1b— Ax
(the amount by which AZ fails to match b). Then Ae = A(x —Z) =b—b=r,s0 e = A"lr.
Thus |le|| < [|A7Y] - ||r||. Since Az = b, ||b]| < ||A|| - ||z||. Multiplying these two inequalities

gives [le]l - [[Bll < [[AIl - A7 - flel| - [Ir[l, ie. $& < w(A)EL. So the relative error ol is
I

bounded by the condition number k(A) times the relative residual ||||le

Exercise. Let A, b, x, e, and r be as given above and show that ”2'||| > H(IA) HZ”

Matrices for which x(A) is large are called ill-conditioned (relative to the norm || - ||);
those for which x(A) is closed to ||I]| (which is 1 if || - || is the operator norm) are called
well-conditioned (and perfectly conditioned if x(A) = ||I||). If A is ill-conditioned, small
relative errors in the data (RHS vector b) can result in large relative errors in the solution.

If ' is the result of a numerical algorithm (with round-off error) for solving Az = b, then
the error e = x — 7 is not computable, but the residual » = b — AZ is computable, so we
obtain an upper bound on the relative error |‘||e|||| < m(A)%. In practice, we don’t know x(A)
(although we may be able to estimate it), and this upper bound may be much larger than
the actual relative error.

Suppose now that A is subject to error, but b is not. Then Z is now the solution of
(A+ E)T = b, where we assume that the error £ € C*™™" in the matrix is small enough
that ||A™'E|| < 1, so (I + A7'E)~! exists and can be computed by a Neumann series; then
A+ E is invertible and (A+ E)™' = (I + A"'E)~ AL, The simplest inequality bounds Ll

>
the error relative to Z, in terms of the relative error 1'%” in A: the equations Ax = b and

(A+ E)Z =bimply A(x —7) = EZ, x — 7 = A"'EZ, and thus ||z — Z|| < [|A7Y| - ||1E] - ||Z]],
o that el _ . IEI
e
Izl = "y
To estimate the error relative to = is more involved and is similar to the estimate derived
below. R
One can show that if Z is the solution of (A4 + E)Z = b with both A and b perturbed,

then
lell K(A) <||E|| +M)
lell = 1= s(ANEN/ITAL AL ol
To establish this relationship use (4 + E)z = b+ Ex and (A + E)Z = b to show z — 7 =

(A+E)™ (Ez +r), and also use |Ir|| < Ih||A]|- |lz]|. Note that if (A) 7l = [|A7Y]| - || E] is




Norms on Operators 47

(A) ~
Sma]], then W ~ K)(A)

We conclude this discussion by estimating the change in A~! due to a perturbation in A.
Suppose ||[A7Y| - ||E|| < 1. Then as above A + E is invertible, and

AT (A+ Bt = A7) (—DFATTE)RF AT
k=0

I
[M]8

(—1)k+1(A_1E)kA_1,

ES
I

1

SO

A7 = (A+E)7Y < Y ATE[F- (AT
k=1

|AE]

SR L IR
T fag
AT BN
< 1A=l
1—[[A=H] - £]]
L= w(A)[E/IAIl 1Al
So the relative error in the inverse satisfies
A" —(A+B)1|| _ K(4) 1E]
1 = -
[ 1—w(A)[EI/IAI A
Again, if n(A)% is small, then the relative error in the inverse is bounded (approximately)
by the condition number x(A) of A times the relative error 2! in the matrix A.

1Al



