Homework due – Wednesday, February 20, 2008

1. From (Chapter 9) page 181 of the Course notes (called chapters on the course web page), complete the following exercises:
 - Exercise 1
 - Exercise 2
 - Exercise 3
 - Exercise 4

2. Suppose you are given the values of \(f \) and \(f' \) at points \(x_0 + h \) and \(x_0 - h \) and you wish to approximate \(f'(x_0) \). Find coefficients \(\alpha \) and \(\beta \) that make the following approximation accurate to \(O(h^4) \):

\[
f'(x_0) \approx \alpha \frac{f'(x_0 + h) + f'(x_0 - h)}{2} + \beta \frac{f(x_0 + h) - f(x_0 - h)}{2h}
\]

Compute the coefficients by combining the Taylor series expansions of \(f(x) \) and \(f'(x) \) about the point \(x_0 \):

\[
f(x) = f(x_0) + (x - x_0)f'(x_0) + \frac{(x - x_0)^2}{2!}f''(x_0) + \frac{(x - x_0)^3}{3!}f'''(x_0)
\]
\[
+ \frac{(x - x_0)^4}{4!}f^{(4)}(x_0) + \frac{(x - x_0)^5}{5!}f^{(5)}(c_1)
\]

\[
f'(x) = f'(x_0) + (x - x_0)f''(x_0) + \frac{(x - x_0)^2}{2!}f'''(x_0) + \frac{(x - x_0)^3}{3!}f^{(4)}(x_0) + \frac{(x - x_0)^4}{4!}f^{(5)}(c_2)
\]

Hint: Combine the Taylor expansions into \((f(x_0 + h) - f(x_0 - h)) \) and \((f'(x_0 + h) + f'(x_0 - h)) \) and then combine these two to cancel the leading order error term (in this case \(O(h^2) \)).

Note: This technique for computing derivatives is useful for interpolating between points where a function and its derivative are known.