Assignment 4.

Due Friday, Apr. 27.

(1) Suppose you wish to solve the two-point boundary value problem u''(x) = f(x), $0 \le x \le 1$, $u(0) = \alpha$, $u(1) = \beta$, using a nonuniform grid with spacing h_i between x_{i-1} and x_i , $i = 1, \ldots, n$:

- (a) Write down an approximation to $u''(x_i)$ in terms of $u(x_{i-1})$, $u(x_i)$, and $u(x_{i+1})$: $u''(x_i) \approx au(x_{i-1}) + bu(x_i) + cu(x_{i+1})$. Choose the coefficients a, b, and c to make the order of accuracy as high as possible and determine what this order of accuracy is.
- (b) EXTRA CREDIT: Find a way to approximate $u''(x_i)$ that is second order accurate on a nonuniform grid. Write the resulting difference equations for the two-point boundary value problem in matrix form; i.e., say what the entries of A are when the equations are written in the form $A\mathbf{u} = \mathbf{b}$, where A is an n-1 by n-1 matrix and \mathbf{u} is the vector of unknown values at the interior nodes.
- (2) Problems 1 and 2 on p. 275.