Fast Poisson Solvers and the FFT

Suppose we have a block T'ST matrix with TST (Toeplitz symmetric tridiagonal) blocks:
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If A comes from the five-point finite difference approximation for Poisson’s equation with

Dirichlet boundary conditions on an m; by my rectangular grid, then, with the natural
ordering of equations and unknowns, S and 7' are m; by m; matrices given by
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The eigenvalues and eigenvectors of TST matrices are known. It turns out that all TST
matrices have the same eigenvectors; only their eigenvalues differ. If an m by m TST matrix
has a’s on its main diagonal and /’s on its first sub- and super-diagonals, then its eigenvalues
are:
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and the corresponding orthonormal eigenvectors are:
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Exercise: Check that the above are indeed eigenvalues and eigenvectors of the m by m TST
matrix with a’s on the main diagonal and /’s on the first sub- and super- diagonals. Check
that the eigenvectors are orthonormal: (q’,q*) = 0if j # k, (¢/, ¢’) = 1.

Let A be the block TST matrix in (1) and consider the equation Au = f. Writing u
and f as block vectors, u = (uy,...,u,,)" and f = (f,...,f,,)7, with blocks of length m;
corresponding to one line in the m; by msy grid, this linear system takes the form:

Tllg_l + Sllg -+ Tllg_|_1 = fg, (= 1, ..., Mo, (2)



where ug = u,,,+1 = 0. Let @ be the orthogonal matrix whose columns q',...,q™ are the
eigenvectors of S and T: S = QAYQT, T = QATIQT. Making these substitutions in (2)
and multiplying each side by QT gives

ADQ a1 + A9Q up + ADQ upy = Q1.
Defining y, = QT u, and g, = Q*'f,, this becomes
A(T)W—1 + A(S)YE + A(T)YE—H =g, (=1,...,ms.

Let the entries in block £ of y be denoted 1, ..., Y¢m,, and similarly for those in each
block of g. Look at the equations for the jth entry in each block of y:
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Note that these equations decouple from those for all other entries. If, foreach j = 1,...,my,
we define ¥; = (Y1, -,Ym»;)" and likewise g; = (g1,j,-- -, Gms,;)", then we have m; inde-
pendent tridiagonal systems, each involving msy unknowns:
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The work to solve these tridiagonal systems is O(mjmg). This gives us the vectors
Yi,---,¥Ym,- LThese can be rearranged to obtain the vectors yi, ..., ¥m,, which were obtained
from uy,...,u,, by multiplying by Q7. Thus the only remaining task is to recover the

solution u from y:

w=Qy,, £=1,...,ms (3)
This requires mo matrix-vector multiplications, where the matrices are m; by my. Ordi-
narily, the amount of work required would be O(mym?). A similar set of matrix-vector
multiplications was required to compute g from f: g, = QT f,, £ = 1,...,ms. It turns out
that because of the special form of the matrix (), these matrix-vector multiplications can
each be performed in time O(m; log, m;) using the FFT. Thus the total work for performing
these multiplications by @ and Q7 and the major part of the work in solving the original
linear system, is O(mgymy log, m;). This is almost the optimal order, O(m;ms).

The Fast Fourier Transform. To compute the entries of u, in (3), we must compute sums of
the form

Uek=§ijyzj: _z %Sin ik Yej, k=1,...,m.
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Such sums are called discrete sine transforms, and they are the imaginary part of a discrete
Fourier transform (DFT):
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While it would appear to require O(N?) work to compute the N entries of the DFT, this
can be done with O(N log, N) work using the fast Fourier transform (FFT) algorithm.
The key observation in computing the DFT of length N is to note that it can be expressed
in terms of two DFT’s of length N/2, one involving the even terms and one involving the
odd terms in (4). To this end, assume that N is even, and define w = ¢*™/N. We can write
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where F©) denotes the DFT of the even-numbered data points and F(©) the DFT of the odd-
numbered data points. Note also that the DF'T is periodic, with period equal to the number
of data points. Thus F(®) and F(°) have period N/2: F](\f/gap = Flge"’), p=0,1,...,N/2 —1.
Therefore once the N/2 entries in a period of F® and F(©) have been computed, we can
obtain the length N DFT by combining the two according to (5). If the N coefficients w*,
k=0,1,..., N — 1 have already been computed, then the work to do this is 2N operations;
we must multiply the coefficients w* by the entries Fk(o) and add to the entries Fk(e), k =
0,1,...,N —1.

This process can be repeated! For example, to compute the length N/2 DFT F(®) (as-
suming now that N is a multiple of 4), we can write
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where F¢®) denotes the DFT of the even even data (fi;) and F(® the DFT of the even
odd data (fi+). Since the length N/4 DFT’s F(¢) and F() are periodic with period
N/4, once the N/4 entries in a period of these two transforms are known, we can combine
them according to the above formula to obtain F®). This requires 2/N/2 operations (if the
powers of w have already been computed), and the same number of operations is required
to compute F(©), for a total of 2N operations.

Assuming that IV is a power of 2, this process can be repeated until we reach the length
1 DFT’s. The DFT of length 1 is the identity, so it requires no work to compute these.
There are log, N stages in this process and each stage requires 2N work to combine the
DFT’s of length 2/ to obtain those of length 27+, This gives a total amount of work that is
approximately 2N log, N.

The only remaining question is how to keep track of which entry in the original vector
of input data corresponds to each length 1 transform, e.g., F(¢°°¢) = £, This looks like a



bookkeeping nightmare! But actually it is not so difficult. Reverse the sequence of e’s and
0’s, assign 0 to e and 1 to o, and you will have the binary representation of the index of
the original data point. Do you see why this works? It is because at each stage we separate
the data according to the next bit from the right. The even data at stage one consists of
those elements that have a 0 in the rightmost position of their binary index, while the odd
data consists of those elements that have a 1 in the rightmost bit of their index. The even
even data points have a 0 in the rightmost two bits of their index, while the even odd data
points have a 0 in the rightmost bit and a 1 in the next bit from the right, etc. To make
the bookkeeping really easy, we can initially order the data using bit reversal of the binary
index. For example, if there are 8 data points, then we would order them as:

fO:OOO fO:OOO
fl:OOl f4:100
f2:010 f2:010
f3:011 — f6:110
f4:100 fl:OOl
f5:101 f5:101
f6:110 f3:011
f7:111 f7:111

Then the length 2 transforms are just linear combinations of neighboring entries, the length
4 transforms are linear combinations of neighboring length 2 transforms, etc.



