Finite Element Methods in One Dimension: Part 2.
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As before, divide the interval [0, 1] into subintervals and approximate u(z) by a continuous
piecewise linear function:
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where ¢;(z),...¢p,_1(x) are the hat functions that form a basis for the set of continuous
piecewise linear functions with value 0 at the endpoints.
Previously, we determined the coefficients ci, ..., c,_1 via the Galerkin conditions:

(Lu—f,0)=0, i=1,...,n—1; (4)

that is, the residual was forced to be orthogonal to each basis function.

One could choose the coefficients in other ways. For example, one might choose ¢4, ..., c,—1
to minimize the L?-norm of the residual: (L& — f, L& — f)'/2. This leads to a least squares
approximation.

Another idea, when the operator L is self-adjoint (i.e., (Lv,w) = (v, Lw) for all v and
w) and positive definite (i.e., (Lv,v) > 0 for all v # 0), is to minimize the energy norm of
the error:

(Ll — f,i— L 1f) = (La,a) — 2(f, @) + constant . (5)

Note that while we cannot compute £ 'f in (5) (since this is the solution that we are
seeking), we can compute the expression on the right-hand side. For problem (1) this is
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After integrating by parts and using the fact that @(0) = (1) = 0, this becomes

[ (@) @@ + (o) @(@))?) o =2 [ (@)ie) da. (6)

By choosing ¢y, . .., ¢,—1 to minimize the expression in (6), we obtain the Ritz approximation.



Claim: If £ is self-adjoint and positive definite, then the Galerkin approximation is the
same as the Ritz approximation.
Proof: Suppose % minimizes

I(w) = (Lv— f,v—L7Lf)

over all functions v in the trial space (i.e., linear combinations of ¢1,...,¢,_1). For any
function v in this space and any number €, we have

T(i+ev) = (Lu—f+elv,i— L f+ev)
(@) + 2¢(La — f,v) + €(Lv,v). (7)

The only way that this can be greater than or equal to Z(a) for all € is for the coefficient of
€ to be zero; i.e., (L& — f,v) = 0 for all v in the trial space.

Conversely, if (L4 — f,v) = 0 for all v in the trial space, then expression (7) is always
greater than or equal to Z(%), so & minimizes Z(v). O

This result is important because it means that of all functions in the trial space, the finite
element approximation is best as far as minimizing the energy norm of the error. Now one
can derive results about the global error (in energy norm) just by determining how well an
arbitrary function u(z) can be approximated by a linear combination of ¢y (), ..., p,—1(x);
e.g., by a continuous piecewise linear function. Other trial spaces are possible too, such as
continuous piecewise quadratics or Hermite cubics.

The following theorem about the piecewise polynomial interpolant of a function can be
used to bound the error in the finite element approximation, since, in energy norm, the
finite element approximation is a better approximation to u than its piecewise polynomial
interpolant. It also can be shown that in other norms the order of accuracy of the finite
element approximation is the same as that of the piecewise polynomial interpolant.

Theorem. Let S contain all continuous piecewise polynomials of degree £ — 1 or less, and
let u; be the interpolant of u in S. Then

|u — urllo < Co A* ||U(k)||0a

where h = max;(z;41 — 2;) and ||[v|o = [fy (v(z))” dz]/2.

For piecewise linear functions, & = 2, and the theorem tells us that the error in the
piecewise linear interpolant is of order O(h?). This is the order of the error in the piecewise
linear finite element approximation as well.



