Finite Element Methods in One Dimension
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Divide the interval [0, 1] into subintervals and approximate u(z) by a continuous piecewise
linear function:
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where ¢1(x), ..., 1(z) form a basis for the set of continuous piecewise linear functions with
value 0 at the endpoints.
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Note the ¢1(x),...,¢n—1(x) are linearly independent and that any continuous piecewise

linear function #(x) on this grid with value 0 at the endpoints can be written as a linear

combination of these functions: £(z) = ¥}~ £(x;)p;(x).

We want to choose the coefficients ¢y, ...,¢, 1 in (3) so that the function there approx-
imately satisfies the differential equation (1), but note that while each ¢,(z) is continuous,
its first derivative is discontinuous at the nodes, and its second derivative is undefined in the
usual sense. Instead of trying to satisfy the differential equation (1) in a pointwise sense, we
will express this equation in the weak form:

(Lu,v)y = (f,v) (4)

for all functions v(z), where the inner product of two functions is defined by

(v, w) = /01 v(z)w(z) dz.

Substituting for £ the differential operator defined in (1), and integrating by parts, equation

(4) becomes:
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@) Zo@) [+ [ P @ @) o+ [ a@ua)de = [ () d



If we require also that v(x) satisfy the given boundary conditions (2), then this becomes
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The exact solution u(z) satisfies equation (5) for all functions v(z) that vanish at the
endpoints of the interval. We cannot expect our approximate solution to satisfy equation
(5) for all such functions v(zx), but perhaps we can force it to satisfy (5) for all continuous
piecewise linear functions; i.e., for all linear combinations of ¢;(x), ..., ¢, 1(x). This gives
us n — 1 equations for the n — 1 unknowns, ¢y, ..., cp_1:
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We can write this set of equations in matrix form as Ac = f, where c is the vector of unknown
coefficients (ci,...,c,—1)%, and
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4= [ (p@)e(@)¢i(x) + a@)pi()pi(x) dz, £ = [ f@)ei@)de.  (T)

In order to determine the entries of the matrix A and right-hand side vector f, we must
first write down explicit expressions for ¢;(z) and ¢}(x):

(= 2i1) /(@i — Tic1), T € [Ti1, 24
ei(r) = @it1 —2)/(@ip1 — 7)), T € [Ti, Tiya]
0 otherwise

1/(%, - .Ti_l), x e [ﬂii_l, SEZ]
¢i(@) ={ —1/(@is1 —3:), T € [0, Tita]
0 otherwise

If p(z), q(z), and f(x) are simple enough functions, we can now compute the integrals
in (7) exactly. If not, then we can use quadrature formulas, such as a one-point Gauss
quadrature formula (the midpoint rule) over each subinterval. Note that if |¢ — j| > 1, then
the subintervals over which ¢; and ¢; are nonzero do not overlap, and the same holds for ¢
and . Tt follows that A;; = 0 for li —j| > 1; i.e., Ais a tridiagonal matrix. Note also that

for this problem A;; = Aj; for all 4, j, so A is a symmetric matrix.
Let us consider the simplest case in which p(z) = 1, ¢(z) = 0, and the nodes are equally

spaced: x; — x;_1 = h. Then
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If we divide each side by h, the linear system becomes
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Note that the matrix on the left is the same one that would arise from a centered finite
difference approximation. Finite element schemes often turn out to be almost the same as
finite difference formulas. Sometimes, however, what appear to be minor differences in the
way boundary conditions are handled or in the way the right hand side vector is formed turn
out to be important for accuracy.
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