Math 464, Autumn 2006
Sample Solutions for Practice Problems for Final

Final will cover chapters 1 through 6.4, with special emphasis on material since the midterm
(i.e., chs. 5 and sections 1 through 4 of chapter 6). This sheet contains practice problems
only for chs. 5 and 6 (except the first problem, which is a followup from the midterm). Refer
to earlier practice sheet for problems from chs. 1-4.

1. (a) On the midterm we considered the problem of evaluating f(z) = 1 — /1 —x
and showed that while the problem was well-conditioned for x near 0, one would
get an inaccurate result by applying this formula in a straightforward way. For
example, if || < 1076, then 1 — z would be rounded to 1, taking v/1 would give
1, and then subtracting this from 1 would give an answer of 0, which does not
have high relative accuracy. Write down an algorithm that will give high relative
accuracy. [Hint: One possible approach: You can evaluate 1 + /1 — z to high
relative accuracy. We have the product formula (1 — /1 —z)(1 + 1 —z) = z.]

The problem with evaluating 1 —+/1 — 2 when z is near 0 is that we are
subtracting two nearby numbers, one of which will likely be off by about
1l.e — 16. If the result is on the order of 1.e — 16 or less, then we cannot
expect any relative accuracy in the computed result. On the other hand,
if we evaluate 1 + /1 — x when z is near 0, then the true result is close
to 2, so if we are off by 1.e — 16 then that does represent a small relative
error. We can then use the formula 1 —+/1 —z = z/(1++/7) to evaluate

1 — /1 — = accurately.

(b) Suppose we wish to solve the quadratic equation
2 +br+c=0
for z, where b > 0 and |c| << b%. The formulas for the two roots are

b+ Vb —4c —b— Vb2 —4c

xr_ =
2 2

Ty

Write down an algorithm that can be used to evaluate both xz; and z_ to high
relative accuracy.

Since —b is negative, the two terms in the numerator of z_ have the same
sign and so they can be added safely. Therefore, compute z_ using the
above formula. Note that z,z_ = ¢, and use the formula z, = ¢/z_ to
compute x .

2. The following fragment of MATLAB code does Gaussian elimination without pivoting
on an n by n matrix A:



for k=1:n-1, % Use row k to eliminate entries in column k
% of rows k+1 through n.
A
% Here you should build in partial pivoting
b

for i=k+1:n,

mult = A(i,k)/A(k,k); % Subtract mult times row k from row i
for j=k:n, % in order to zero out A(i,k)
A(i,j) = A(i,j) - mult*A(k,j);
end;
end;

end;

(a) Write down the code you would insert to implement partial pivoting. (If you are
not sure about the MATLAB commands, you may write your code in C or in
some pseudo-MATLAB form, as long as it is clear ezactly what you are doing.)
Insert this code just before the loop over #:
[pivot,index] = max(abs(A(k:n,k))); % Find largest entry in column.

% Interchange row k and row index+k-1. [Remember that "index" is
% the index past row k of the pivot row.]

temp = A(k,:); % Temporarily store row k.
A(k,:) = A(index+k-1,:); % Replace row k by pivot row.
A(index+k-1,:) = temp; % Move what was row k into the position

% from which the pivot row came.

(b) Suppose A is tridiagonal and pivoting is not required. Show how you could mod-
ify the above code to solve this problem efficiently, and count the number of
operations performed in your modified code.
for k=1:n-1, % Use row k to eliminate entries in column k
% of row k+1. [Entries in col k of rows k+2
% through n are already 0.]
for i=k+1:k+1,

mult = A(i,k)/A(k,k); % Subtract mult times row k from row i
% in order to zero out A(i,k). Only
for j=k:k+1, % entries in cols k and k+1 are affected.
AG,j) = AG,7) - mult*Ak,]);
end;
end;
end;

The amount of work required is:

n—1 k+1
> (1 div + ) (1 sub + 1mu1t)> =5(n—1) ops .

k=1 j=k



3. (a) Compute the 2-norm and the oo-norm of the vector:

1
The 2-norm is y/12 + (—2)2 = v/5. The oo-norm is max{|1], | — 2|} = 2.

(b) What is the oo-norm (max|||. =1 |[Av||e) of the matrix

1 2
= ?
A (3 6.1)'

The co-norm of A is the maximum absolute row sum: max{|1|+ |2/, |3| +
16.1]} = 9.1.

(c) Determine the condition number of A in the co-norm?

The condition number of A in the co-norm is [|Al|s - [|A™"||eo- Since

(61 -2
|A7 oo = 10max{[6.1| + | — 2|,| — 3| + [1|} = 81. Hence ky(4) =
9.1 x 81 =737.1.

4. (a) Let x be the exact solution to the linear system Az = b, and let & be the exact
solution to the linear system A# = b, where A is a nonsingular matrix. Derive
a bound on the relative error, ||# — z[|/[|z||, in terms of the relative change in b,
16— bll/1lo]]-

Subtracting the two equations, we find that A(x —z) = b— bor,z—% =
A (b —b). Taking norms on each side gives ||z — || < ||A || ||b — b||.
Dividing each side by ||z|| (and multiplying and dividing by ||b|| on the
right) gives

[l — 2] 16— bl lloll

]l ol =l

Since Az = b, we can write ||b|| < ||A] - ||z||, or, ||6]|/]|=]] < ||A]|, and
making this substitution above we find

< |47

[l — 2] Ib — bll

2]

<l AT 1A
]l
Thus the normwise relative change in x is bounded by the condition

number of A, k(A) = ||A||-]|]JA7"||, times the normwise relative change in
b.

(b) What does it mean for an algorithm to be backward stable? If a backward stable
algorithm is used to solve a linear system Az = b on a machine with unit roundoff
¢, approximately how large will the relative error, ||z — z||/||z]|, be?



An algorithm is backward stable if the computed solution using that al-
gorithm is the exact solution to a nearby problem. For example, if one
has an algorithm for solving linear systems Az = b and the computed so-
lution # always satisfies (A+ E)& = b, for some matrix E with || E||/|| A
on the order of machine precision and for some vector b with ||b— b||/||d]|
on the order of machine precision, then the algorithm is backward stable.
If the matrix A is ill-conditioned, one cannot guarantee a small rela-
tive error, even if the algorithm is backward stable; if A or b have been
rounded, then the exact solution to the problem with rounded A and b
might be quite different from that of the problem with exact A and b.
With a good algorithm, however, one should expect

where k(A) = ||A|| - ||[A7Y| is the condition number of A and € is the
machine precision.

5. Factor the following matrix in the form @R, where @ is a 3 by 2 matrix with orthonor-
mal columns and R is a 2 by 2 upper triangular matrix:

0 —4
A=| 0 0
—5 —2

Use your QR factorization to solve the least squares problem Ax =~ b, where

1
b=| 2
3
0
-1
—4 0 —4
62 = A( a2) - <A(:a 2)aQ1>Q1 = 0 -2 0 = 0
-2 —1 0
-1
@ =q@/|el =¢@/4=| 0
0
It follows that A = QR, where
0 -1
5 2
Q:(QDQZ): 0 0 ) R:<0 4>
-1 0



To use this to solve the least squares problem, first compute Q*b and then
solve Rz = Q™b:

- (583)(2)-(2)
(o 3)(m)=(3)=(2)-(70)

6. Consider the following set of data:

SN

X
1
2
3

(a) Find the straight line that best fits this data in a least squares sense. Show how
you obtained your answer. Also plot the data points and the straight line that
you computed.

We want ¢q and ¢; such that y = ¢y + ci2:

G m-n(s)
(2 5)(2)-(5)

Solving, we find ¢y = —2/3, ¢; = 3/2.

(b) Write down the Lagrange form of a quadratic polynomial that exactly fits the
data.

(x —2)(z —3) (x —1)(z — 3) (x—1)(x—2)
1=2)1=3) 2 @2-1@z=3 * B-nE=-2)

(c) Write down the Newton form of a quadratic polynomial that exactly fits the data.

p()=1-



The Newton form is:

p(x) =ap+a1(z — 1) + az(z — 1)(z — 2).
To find the coefficients:

p(l)=1 = a=1
p(2):2 = gta=2=a=1
p(3)=4 = ag+2a1+2a=4=ay=1/2.

(d) Assume that this data comes from a function f whose derivatives are all contin-
uous. Write an expression for the difference between f(z) and your quadratic
interpolant at an arbitrary point x. Suppose that all of the derivatives of f are
bounded in absolute value by 3; that is, | f™(z)| < 3 for all z and forn = 1,2, .. ..

Give a bound on the difference between f(1.5) and the value of your quadratic at
xz = 1.5.

1@ —pe) = 0w - )@ -9 —3), eeln3

If | f"(z)| < 3 for all z € [1, 3], then

(5)(.5)(1.5) = .

f(1.5) = p(1.5)] < T

W w

7. Compare the efficiency of the divided difference algorithm for computing the coefficients

in the nth degree Newton interpolant of a function f to that of solving a triangular
system for these coefficients.

In the divided difference algorithm, one computes a table of divided differ-
ences:

flz]l = fi

fles] = fo o flan, 2o = (fl22] = flaa])/ (2 — 21)

fles| = fs  flos, xs] = (flas] = flao]) /(w5 — 23)  flar, 22, 23] = (fl2a, 23] = 21, 20]) /(25 — 4
There are (n + 1)(n + 2)/2 entries in this table. The first column is given,

but each of the other n(n + 1)/2 entries requires 3 operations to compute.

Hence the total work is about 3n(n + 1)/2 = (3/2)n? + O(n) operations.

To solve a triangular system for the coefficients, one forms the n+1 by n+1
triangular matrix:

1

1 To — I

1 T3 — 1 (IL’3 — .’,El)(.Tg - .Z'Q)

L Znpr =21 (Tngr — 21) (@1 —22) -0 ITj=y(Tngr — 75)



There is no work in forming the first column. Each of the n nonzero entries
in the second column requires 1 subtraction. Successive columns can be
formed by multiplying entries of the previous column by one new factor.
This requires 1 subtraction and 1 multiplication for each nonzero entry in
the column. Therefore the total work to form the matrix is:

n+2[(n—1)+Mnm-2)+...+1] =n’

The time to backsolve an n+ 1 by n+ 1 triangular system is about (n + 1)2,
so the total work is about 2n? + O(n).

Both methods are O(n?), but the constant seems to be a little smaller when
forming the divided difference table: 3/2 instead of 2. [There might be some
trick that would reduce the constant in the triangular solve, but both meth-
ods will be O(n?). The real advantage of the divided difference table over
the triangular system is that you do not run into problems of overflow and
underflow that may occur when you form the long products in the bottom
right entries of the triangular matrix.|



