
Math 464, Autumn 2006

Practice Problems for Final (Wed., Dec. 13, 8:30–10:20).

Final will cover chapters 1 through 6.4, with special emphasis on material since the midterm
(i.e., chs. 5 and sections 1 through 4 of chapter 6). This sheet contains practice problems
only for chs. 5 and 6 (except the first problem, which is a followup from the midterm). Refer
to earlier practice sheet for problems from chs. 1–4.

1. (a) On the midterm we considered the problem of evaluating f(x) = 1 −
√

1 − x
and showed that while the problem was well-conditioned for x near 0, one would
get an inaccurate result by applying this formula in a straightforward way. For
example, if |x| < 10−16, then 1 − x would be rounded to 1, taking

√
1 would give

1, and then subtracting this from 1 would give an answer of 0, which does not
have high relative accuracy. Write down an algorithm that will give high relative
accuracy. [Hint: One possible approach: You can evaluate 1 +

√
1 − x to high

relative accuracy. We have the product formula (1 −
√

1 − x)(1 +
√

1 − x) = x.]

(b) Suppose we wish to solve the quadratic equation

x2 + bx + c = 0

for x, where b > 0 and |c| << b2. The formulas for the two roots are

x+ =
−b +

√
b2 − 4c

2
, x− =

−b −
√

b2 − 4c

2

Write down an algorithm that can be used to evaluate both x+ and x− to high
relative accuracy.

2. The following fragment of MATLAB code does Gaussian elimination without pivoting
on an n by n matrix A:

for k=1:n-1, % Use row k to eliminate entries in column k

% of rows k+1 through n.

%

% Here you should build in partial pivoting

%

for i=k+1:n,

mult = A(i,k)/A(k,k); % Subtract mult times row k from row i

for j=k:n, % in order to zero out A(i,k)

A(i,j) = A(i,j) - mult*A(k,j);

end;

end;

end;
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(a) Write down the code you would insert to implement partial pivoting. (If you are
not sure about the MATLAB commands, you may write your code in C or in
some pseudo-MATLAB form, as long as it is clear exactly what you are doing.)

(b) Suppose A is tridiagonal and pivoting is not required. Show how you could mod-
ify the above code to solve this problem efficiently, and count the number of
operations performed in your modified code.

3. (a) Compute the 2-norm and the ∞-norm of the vector:

(

1
−2

)

.

(b) What is the ∞-norm (max‖v‖∞=1 ‖Av‖∞) of the matrix

A =

(

1 2
3 6.1

)

?

(c) Determine the condition number of A in the ∞-norm?

4. (a) Let x be the exact solution to the linear system Ax = b, and let x̂ be the exact
solution to the linear system Ax̂ = b̂, where A is a nonsingular matrix. Derive
a bound on the relative error, ‖x̂ − x‖/‖x‖, in terms of the relative change in b,
‖b̂ − b‖/‖b‖.

(b) What does it mean for an algorithm to be backward stable? If a backward stable
algorithm is used to solve a linear system Ax = b on a machine with unit roundoff
ε, approximately how large will the relative error, ‖x̂ − x‖/‖x‖, be?

5. Factor the following matrix in the form QR, where Q is a 3 by 2 matrix with orthonor-
mal columns and R is a 2 by 2 upper triangular matrix:

A =







0 −4
0 0

−5 −2





 .

Use your QR factorization to solve the least squares problem Ax ≈ b, where

b =







1
2
3





 .

6. Consider the following set of data:

x y
1 1
2 2
3 4
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(a) Find the straight line that best fits this data in a least squares sense. Show how
you obtained your answer. Also plot the data points and the straight line that
you computed.

(b) Write down the Lagrange form of a quadratic polynomial that exactly fits the
data.

(c) Write down the Newton form of a quadratic polynomial that exactly fits the data.

(d) Assume that this data comes from a function f whose derivatives are all contin-
uous. Write an expression for the difference between f(x) and your quadratic
interpolant at an arbitrary point x. Suppose that all of the derivatives of f are
bounded in absolute value by 3; that is, |f (n)(x)| ≤ 3 for all x and for n = 1, 2, . . ..
Give a bound on the difference between f(1.5) and the value of your quadratic at
x = 1.5.

7. Compare the efficiency of the divided difference algorithm for computing the coefficients
in the nth degree Newton interpolant of a function f to that of solving a triangular
system for these coefficients.
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