Practice Problems on Convergence of Sequences and Series, Pointwise vs. Uniform Convergence

1. Test each of the following series for convergence.

(a)
$$\sum_{n=1}^{\infty} \frac{(n!)^2}{(2n)!}$$

(b)
$$\sum_{n=1}^{\infty} \frac{n!}{3^n}$$

(c)
$$\sum_{n=1}^{\infty} \frac{n^{n+1/n}}{(n+1/n)^n}$$

(d)
$$\sum_{n=1}^{\infty} \frac{(n!)^2}{2^{n^2}}$$

(e)
$$\sum_{n=2}^{\infty} \frac{1}{(\ln n)^n}$$

- 2. If $\sum a_n$ and $\sum b_n$ are absolutely convergent, show that $\sum (a_n + b_n)$ is also. If $\sum a_n$ is absolutely convergent, show that $\sum a_n^2$ and $\sum a_n/(1+a_n)$ (where $a_n \neq -1$ for any n) are as well.
- 3. Discuss the convergence of the following series. State when the series converges absolutely and when it converges conditionally.

(a)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n-\ln n}$$

(b)
$$x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \ldots + (-1)^{n-1} \frac{x^n}{n} + \ldots$$

- 4. Show that the sequence of functions $f_n(x) = \frac{x^{2n}}{1+x^{2n}}$ converges pointwise but not uniformly on the entire real line.
- 5. Show that while the series $\sum_{n=1}^{\infty} \frac{\sin(2n\pi x)}{n^2}$ converges uniformly on the entire real line, the series cannot be differentiated term by term on any open interval.
- 6. Use the fact that $\frac{1}{1+t} = 1 t + t^2 t^3 + \dots$ if -1 < t < 1 and the fact that $\ln(1+x) = \int_0^x \frac{1}{1+t} dt$ to derive the series expansion

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots, \quad |x| < 1.$$

7. Find the interval of convergence of the following power series.

(a)
$$\sum_{n=1}^{\infty} n!(x-3)^n$$

(b)
$$\sum_{n=1}^{\infty} \frac{x^n}{n(n+1)}$$