Math 327, Autumn 2008

Practice Problems on Convergence of Sequences and Series, Pointwise vs.
Uniform Convergence

1. Test each of the following series for convergence.
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2. If > a, and Y} b, are absolutely convergent, show that > (a, + b,) is also. If > a, is
absolutely convergent, show that 3" a? and ¥ a,/(1 + a,) (where a, # —1 for any n)
are as well.

3. Discuss the convergence of the following series. State when the series converges abso-
lutely and when it converges conditionally.
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4. Show that the sequence of functions f,(z) = 1?—% converges pointwise but not uni-

formly on the entire real line.

5. Show that while the series > °° Smi#w) converges uniformly on the entire real line,

the series cannot be dlfferentlated term by term on any open interval.
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IS 1—+t dt to derive the series expansion
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7. Find the interval of convergence of the following power series.
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